A comparison of four methods for extracting Land Surface Emissivity and Temperature in the Thermal Infrared Hyperspectral Data

Document Type : Original Article

Authors

School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

Land Surface Temperature (LST) and Land Surface Emissivity (LSE) are two important physical properties
of Earth's surface. LST retrieval plays a valuable role in environmental studies. Therefore, in order to
estimate LST accurately, it is necessary to obtain LSEs. The HyTES (Hyperspectral Thermal Emission
Spectrometer) instrument has 256 spectral bands covering the thermal infrared (TIR) spectral range. Due to
a large number of narrow bandwidths of HyTES, this sensor can produce the accurate LST and LSEs. The
main goal of this paper is to evaluate the accuracy of LSE and LST retrieval methods from HyTES data and
to improve the accuracy of the Normalization (NOR) method. For this purpose, four different methods have
been considered to retrieve LSE: (i) the Reference Channel method (REF), (ii) the Emissivity Normalization
method, (iii) the Alpha emissivity method (AlPHA) and (iv) a method to improve the NOR algorithm. The
first three methods have been widely used with thermal multispectral data in other researches. These
methods were used with HyTES hyperspectral data in this paper; the fourth is a new method that improved
the accuracy of the NOR method. The results of quality assessment show that the emissivity RMSEs of the
REF, NOR, ALPHA methods and the new proposed method are 0.021, 0.815, 0.034 and 0.0201,
respectively. Also, LST RMSEs of the REF and NOR methods are less than 1.5 K.

Keywords

Main Subjects


Aires, F., Chedin, A., Scott, N. A., & Rossow, W. B. (2002). A regularized neural net approach for retrieval of atmospheric and surface temperatures with the IASI instrument. Journal of Applied Meteorology, 41(2), 144-159.
Bagavathiappan, S., Lahiri, B. B., Saravanan, T., Philip, J., & Jayakumar, T. (2013). Infrared thermography for condition monitoring–A review. Infrared Physics & Technology60, 35-55.
Borel, C. C. (1998, July). Surface emissivity and temperature retrieval for a hyperspectral sensor. In Geoscience and Remote Sensing Symposium Proceedings, 1998. IGARSS'98. 1998 IEEE International (Vol. 1, pp. 546-549). IEEE.
Borel, C. C. (2003, March). ARTEMISS–an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data. In 28th Annual GOMACTech Conference, Hyperspectral Imaging Session (Vol. 31, pp. 1-4).
Borel, C. (2008). Error analysis for a temperature and emissivity retrieval algorithm for hyperspectral imaging data. International Journal of Remote Sensing, 29(17-18), 5029-5045.
Brandt, R., Bird, C., & Neuer, G. (2008). Emissivity reference paints for high temperature applications. Measurement, 41(7), 731-736.
Chen, F., Yang, S., Su, Z., & Wang, K. (2016). Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries. ISPRS journal of photogrammetry and remote sensing, 114, 53-65.
Dash, P., Göttsche, F. M., Olesen, F. S., & Fischer, H. (2002). Land surface temperature and emissivity estimation from passive sensor data: theory and practice-current trends. International Journal of remote sensing, 23(13), 2563-2594.
Gillespie, A. R. (1985). Lhitologic mapping of silicate rocks using TIMS. The TIMS Data Users Workshop. JPL Publ, 86-38.
Gillespie, A., Rokugawa, S., Matsunaga, T., Cothern, J. S., Hook, S., & Kahle, A. B. (1998). A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images. IEEE transactions on geoscience and remote sensing, 36(4), 1113-1126.
Gillespie, A. R., Rokugawa, S., Hook, S. J., Matsunaga, T., & Kahle, A. B. (1999). Temperature/emissivity separation algorithm theoretical basis document, version 2.4. ATBD contract NAS5-31372, NASA.
Hu, T., Liu, Q., Du, Y., Li, H., Wang, H., & Cao, B. (2015). Analysis of the land surface temperature scaling problem: A case study of airborne and satellite data over the Heihe Basin. Remote Sensing, 7(5), 6489-6509.
Jacob, F., Lesaignoux, A., Olioso, A., Weiss, M., Caillault, K., Jacquemoud, S., ... & Lagouarde, J. P. (2017). Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model. Remote Sensing of Environment, 198, 160-172.
Kahle, A. B., Madura, D. P., & Soha, J. M. (1980). Middle infrared multispectral aircraft scanner data: Analysis for geological applications. Applied Optics, 19(14), 2279-2290.
Kealy, P. S. (1990). Estimation of emissivity and temperature using alpha coefficients. In Proceedings of the Second Thermal Infrared Multispectral Scanner (TIMS) Workshop (pp. 11-16).
Kealy, P. S., & Hook, S. J. (1993). Separating temperature and emissivity in thermal infrared multispectral scanner data: Implications for recovering land surface temperatures. IEEE Transactions on Geoscience and Remote Sensing, 31(6), 1155-1164.
Labbi, A., & Mokhnache, A. (2015). Derivation of split-window algorithm to retrieve land surface temperature from MSG-1 thermal infrared data. European Journal of Remote Sensing, 48(1), 719-742.
Li, Z. L., Becker, F., Stoll, M. P., & Wan, Z. (1999). Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images. Remote sensing of Environment, 69(3), 197-214.
Li, Z. L., Wu, H., Wang, N., Qiu, S., Sobrino, J. A., Wan, Z., ... & Yan, G. (2013). Land surface emissivity retrieval from satellite data. International Journal of Remote Sensing, 34(9-10), 3084-3127.
Marinetti, S., & Cesaratto, P. G. (2012). Emissivity estimation for accurate quantitative thermography. NDT & E International, 51, 127-134.
Nunak, T., Rakrueangdet, K., Nunak, N., & Suesut, T. (2015, March). Thermal image resolution on angular emissivity measurements using infrared thermography. In Proceedings of the International MultiConference of Engineers and Computer Scientists (Vol. 1, pp. 18-20).
Oltra-Carrió, R., Cubero-Castan, M., Briottet, X., & Sobrino, J. A. (2014). Analysis of the performance of the TES algorithm over urban areas. IEEE Transactions on Geoscience and Remote Sensing, 52(11), 6989-6998.
Peres, L. F., & DaCamara, C. C. (2005). Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI. IEEE Transactions on Geoscience and Remote Sensing, 43(8), 1834-1844.
Rivera, G. (2012). Hyperspectral Thermal Emission Spectrometer  . https://hytes.jpl.nasa.gov/.
Rozenstein, O., Qin, Z., Derimian, Y., & Karnieli, A. (2014). Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm. Sensors, 14(4), 5768-5780.
Singh, D., & Bhatia, R. C. (2007). Retrieval of atmospheric temperature and moisture profiles from satellite data over India using the ICI inversion model.
Sobrino, J. A., & Raissouni, N. (2000). Toward remote sensing methods for land cover dynamic monitoring: application to Morocco. International journal of remote sensing, 21(2), 353-366.
Sobrino, J. A., Raissouni, N., & Li, Z. L. (2001). A comparative study of land surface emissivity retrieval from NOAA data. Remote Sensing of Environment, 75(2), 256-266.
Sobrino, J. A., Jiménez-Muñoz, J. C., & Verhoef, W. (2005). Canopy directional emissivity: Comparison between models. Remote Sensing of Environment, 99(3), 304-314.
Sobrino, J. A., Jiménez-Muñoz, J. C., Zarco-Tejada, P. J., Sepulcre-Cantó, G., & de Miguel, E. (2006). Land surface temperature derived from airborne hyperspectral scanner thermal infrared data. Remote Sensing of Environment, 102(1-2), 99-115.
Sun, D., & Pinker, R. T. (2003). Estimation of land surface temperature from a Geostationary Operational Environmental Satellite (GOES‐8). Journal of geophysical research: atmospheres, 108(D11).
Tang, H., & Li, Z. L. (2013). Quantitative Remote Sensing in Thermal Infrared: Theory and Applications. Springer Science & Business Media.
Valor, E., & Caselles, V. (1996). Mapping land surface emissivity from NDVI: Application to European, African, and South American areas. Remote sensing of Environment, 57(3), 167-184.
Wang, N., Tang, B. H., Li, C., & Li, Z. L. (2010, July). A generalized neural network for simultaneous retrieval of atmospheric profiles and surface temperature from hyperspectral thermal infrared data. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 IEEE International, 1055-1058.
Wang, N., Wu, H., Nerry, F., Li, C., & Li, Z. L. (2011). Temperature and emissivity retrievals from hyperspectral thermal infrared data using linear spectral emissivity constraint. IEEE Transactions on Geoscience and Remote Sensing, 49(4), 1291-1303.
Wang, N., Li, Z. L., Tang, B. H., Zeng, F., & Li, C. (2013). Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique. International Journal of Remote Sensing, 34(9-10), 3485-3502.
Young, S. J., Johnson, B. R., & Hackwell, J. A. (2002). An in‐scene method for atmospheric compensation of thermal hyperspectral data. Journal of Geophysical Research: Atmospheres, 107(D24).
Zhao, E., Qian, Y., Gao, C., Huo, H., Jiang, X., & Kong, X. (2014). Land surface temperature retrieval using airborne hyperspectral scanner daytime mid-infrared data. Remote Sensing, 6(12), 12667-12685.
Zhong, X., Huo, X., Ren, C., Labed, J., & Li, Z. L. (2016). Retrieving land surface temperature from hyperspectral thermal infrared data using a multi-channel method. Sensors, 16(5), 687.