Morphological discrimination amongst geological rock surfaces of Zagros thrust belt via SAR backscattering modelling

Document Type : Original Article


1 School of Surveying and Geospatial Engineering, Collage of Engineering, University of Tehran, Tehran, Iran

2 Center of Excellence on Applied Electromagnetic Systems, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran

3 Dept. of Geology, Exploration Directorate of National Iranian Oil Company, Tehran, Iran


Nowadays, processing and interpretation of remote sensing satellite images is the only method of surface
geological rock surfaces mapping. This doubtlessly requires time-consuming field observations for
complementary morphological information, i.e. field measurements in geomorphology is unavoidable since
the hyper-spectral images that are used for geological mapping do not discriminate the lithologies texture
and cannot be used to determine the geological morphology. However, due to the impassable and fault cliffs,
comprehensive field operations within a geological map is almost impossible. Microwave or radar remote
sensing via Synthetic Aperture Radar (SAR) images is capable of obtaining the surface morphology and
alteration zones discrimination based on lithologies texture. To fulfill this aim, the Integral Equation Model
(IEM), which has been proposed by Fung et al. (1992) and has been developed and improved several times,
seems to be the most outstanding method being adopted to model the SAR backscattering coefficient against
the surface roughness. Nonetheless, it needs to be asserted that the Euclidean calculation of this parameter
is not capable enough to measure the morphology of a feature. In this paper, using the power-law geometry
capability, one can improve the alteration zones discrimination. To implement and evaluate the proposed
method of geomorphological mapping, IEM 𝜎° results for a region on the Zagros fold-thrust belt, in western
Iran, were compared with the satellite SAR backscattering data in the L-band (i.e. ALOS-PALSAR) and the
X-band (i.e. TerraSAR). Besides, the efficiency of the SAR data processing versus the geological field
observations provide an average of more than 20% improvement in terms of the power-law geometry in
comparison with the Euclidean geometry. Although this improvement for moderate rough formations is less
than 3% at high frequency (X-band), it is about 30% for rough formations at low frequency (L-band).


Aghanabati, A. (2004). Geology of Iran: Geological Survey of Iran.
Álvarez-Pérez, J. L. (2001). An extension of the IEM/IEMM surface scattering model. Waves in Random Media, 11(3), 307-329.
Baghdadi, N., Chaaya, J. A., & Zribi, M. (2011). Semiempirical calibration of the integral equation model for SAR data in C-band and cross polarization using radar images and field measurements. Geoscience and Remote Sensing Letters, IEEE, 8(1), 14-18.
Baghdadi, N., Holah, N., & Zribi, M. (2006). Calibration of the Integral Equation Model for SAR data in C‐band and HH and VV polarizations. International Journal of Remote Sensing, 27(4), 805-816. doi:10.1080/01431160500212278
Chen, K.-S., Wu, T.-D., Tsang, L., Li, Q., Shi, J., & Fung, A. K. (2003). Emission of rough surfaces calculated by the integral equation method with comparison to three-dimensional moment method simulations. IEEE Transactions on Geoscience and Remote Sensing, 41(1), 90-101.
Di Martino, G., Franceschetti, G., Iodice, A., Riccio, D., Ruello, G., & Zinno, I. (2014). Fractal dimension estimation from fully polarimetric SAR data. Paper presented at the Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International.
Dierking, W. (1999). Quantitative roughness characterization of geological surfaces and implications for radar signature analysis. Geoscience and Remote Sensing, IEEE Transactions on, 37(5), 2397-2412.
Du, C., Yang, F., Xu, X., Xu, X., & Peng, M. (2014). Coal mine geological hazardous body detection using surface ground penetrating radar velocity tomography. Paper presented at the Ground Penetrating Radar (GPR), 2014 15th International Conference on.
Falconer, K. (2004). Fractal geometry: mathematical foundations and applications: John Wiley & Sons.
Fernandez-Diaz, J. C. (2010). Characterization of surface roughness of bare agricultural soils using LiDAR. University of Florida.
Franceschetti, G., Iodice, A., Maddaluno, S., & Riccio, D. (2000). A fractal-based theoretical framework for retrieval of surface parameters from electromagnetic backscattering data. Geoscience and Remote Sensing, IEEE Transactions on, 38(2), 641-650.
Franceschetti, G., & Riccio, D. (2006). Scattering, Natural Surfaces, and Fractals: Academic Press.
Fung, A. K. (1994). Microwave Scattering and Emission Models and Their Applications: Artech House.
Fung, A. K., & Chen, K. S. (2004). An update on the IEM surface backscattering model. Geoscience and Remote Sensing Letters, IEEE, 1(2), 75-77. doi:10.1109/LGRS.2004.826564
Fung, A. K., Li, Z., & Chen, K. (1992). Backscattering from a randomly rough dielectric surface. Geoscience and Remote Sensing, IEEE Transactions on, 30(2).
Ghafouri, A. (2017). Top-Geological Formations Surface RoughnessModeling in SAR Image. School of Surveying and Geospatial Engineering, Faculty of Engineering, University of Tehran, Iran, PhD. Thesis.
Ghafouri, A., Amini, J., Dehmollaian, M., & Kavoosi, M. (2015). Random Fractals Geometry in Surface Roughness Modeling of Geological Formations using Synthetic Aperture Radar Images. Journal of Geomatics Science and Technology, Iranian Society for Surveying & Geomatics Engineering, 5(2), 97-108.
Ghafouri, A., Amini, J., Dehmollaian, M., & Kavoosi, M. (2017a). Measuring Surface Roughness of Geological Rock Surfaces in SAR Data using Fractal Geometry. Comptes Rendues Geosciences.
Ghafouri, A., Amini, J., Dehmollaian, M., & Kavoosi, M. A. (2017b). Better Estimated IEM Input Parameters Using Random Fractal Geometry Applied on Multi-Frequency SAR Data. Remote Sensing, 9(5), 445.
Hsieh, C.-Y., Fung, A. K., Nesti, G., Sieber, A. J., & Coppo, P. (1997). A further study of the IEM surface scattering model. IEEE Transactions on Geoscience and Remote Sensing, 35(4), 901-909.
Huang, C.-h., & Bradford, J. M. (1992). Applications of a Laser Scanner to Quantify Soil Microtopography. Soil Science Society of America Journal, 56(1). doi:10.2136/sssaj1992.03615995005600010002x
Iodice, A., Natale, A., & Riccio, D. (2013). Kirchhoff scattering from fractal and classical rough surfaces: Physical interpretation. Antennas and Propagation, IEEE Transactions on, 61(4), 2156-2163.
Irena, H. (2001). Inversion of surface parameters using Polarimetric SAR. Ph. D. thesis, 2001, Germany.
Li, Z., Yang, R., Dang, F., Du, P., Zhang, X., Tan, B., Su, H. (2012, 4-7 June 2012). A review on the geological applications of hyperspectral remote sensing technology. Paper presented at the Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS), 2012 4th Workshop on.
Lutgens, F. K. (2006). Essentials of Geology/FREDERICK LUTGENS, EDWARD J. TARBUCK.
Mandelbrot, B. B. (1983). The fractal geometry of nature (Vol. 173): Macmillan.
Martinez, A., & Byrnes, A. P. (2001). Modeling dielectric-constant values of geologic materials: An aid to ground-penetrating radar data collection and interpretation: Kansas Geological Survey, University of Kansas.
Martino, G. D., Iodice, A., Riccio, D., & Ruello, G. (2010). Imaging of fractal profiles. Geoscience and Remote Sensing, IEEE Transactions on, 48(8), 3280-3289.
Motiei, H. (1993). Stratigraphy of Zagros. Treatise on the Geology of Iran(1), 60-151.
Summers, J. E., Soukup, R. J., & Gragg, R. F. (2007). Mathematical modeling and computer-aided manufacturing of rough surfaces for experimental study of seafloor scattering. Oceanic Engineering, IEEE Journal of, 32(4), 897-914.
Ulaby, F. T., & Long, D. G. (2014). Microwave Radar and Radiometric Remote Sensing. 425-445.
Vázquez, E. V., Miranda, J., & González, A. P. (2007). Describing soil surface microrelief by crossover length and fractal dimension. Nonlinear Processes in Geophysics, 14(3), 223-235.
Verhoest, N. E., Lievens, H., Wagner, W., Álvarez-Mozos, J., Moran, M. S., & Mattia, F. (2008). On the soil roughness parameterization problem in soil moisture retrieval of bare surfaces from synthetic aperture radar. Sensors, 8(7), 4213-4248.
Western, A. W., Bloschl, G., & Grayson, R. B. (1998). How well do indicator variograms capture the spatial connectivity of soil moisture? Hydrological processes, 12(12), 1851-1868.
Zribi, M. (1998). Développement de nouvelles méthodes de modélisation de la rugosité pour la rétrodiffusion hyperfréquence de la surface du sol.
Zribi, M., Ciarletti, V., Taconet, O., Paillé, J., & Boissard, P. (2000). Characterisation of the soil structure and microwave backscattering based on numerical three-dimensional surface representation: Analysis with a fractional brownian model. Remote sensing of environment, 72(2), 159-169.