Ali, M., Montzka, C., Stadler, A., Menz, G., Thonfeld, F., & Vereecken, H. (2015). Estimation and validation of RapidEye-based time-series of leaf area index for winter wheat in the Rur catchment (Germany). Remote sensing, 7(3), 2808-2831.
Bach, H., Friese, M., Spannraft, K., Migdall, S., Dotzler, S., Hank, T., . . . Mauser, W. (2012). Integrative use of multitemporal RapidEye and Terrasar-X data for agricultural monitoring. Paper presented at the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany
Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing, 58(3), 239-258.
Camps-Valls, G., & Bruzzone, L. (2005). Kernel-based methods for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 43(6), 1351-1362.
Daya Sagar, B. S., & Serra, J. (2010). Spatial information retrieval, analysis, reasoning and modelling. International Journal of Remote Sensing, 31(22), 5747-5750. doi: 10.1080/01431161.2010.512315
Definiens, A. (2009). Definiens eCognition developer 8 user guide. Definens AG, Munchen, Germany.
DeFries, R., Hansen, M., & Townshend, J. (1995). Global discrimination of land cover types from metrics derived from AVHRR pathfinder data. Remote sensing of environment, 54(3), 209-222.
Geerken, R., Zaitchik, B., & Evans, J. (2005). Classifying rangeland vegetation type and coverage from NDVI time series using Fourier Filtered Cycle Similarity. International Journal of Remote Sensing, 26(24), 5535-5554.
Gerstmann, H., Möller, M., & Gläßer, C. (2016). Optimization of spectral indices and long-term separability analysis for classification of cereal crops using multi-spectral RapidEye imagery. International Journal of Applied Earth Observation and Geoinformation, 52, 115-125.
Hill, M. J., & Donald, G. E. (2003). Estimating spatio-temporal patterns of agricultural productivity in fragmented landscapes using AVHRR NDVI time series. Remote sensing of environment, 84(3), 367-384.
Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. doi: http://dx.doi.org/10.1016/0034-4257(88)90106-X
Jackson, R. D. (1986). Remote sensing of biotic and abiotic plant stress. Annual review of phytopathology, 24(1), 265-287.
Jamali, S., Seaquist, J., Eklundh, L., & Ardö, J. (2014). Automated mapping of vegetation trends with polynomials using NDVI imagery over the Sahel. Remote sensing of environment, 141, 79-89.
Jonsson, P., & Eklundh, L. (2004). TIMESAT - a program for analyzing time-series of satellite sensor data. Computers & Geosciences, 30, 833-845.
Julea, A., Méger, N., Rigotti, C., Trouvé, E., Jolivet, R., & Bolon, P. (2012). Efficient Spatio-temporal Mining of Satellite Image Time Series for Agricultural Monitoring. Trans. MLDM, 5(1), 23-44.
Kross, A., McNairn, H., Lapen, D., Sunohara, M., & Champagne, C. (2015). Assessment of RapidEye vegetation indices for estimation of leaf area index and biomass in corn and soybean crops. International Journal of Applied Earth Observation and Geoinformation, 34, 235-248.
Li, Q., Cao, X., Jia, K., Zhang, M., & Dong, Q. (2014). Crop type identification by integration of high-spatial resolution multispectral data with features extracted from coarse-resolution time-series vegetation index data. International Journal of Remote Sensing, 35(16), 6076-6088.
Löw, F., Conrad, C., & Michel, U. (2015). Decision fusion and non-parametric classifiers for land use mapping using multi-temporal RapidEye data. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 191-204.
McNairn, H., Jackson, T. J., Wiseman, G., Bélair, S., Berg, A., Bullock, P., . . . Hosseini, M. (2015). The Soil Moisture Active Passive Validation Experiment 2012 (SMAPVEX12): Pre-Launch Calibration and Validation of the SMAP Soil Moisture Algorithms. IEEE Trans. Geosci. Remote Sens, 53(5).
Meroni, M., Verstraete, M. M., Rembold, F., Urbano, F., & Kayitakire, F. (2014). A phenology-based method to derive biomass production anomalies for food security monitoring in the Horn of Africa. International Journal of Remote Sensing, 35(7), 2472-2492.
Mirik, M., Ansley, R., Michels Jr, G., & Elliott, N. (2012). Spectral vegetation indices selected for quantifying Russian wheat aphid (Diuraphis noxia) feeding damage in wheat (Triticum aestivum L.). Precision Agriculture, 13(4), 501-516.
Mountrakis, G., Im, J., & Ogole, C. (2011). Support vector machines in remote sensing: A review. ISPRS Journal of Photogrammetry and Remote Sensing, 66(3), 247-259.
Niazmardi, S., Homayouni, S., Safari, A., Shang, J., & McNairn, H. (2018). Multiple kernel representation and classification of multivariate satellite-image time-series for crop mapping. International Journal of Remote Sensing, 39(1), 149-168.
Pan, Z., Huang, J., Zhou, Q., Wang, L., Cheng, Y., Zhang, H., . . . Liu, J. (2015). Mapping crop phenology using NDVI time-series derived from HJ-1 A/B data. International Journal of Applied Earth Observation and Geoinformation, 34(Supplement C), 188-197. doi: https://doi.org/10.1016/j.jag.2014.08.011
Prasad, A. K., Chai, L., Singh, R. P., & Kafatos, M. (2006). Crop yield estimation model for Iowa using remote sensing and surface parameters. International Journal of Applied Earth Observation and Geoinformation, 8(1), 26-33.
Rouse Jr, J. W., Haas, R., Schell, J., & Deering, D. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA special publication, 351, 309.
Simonneaux, V., Duchemin, B., Helson, D., Er‐Raki, S., Olioso, A., & Chehbouni, A. G. (2008). The use of high‐resolution image time series for crop classification and evapotranspiration estimate over an irrigated area in central Morocco. International Journal of Remote Sensing, 29(1), 95-116. doi: 10.1080/01431160701250390
Spruce, J. P., Sader, S., Ryan, R. E., Smoot, J., Kuper, P., Ross, K., . . . McKellip, R. (2011). Assessment of MODIS NDVI time series data products for detecting forest defoliation by gypsy moth outbreaks. Remote sensing of environment, 115(2), 427-437.
Verhegghen, A., Bontemps, S., & Defourny, P. (2014). A global NDVI and EVI reference data set for land-surface phenology using 13 years of daily SPOT-VEGETATION observations. International Journal of Remote Sensing, 35(7), 2440-2471.
Wagenseil, H., & Samimi, C. (2006). Assessing spatio‐temporal variations in plant phenology using Fourier analysis on NDVI time series: results from a dry savannah environment in Namibia. International Journal of Remote Sensing, 27(16), 3455-3471.
Zhou, F., Zhang, A., & Townley-Smith, L. (2013). A data mining approach for evaluation of optimal time-series of MODIS data for land cover mapping at a regional level. ISPRS Journal of Photogrammetry and Remote Sensing, 84, 114-129.