Achmad, A., Hasyim, S., Dahlan, B., & Aulia, D. N. (2015). Modeling of urban growth in tsunami-prone city using logistic regression: analysis of Banda Aceh, Indonesia. Applied Geography, 62, 237-246.
Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multi‑temporal satellite images: A case study of dhaka, bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3-31.
Al-sharif, A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian journal of geosciences, 7(10), 4291-4301.
Alsharif, A. A., & Pradhan, B. (2014). Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing, 42(1), 149-163.
Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
Bakker, M. M., Alam, S. J., van Dijk, J., & Rounsevell, M. D. (2015). Land-use change arising from rural land exchange: an agent-based simulation model. Landscape Ecology, 30(2), 273-286.
Barton, H. (1990). Local global planning. The Planner, 26, 12-15.
Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014). Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160-171.
Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B: Planning and Design, 21(7), S31-S48.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.
Deng, J., Wang, K., Deng, Y., & Qi, G. (2008). PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing, 29(16), 4823-4838.
Eastman, J. R., Jiang, H., & Toledano, J. (1998). Multi-criteria and multi-objective decision making for land allocation using GIS. Environment and Management, 9, 227-252.
Feng, Y., & Liu, Y. (2013). A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27(3), 449-466.
Foroutan, E., & Delavar, M. (2012). Urban growth modeling using genetic algorithms and cellular automata; A case study of Isfahan Metropolitan Area, Iran. Proceedings of the GIS Ostrava, 23-25.
García-Frapolli, E., Ayala-Orozco, B., Bonilla-Moheno, M., Espadas-Manrique, C., & Ramos-Fernández, G. (2007). Biodiversity conservation, traditional agriculture and ecotourism: Land cover/land use change projections for a natural protected area in the northeastern Yucatan Peninsula, Mexico. Landscape and urban planning, 83(2), 137-153.
García, A. M., Santé, I., Boullón, M., & Crecente, R. (2012). A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Computers, environment and urban systems, 36(4), 291-301.
Grekousis, G., Manetos, P., & Photis, Y. N. (2013). Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities, 30, 193-203.
Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112.
Hong, H., Pradhan, B., Xu, C., & Bui, D. T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281.
Hosseinali, F., & Alesheikh, A. A. (2014). Assessing Urban Land-Use Expansion in Regional Scale by Developing a Multi-Agent System. The International Journal of Humanities, 20(2), 23-44.
Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105-113.
Huang, B., Xie, C., Tay, R., & Wu, B. (2009). Land-use-change modeling using unbalanced support-vector machines. Environment and Planning B: Planning and Design, 36(3), 398-416.
Jenerette, G. D., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landscape Ecology, 16(7), 611-626.
Jiang, L., Deng, X., & Seto, K. C. (2013). The impact of urban expansion on agricultural land use intensity in China. Land Use Policy, 35, 33-39.
Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods: Nelson Education.
Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145-156.
Lai, T., Dragićević, S., & Schmidt, M. (2013). Integration of multicriteria evaluation and cellular automata methods for landslide simulation modelling. Geomatics, Natural Hazards and Risk, 4(4), 355-375.
Lin, C.-T. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems: Prentice hall PTR.
Lin, H., Lu, K. S., Espey, M., & Allen, J. (2005). Modeling Urban Sprawl and Land Use Change in a Coastal Area--A Neural Network Approach. Paper presented at the 2005 Annual meeting, July 24-27, Providence, RI.
Lin, Y.-P., Chu, H.-J., Wu, C.-F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1), 65-87.
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447-1459.
Millington, J. D., Perry, G. L., & Romero-Calcerrada, R. (2007). Regression techniques for examining land use/cover change: a case study of a Mediterranean landscape. Ecosystems, 10(4), 562-578.
Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and urban planning, 99(2), 141-153.
Moghadam, H. S., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140-149.
Molowny-Horas, R., Basnou, C., & Pino, J. (2015). A multivariate fractional regression approach to modeling land use and cover dynamics in a Mediterranean landscape. Computers, environment and urban systems, 54, 47-55.
Munshi, T., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2014). Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68-86.
Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39(7), 5565-5573.
Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and remote sensing, 33(4), 981-996.
Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, environment and urban systems, 26(6), 553-575.
Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250-268.
Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric engineering and remote sensing, 66(8), 1011-1016.
Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1), 239-248.
Porta, J., Parapar, J., Doallo, R., Rivera, F. F., Santé, I., & Crecente, R. (2013). High performance genetic algorithm for land use planning. Computers, environment and urban systems, 37, 45-58.
Rafiee, R., Mahiny, A. S., Khorasani, N., Darvishsefat, A. A., & Danekar, A. (2009). Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, 26(1), 19-26.
Randolph, J. (2004). Environmental land use planning and management: Island Press.
Razavi, B. S. (2014). Predicting the trend of land use changes using artificial neural network and markov chain model (case study: Kermanshah City). Research Journal of Environmental and Earth Sciences, 6(4), 215-226.
Rendana, M., Rahim, S. A., Idris, W. M. R., Lihan, T., & Rahman, Z. A. (2015). CA-Markov for Predicting Land Use Changes in Tropical Catchment Area: A Case Study in Cameron Highland, Malaysia. Journal of Applied Sciences, 15(4), 689.
Schneider, L. C., & Pontius, R. G. (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1), 83-94.
SCI. (2010). www. Amar.org.ir.
Shafizadeh-Moghadam, H., Hagenauer, J., Farajzadeh, M., & Helbich, M. (2015). Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change: a case study. International Journal of Geographical Information Science, 29(4), 606-623.
Sun, P., Xu, Y., Yu, Z., Liu, Q., Xie, B., & Liu, J. (2016). Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. Journal of Geographical Sciences, 26(3), 272-296.
Tan, R., Liu, Y., Zhou, K., Jiao, L., & Tang, W. (2015). A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Computers, environment and urban systems, 49, 15-29.
Tayyebi, A., Delavar, M. R., Yazdanpanah, M. J., Pijanowski, B. C., Saeedi, S., & Tayyebi, A. H. (2010). A spatial logistic regression model for simulating land use patterns: a case study of the Shiraz Metropolitan area of Iran Advances in earth observation of global change (pp. 27-42): Springer.
Tayyebi, A., Perry, P. C., & Tayyebi, A. H. (2014). Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS. International Journal of Geographical Information Science, 28(4), 639-659.
Tayyebi, A. H., Tayyebi, A., & Khanna, N. (2014). Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data. International Journal of Remote Sensing, 35(1), 149-170.
Wang, S., Zheng, X., & Zang, X. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238-1245.
Wang, Y., & Li, S. (2011). Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Computers & geosciences, 37(2), 111-121.
White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and planning A, 25(8), 1175-1199.
Xia, T., Wu, W., Zhou, Q., Verburg, P. H., Yu, Q., Yang, P., & Ye, L. (2016). Model-based analysis of spatio-temporal changes in land use in Northeast China. Journal of Geographical Sciences, 26(2), 171-187.
Xie, C. (2006). Support vector machines for land use change modeling. UCGE Reports, Calgary.
Yan, B., Fang, N., Zhang, P., & Shi, Z. (2013). Impacts of land use change on watershed streamflow and sediment yield: an assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26-37.
Yang, X., Chen, R., & Zheng, X. (2016). Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards and Risk, 7(3), 918-932.
Yang, X., Zhao, Y., Chen, R., & Zheng, X. (2016). Simulating land use change by integrating landscape metrics into ANN-CA in a new way. Frontiers of Earth Science, 10(2), 245-252.
Yeh, A. G.-O., & Li, X. (2003). Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning. Photogrammetric Engineering & Remote Sensing, 69(9), 1043-1052.