A multiple land use change model based on artificial neural network, Markov chain, and multi objective land allocation

Document Type : Original Article

Authors

1 School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

2 Department of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

In this paper, a new combination of Artificial Neural Network (ANN), Markov Chain (MC), and Multi
Objective Land Allocation (MOLA) was proposed and evaluated to simulate multiple land use changes
using GIS-based techniques and multi temporal remote sensing data. The main objective of this paper is to
predict land use changes for Tehran, the biggest and capital city of Iran. In this regard, by integration of
ANN, MC, and MOLA, we found the pixels that have the highest tendency to change their states from one
land use category to others. An ANN model was applied to create Transition Potential Maps (TPMs), and
an MC model was used to calculate the quantity of the changes. Finally, a MOLA model was employed for
spatial allocation of new changes. In order to analyze the effects of proximity, three types of neighborhood
filters were combined with MOLA. The proposed method achieved 92.62%, 95.49%, and 92.74% of kappa
index of agreement (KIA), overall accuracy (OA), and kappa of location (Klocation), respectively. This
method was applied for Tehran to predict the situation in year 2020. The trend of the changes shows that
the urban growth is moving toward southwest of the city, where the areas with poor infrastructure are
situated.

Keywords


Achmad, A., Hasyim, S., Dahlan, B., & Aulia, D. N. (2015). Modeling of urban growth in tsunami-prone city using logistic regression: analysis of Banda Aceh, Indonesia. Applied Geography, 62, 237-246.
Ahmed, B., & Ahmed, R. (2012). Modeling urban land cover growth dynamics using multi‑temporal satellite images: A case study of dhaka, bangladesh. ISPRS International Journal of Geo-Information, 1(1), 3-31.
Al-sharif, A. A., & Pradhan, B. (2014). Monitoring and predicting land use change in Tripoli Metropolitan City using an integrated Markov chain and cellular automata models in GIS. Arabian journal of geosciences, 7(10), 4291-4301.
Alsharif, A. A., & Pradhan, B. (2014). Urban sprawl analysis of Tripoli Metropolitan city (Libya) using remote sensing data and multivariate logistic regression model. Journal of the Indian Society of Remote Sensing, 42(1), 149-163.
Arsanjani, J. J., Helbich, M., Kainz, W., & Boloorani, A. D. (2013). Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21, 265-275.
Bakker, M. M., Alam, S. J., van Dijk, J., & Rounsevell, M. D. (2015). Land-use change arising from rural land exchange: an agent-based simulation model. Landscape Ecology, 30(2), 273-286.
Barton, H. (1990). Local global planning. The Planner, 26, 12-15.
Basse, R. M., Omrani, H., Charif, O., Gerber, P., & Bódis, K. (2014). Land use changes modelling using advanced methods: cellular automata and artificial neural networks. The spatial and explicit representation of land cover dynamics at the cross-border region scale. Applied Geography, 53, 160-171.
Batty, M., & Xie, Y. (1994). From cells to cities. Environment and Planning B: Planning and Design, 21(7), S31-S48.
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote sensing of environment, 37(1), 35-46.
Deng, J., Wang, K., Deng, Y., & Qi, G. (2008). PCA‐based land‐use change detection and analysis using multitemporal and multisensor satellite data. International Journal of Remote Sensing, 29(16), 4823-4838.
Eastman, J. R., Jiang, H., & Toledano, J. (1998). Multi-criteria and multi-objective decision making for land allocation using GIS. Environment and Management, 9, 227-252.
Feng, Y., & Liu, Y. (2013). A heuristic cellular automata approach for modelling urban land-use change based on simulated annealing. International Journal of Geographical Information Science, 27(3), 449-466.
Foroutan, E., & Delavar, M. (2012). Urban growth modeling using genetic algorithms and cellular automata; A case study of Isfahan Metropolitan Area, Iran. Proceedings of the GIS Ostrava, 23-25.
García-Frapolli, E., Ayala-Orozco, B., Bonilla-Moheno, M., Espadas-Manrique, C., & Ramos-Fernández, G. (2007). Biodiversity conservation, traditional agriculture and ecotourism: Land cover/land use change projections for a natural protected area in the northeastern Yucatan Peninsula, Mexico. Landscape and urban planning, 83(2), 137-153.
García, A. M., Santé, I., Boullón, M., & Crecente, R. (2012). A comparative analysis of cellular automata models for simulation of small urban areas in Galicia, NW Spain. Computers, environment and urban systems, 36(4), 291-301.
Grekousis, G., Manetos, P., & Photis, Y. N. (2013). Modeling urban evolution using neural networks, fuzzy logic and GIS: The case of the Athens metropolitan area. Cities, 30, 193-203.
Halmy, M. W. A., Gessler, P. E., Hicke, J. A., & Salem, B. B. (2015). Land use/land cover change detection and prediction in the north-western coastal desert of Egypt using Markov-CA. Applied Geography, 63, 101-112.
Hong, H., Pradhan, B., Xu, C., & Bui, D. T. (2015). Spatial prediction of landslide hazard at the Yihuang area (China) using two-class kernel logistic regression, alternating decision tree and support vector machines. Catena, 133, 266-281.
Hosseinali, F., & Alesheikh, A. A. (2014). Assessing Urban Land-Use Expansion in Regional Scale by Developing a Multi-Agent System. The International Journal of Humanities, 20(2), 23-44.
Hosseinali, F., Alesheikh, A. A., & Nourian, F. (2013). Agent-based modeling of urban land-use development, case study: Simulating future scenarios of Qazvin city. Cities, 31, 105-113.
Huang, B., Xie, C., Tay, R., & Wu, B. (2009). Land-use-change modeling using unbalanced support-vector machines. Environment and Planning B: Planning and Design, 36(3), 398-416.
Jenerette, G. D., & Wu, J. (2001). Analysis and simulation of land-use change in the central Arizona–Phoenix region, USA. Landscape Ecology, 16(7), 611-626.
Jiang, L., Deng, X., & Seto, K. C. (2013). The impact of urban expansion on agricultural land use intensity in China. Land Use Policy, 35, 33-39.
Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods: Nelson Education.
Kumar, S., Radhakrishnan, N., & Mathew, S. (2014). Land use change modelling using a Markov model and remote sensing. Geomatics, Natural Hazards and Risk, 5(2), 145-156.
Lai, T., Dragićević, S., & Schmidt, M. (2013). Integration of multicriteria evaluation and cellular automata methods for landslide simulation modelling. Geomatics, Natural Hazards and Risk, 4(4), 355-375.
Lin, C.-T. (1996). Neural fuzzy systems: a neuro-fuzzy synergism to intelligent systems: Prentice hall PTR.
Lin, H., Lu, K. S., Espey, M., & Allen, J. (2005). Modeling Urban Sprawl and Land Use Change in a Coastal Area--A Neural Network Approach. Paper presented at the 2005 Annual meeting, July 24-27, Providence, RI.
Lin, Y.-P., Chu, H.-J., Wu, C.-F., & Verburg, P. H. (2011). Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling–a case study. International Journal of Geographical Information Science, 25(1), 65-87.
Matthews, R. B., Gilbert, N. G., Roach, A., Polhill, J. G., & Gotts, N. M. (2007). Agent-based land-use models: a review of applications. Landscape Ecology, 22(10), 1447-1459.
Millington, J. D., Perry, G. L., & Romero-Calcerrada, R. (2007). Regression techniques for examining land use/cover change: a case study of a Mediterranean landscape. Ecosystems, 10(4), 562-578.
Mitsova, D., Shuster, W., & Wang, X. (2011). A cellular automata model of land cover change to integrate urban growth with open space conservation. Landscape and urban planning, 99(2), 141-153.
Moghadam, H. S., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140-149.
Molowny-Horas, R., Basnou, C., & Pino, J. (2015). A multivariate fractional regression approach to modeling land use and cover dynamics in a Mediterranean landscape. Computers, environment and urban systems, 54, 47-55.
Munshi, T., Zuidgeest, M., Brussel, M., & van Maarseveen, M. (2014). Logistic regression and cellular automata-based modelling of retail, commercial and residential development in the city of Ahmedabad, India. Cities, 39, 68-86.
Nouri, J., Gharagozlou, A., Arjmandi, R., Faryadi, S., & Adl, M. (2014). Predicting urban land use changes using a CA–Markov model. Arabian Journal for Science and Engineering, 39(7), 5565-5573.
Paola, J. D., & Schowengerdt, R. A. (1995). A detailed comparison of backpropagation neural network and maximum-likelihood classifiers for urban land use classification. IEEE Transactions on Geoscience and remote sensing, 33(4), 981-996.
Pijanowski, B. C., Brown, D. G., Shellito, B. A., & Manik, G. A. (2002). Using neural networks and GIS to forecast land use changes: a land transformation model. Computers, environment and urban systems, 26(6), 553-575.
Pijanowski, B. C., Tayyebi, A., Doucette, J., Pekin, B. K., Braun, D., & Plourde, J. (2014). A big data urban growth simulation at a national scale: configuring the GIS and neural network based land transformation model to run in a high performance computing (HPC) environment. Environmental Modelling & Software, 51, 250-268.
Pontius, R. G. (2000). Quantification error versus location error in comparison of categorical maps. Photogrammetric engineering and remote sensing, 66(8), 1011-1016.
Pontius, R. G., & Schneider, L. C. (2001). Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1), 239-248.
Porta, J., Parapar, J., Doallo, R., Rivera, F. F., Santé, I., & Crecente, R. (2013). High performance genetic algorithm for land use planning. Computers, environment and urban systems, 37, 45-58.
Rafiee, R., Mahiny, A. S., Khorasani, N., Darvishsefat, A. A., & Danekar, A. (2009). Simulating urban growth in Mashad City, Iran through the SLEUTH model (UGM). Cities, 26(1), 19-26.
Randolph, J. (2004). Environmental land use planning and management: Island Press.
Razavi, B. S. (2014). Predicting the trend of land use changes using artificial neural network and markov chain model (case study: Kermanshah City). Research Journal of Environmental and Earth Sciences, 6(4), 215-226.
Rendana, M., Rahim, S. A., Idris, W. M. R., Lihan, T., & Rahman, Z. A. (2015). CA-Markov for Predicting Land Use Changes in Tropical Catchment Area: A Case Study in Cameron Highland, Malaysia. Journal of Applied Sciences, 15(4), 689.
Schneider, L. C., & Pontius, R. G. (2001). Modeling land-use change in the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1), 83-94.
SCI. (2010). www. Amar.org.ir.  
Shafizadeh-Moghadam, H., Hagenauer, J., Farajzadeh, M., & Helbich, M. (2015). Performance analysis of radial basis function networks and multi-layer perceptron networks in modeling urban change: a case study. International Journal of Geographical Information Science, 29(4), 606-623.
Sun, P., Xu, Y., Yu, Z., Liu, Q., Xie, B., & Liu, J. (2016). Scenario simulation and landscape pattern dynamic changes of land use in the Poverty Belt around Beijing and Tianjin: A case study of Zhangjiakou city, Hebei Province. Journal of Geographical Sciences, 26(3), 272-296.
Tan, R., Liu, Y., Zhou, K., Jiao, L., & Tang, W. (2015). A game-theory based agent-cellular model for use in urban growth simulation: A case study of the rapidly urbanizing Wuhan area of central China. Computers, environment and urban systems, 49, 15-29.
Tayyebi, A., Delavar, M. R., Yazdanpanah, M. J., Pijanowski, B. C., Saeedi, S., & Tayyebi, A. H. (2010). A spatial logistic regression model for simulating land use patterns: a case study of the Shiraz Metropolitan area of Iran Advances in earth observation of global change (pp. 27-42): Springer.
Tayyebi, A., Perry, P. C., & Tayyebi, A. H. (2014). Predicting the expansion of an urban boundary using spatial logistic regression and hybrid raster–vector routines with remote sensing and GIS. International Journal of Geographical Information Science, 28(4), 639-659.
Tayyebi, A. H., Tayyebi, A., & Khanna, N. (2014). Assessing uncertainty dimensions in land-use change models: using swap and multiplicative error models for injecting attribute and positional errors in spatial data. International Journal of Remote Sensing, 35(1), 149-170.
Wang, S., Zheng, X., & Zang, X. (2012). Accuracy assessments of land use change simulation based on Markov-cellular automata model. Procedia Environmental Sciences, 13, 1238-1245.
Wang, Y., & Li, S. (2011). Simulating multiple class urban land-use/cover changes by RBFN-based CA model. Computers & geosciences, 37(2), 111-121.
White, R., & Engelen, G. (1993). Cellular automata and fractal urban form: a cellular modelling approach to the evolution of urban land-use patterns. Environment and planning A, 25(8), 1175-1199.
Xia, T., Wu, W., Zhou, Q., Verburg, P. H., Yu, Q., Yang, P., & Ye, L. (2016). Model-based analysis of spatio-temporal changes in land use in Northeast China. Journal of Geographical Sciences, 26(2), 171-187.
Xie, C. (2006). Support vector machines for land use change modeling. UCGE Reports, Calgary.
Yan, B., Fang, N., Zhang, P., & Shi, Z. (2013). Impacts of land use change on watershed streamflow and sediment yield: an assessment using hydrologic modelling and partial least squares regression. Journal of Hydrology, 484, 26-37.
Yang, X., Chen, R., & Zheng, X. (2016). Simulating land use change by integrating ANN-CA model and landscape pattern indices. Geomatics, Natural Hazards and Risk, 7(3), 918-932.
Yang, X., Zhao, Y., Chen, R., & Zheng, X. (2016). Simulating land use change by integrating landscape metrics into ANN-CA in a new way. Frontiers of Earth Science, 10(2), 245-252.
Yeh, A. G.-O., & Li, X. (2003). Simulation of development alternatives using neural networks, cellular automata, and GIS for urban planning. Photogrammetric Engineering & Remote Sensing, 69(9), 1043-1052.