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The increasing utilization of Volunteered Geospatial Information (VGI), including data from 

OpenStreetMap (OSM), raises concerns regarding data quality due to variations in 

contributors' skills and tools. This study evaluates the positional accuracy of voluntary features 

in Tehran by comparing them with official datasets. A feature matching approach, employing 

Hausdorff distance, orientation difference, and buffer overlap—normalized through fuzzy 

logic—was utilized to assess accuracy. Preprocessing steps included standardizing data extent 

and coordinate systems, correcting topological errors, and converting datasets into graph 

structures. The results indicate that most voluntary features exhibited high positional accuracy, 

with over 87% achieving positional accuracy above 82%. Temporal analysis revealed peaks 

in voluntary contributions in 2012 and 2017; however, there was a slight overall decline in 

positional accuracy from 2007 to 2022, as indicated by a negative trend line slope of -

0.001834. This study introduces a method for assessing the accuracy of historical data using 

feature matching across a large area, such as Tehran, to track trends in positional accuracy 

over time. It emphasizes the necessity for extrinsic assessment in VGI, noting that 

technological advancements do not always correlate with improved positional accuracy. The 

comprehensive approach presented in this study provides valuable insights into the quality and 

reliability of VGI. 
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1. Introduction 

The rise of Volunteered Geospatial Information (VGI) 

has revolutionized the field of geospatial information 

systems (GIS) by enabling widespread public participation 

in the creation and dissemination of spatial data (Polous, 

2023; Zhang, 2020). Coined by Goodchild (2007), VGI 

leverages the concept of citizens as sensors, where 

individuals voluntarily collect, share, and contribute spatial 

data (Forati & Ghose, 2020; Zhang et al., 2021). This 

grassroots approach utilizes the power of the crowd (Howe, 

2006), harnessing the collective knowledge and 

observations of a large number of participants to build 

comprehensive and dynamic geospatial datasets (Girres & 

Touya, 2010; Goodchild, 2007; Sboui & Aissi, 2022). 

Among the most prominent VGI platforms is 

OpenStreetMap (OSM), a collaborative mapping project 

that allows users worldwide to contribute and edit geospatial 

information (Chehreghan & Ali Abbaspour, 2018b; 

Hashemi & Ali Abbaspour, 2015; Yamashita et al., 2023). 

Since its inception in 2004 (Zhang et al., 2015), OSM has 

rapidly expanded, amassing a vast repository of user-

generated spatial data (Neis & Zielstra, 2014). This 

democratization of geospatial data production has provided 

an invaluable alternative to traditional sources (Minghini & 

Frassinelli, 2019), which are often costly and less accessible 

(Teimoory et al., 2021). By allowing anyone with internet 

access to participate, OSM has not only expanded the 

availability of geospatial data but has also empowered 

individuals to play an active role in mapping their 

environments (Ghasemi Nejad et al., 2022; Goodchild & 

Glennon, 2010). 

Despite its many advantages, the quality of VGI remains 

a critical area of concern and ongoing research (Bai et al., 

2024; Goodchild & Li, 2012). Several factors contribute to 

concerns about the quality of OSM data. First, the 

contributors to OSM have varying levels of expertise and 

experience. While some users are highly skilled 

cartographers, others may have limited knowledge of 

mapping principles, leading to inconsistent data quality. 

Second, the equipment used by contributors can vary 

significantly, from high-precision GPS devices to basic 

smartphones, resulting in differing levels of quality. Third, 

the absence of a comprehensive surveillance or verification 

system for data entry means that errors or intentional 

inaccuracies can go unnoticed for extended periods 

(D’Antonio et al., 2014; Girres & Touya, 2010; Haklay, 

2010; Senaratne et al., 2017).  

Quality in geospatial information encompasses various 

dimensions, including completeness, consistency, attribute 

accuracy, semantic accuracy, temporal accuracy, fitness for 

use, lineage, and positional accuracy (Antoniou & Skopeliti, 

2015; Guptill & Morrison, 2013; Kresse & Fadaie, 2004; 

Van Oort, 2006). Each of these elements plays a crucial role 

in determining the overall reliability and usability of the data 

for different applications. As OSM continues to grow, 

understanding and assessing these quality dimensions is 

essential for ensuring that the data can be effectively utilized 

in diverse domains such as urban planning, disaster 

management, navigation, and environmental monitoring 

(Aissi & Sboui, 2017; Hong & Yao, 2019; Tavra et al., 

2024). 

Completeness refers to the extent to which all relevant 

features are included in the dataset. This component 

examines the comprehensiveness of the data, identifying 

which features should be present in the database but are 

currently missing, and which additional data exist 

unnecessarily (Chehreghan & Ali Abbaspour, 2018b). 

Consistency examines the adherence of the dataset to 

established rules and standards, reducing errors like 

overlapping features or logical contradictions (Hashemi & 

Ali Abbaspour, 2015). This includes logical consistency, 

which ensures topological relationships and structural 

integrity, and attribute consistency, which verifies that 

similar features share coherent characteristics. Attribute 

accuracy ensures that descriptive information, such as 

names, classifications, or types, accurately reflects real-

world features. For example, a highway tag in OSM must 

correspond to an actual highway. Semantic accuracy focuses 

on ensuring that the meaning and representation of features 

in the database align with their real-world counterparts, 

supporting clarity and proper interpretation (Guptill & 

Morrison, 2013). Fitness for use evaluates whether the 

dataset is appropriate for specific applications, recognizing 

that data suitable for navigation may not meet the 

requirements of detailed urban planning (Devillers et al., 

2007; Sboui & Aissi, 2022). Temporal accuracy assesses 

whether the dataset reflects real-world changes over time, 

emphasizing the importance of keeping information current. 

This is particularly important in dynamic datasets like OSM, 

where features are frequently updated. Lastly, lineage tracks 

the dataset’s origin and the processes it has undergone, 

offering transparency and enhancing trust in its reliability 

(Kresse & Fadaie, 2004; Van Oort, 2006). 

Among the various elements of geospatial data quality, 

positional accuracy is a fundamental aspect. Positional 

accuracy refers to the degree to which the reported locations 

of features in a dataset correspond to their true positions on 

the Earth's surface (Antoniou & Skopeliti, 2015; Kresse & 

Fadaie, 2004; Van Oort, 2006). High positional accuracy is 

essential for applications that require precise spatial 

information, such as navigation systems, cadastral mapping, 

and emergency response. Conversely, low positional 

accuracy can result in significant errors and 

misinterpretations, potentially undermining the 

effectiveness of these applications. 

This study investigates the positional accuracy of OSM 

linear data and its evolution over time. By examining the 

temporal changes in positional accuracy, we aim to gain 

insights into the reliability of OSM as a geospatial data 

source and identify trends that may indicate improvements 

or declines in data quality. To achieve this, we will employ 

a feature-matching method to identify corresponding linear 

features in both official datasets and OSM. By computing 
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the spatial similarity between matched features, we can 

quantify their positional accuracy. 

The feature matching method entails comparing linear 

features, such as roads, across different datasets. By 

analyzing the spatial correspondence between these 

features, we can assess the positional accuracy of OSM data. 

Additionally, by examining the registration or modification 

timestamps of features within the OSM dataset, we will 

investigate trends in positional accuracy over time. This 

temporal analysis will enable us to determine whether the 

quality of OSM data is improving, declining, or remaining 

stable as more contributions are made. To ensure a 

comprehensive assessment, this research will leverage OSM 

history file and official reference data. The OSM history file 

is a dataset containing all registered or modified versions of 

features within the OSM project. By systematically 

comparing these features across different time periods, we 

can identify trends and patterns in positional accuracy. The 

findings will offer valuable insights into the reliability of 

OSM as a geospatial data source. 

Understanding the temporal dynamics of positional 

accuracy can help identify periods of significant 

improvement or decline, which may be associated with 

changes in technology, contributor behavior, or community 

guidelines within the OSM platform. For instance, 

advancements in Global Navigation Satellite System 

(GNSS) technology, increased awareness of data quality 

issues among contributors, or modifications to OSM's 

mapping guidelines could all influence the accuracy of the 

data. 

In conclusion, evaluating the positional accuracy of OSM 

data over time is essential for understanding its suitability 

for various applications. This research aims to provide a 

systematic assessment of trends in positional accuracy, 

offering insights into the reliability and potential of OSM as 

a geospatial data source. By focusing on this critical aspect 

of data quality, we hope to contribute to ongoing efforts to 

improve the usability and effectiveness of VGI. 

The organization of this paper is structured as follows: 

Section 2 provides a comprehensive review of the existing 

literature on the quality assessment of VGI, with a focus on 

extrinsic evaluation methods and their relevance to 

positional accuracy. Section 3 outlines the methodology, 

detailing the data acquisition process, preprocessing 

techniques, and the proposed feature matching framework. 

Section 4 discusses the implementation of the methodology, 

highlighting significant findings, including the results of the 

positional accuracy analysis and its temporal trends. Finally, 

Section 5 concludes the study by summarizing the key 

findings, their implications, and offering recommendations 

for future research. 

2. Related work 

Volunteered Geographic Information (VGI), particularly 

exemplified by OpenStreetMap (OSM), has significantly 

transformed the methodologies for geospatial data collection 

and application (Hecker et al., 2018). The open-access and 

frequently updated nature of OSM data has led to its 

widespread use across various disciplines, with a notable 

emphasis on urban studies (Zhang & Malczewski, 2017). 

However, the quality of OSM data raises substantial 

concerns, primarily due to the diverse expertise and 

backgrounds of its contributors (Azariasgari & Hosseinali, 

2023; D’Antonio et al., 2014). This paper aims to examine 

extrinsic evaluation techniques that assess the quality of 

OSM data by comparing it with official datasets. 

Several studies have employed extrinsic methods to 

assess the quality of OSM data by comparing it to 

authoritative and official sources. Haklay (2010) was among 

the pioneering researchers in this domain. His study 

compared OSM data with Ordnance Survey (OS) data in 

London. Haklay evaluated the completeness and positional 

accuracy of OSM data, finding that while OSM data was 

generally accurate, with features approximately six meters 

away from their true locations, there were still significant 

discrepancies. Notably, about 80% of OSM highway 

features overlapped with the OS dataset. This study set a 

precedent for subsequent research by highlighting both the 

strengths and limitations of OSM data compared to official 

sources. 

Following Haklay, Zielstra and Zipf (2010) conducted a 

comprehensive comparison of OSM data with commercial 

TeleAtlas data. Their study aimed to evaluate OSM’s 

potential as an alternative to commercial datasets. Although 

they found OSM to be highly detailed and valuable, 

especially for urban areas, the data did not fully replace 

commercial datasets, particularly in rural regions. This study 

illustrated the challenges in relying solely on VGI for 

comprehensive geospatial coverage and quality. 

Girres and Touya (2010) extended this line of research by 

assessing OSM data quality in France, comparing it with 

high quality data from the French national mapping agency. 

They used a broader set of quality metrics, including 

positional accuracy, attribute accuracy, semantic accuracy, 

temporal accuracy, consistency, completeness, and lineage. 

Their findings indicated that while OSM data had several 

strengths, including frequent updates and broad coverage, 

there was a notable variability in quality. They emphasized 

the need for balancing contributor freedom with regulatory 

frameworks to enhance the data's overall reliability. 

Forghani and Delavar (2014) explored OSM data quality 

in an area of Tehran by comparing it with municipal 

reference maps. They introduced a fuzzy logic-based 

assessment method to evaluate the consistency and accuracy 

of OSM data. Their study revealed that while the overall 

quality was relatively high, spatial uncertainty varied across 

different areas. The research highlighted the importance of 

addressing spatial variability and uncertainty in the 

evaluation of crowdsourced data. 

Graser et al. (2014) developed an open-source toolbox for 

evaluating street networks, focusing on OSM data in 

Vienna, Austria. This toolbox, based on the Sextant 

framework for QGIS, allowed for the comparison of 

network characteristics such as completeness and 
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connectivity. Their study found that OSM data was highly 

accurate in representing major highways, though there were 

differences in attribute completeness compared to official 

datasets. This work underscored the utility of specialized 

tools for assessing the quality of network-based data. 

Dorn et al. (2015) assessed land use data quality in 

southern Germany by comparing OSM data with the ATKIS 

dataset. Their study revealed high completeness and 

accuracy for forested areas, but significant gaps in 

agricultural areas, suggesting that the quality of OSM data 

is influenced by population density and land use type. This 

study provided insights into how different types of land use 

affect the quality of VGI. 

Ballatore and Zipf (2015) introduced the concept of 

conceptual quality, which emphasizes how cultural and 

contextual factors influence data interpretation. They 

developed a multi-faceted framework for assessing 

conceptual quality, including metrics such as accuracy, 

granularity, completeness, consistency, conformity, and 

richness. Their study demonstrated that quality is not only a 

function of data accuracy but also of how well it fits within 

different cultural and contextual frameworks. 

Zhou (2017) investigated the use of buffer zones to 

measure spatial accuracy in New Zealand. His study 

employed a buffer zone approach to evaluate how much 

OSM road data fell within a defined distance from 

authoritative road networks. Zhou found that without proper 

feature matching, the buffer zone approach could lead to 

inaccuracies in assessing positional accuracy. He 

recommended pre-matching features to improve the 

reliability of this method. 

Mobasheri et al. (2018) innovated by examining sidewalk 

data quality in Heidelberg, Germany, using data collected 

via GPS-equipped wheelchairs. They compared this 

crowdsourced data with official municipal data, finding a 

high level of completeness (96%) and a low root mean 

square error (RMSE) of 0.93 meters for spatial accuracy. 

This study highlighted the effectiveness of using specialized 

data collection methods to enhance the quality of VGI. 

Chehreghan and Ali Abbaspour (2018b) developed an 

automated feature matching technique to assess the 

completeness of OSM data within a specified area (District 

6) in Tehran city. Their approach leveraged geometric 

properties to identify and align corresponding features 

between OSM and reference datasets. Their findings 

indicated that 92% of the OSM objects corresponded to 

those in the reference dataset, with the total length of 

matched objects representing 87% of the total length of all 

objects. Additionally, the spatial similarity between the 

matched objects in both datasets averaged 0.86°. 

Furthermore, an evaluation of OSM data spanning from 

2013 to 2017 demonstrated an 87.2% increase in user 

participation in creating objects, accompanied by an 

improvement of 0.15 in the average spatial similarity degree. 

Xie et al. (2019) proposed a novel method combining 

deep learning with high-resolution satellite imagery to 

evaluate the quality of building data in Las Vegas, Nevada. 

Their approach used convolutional neural networks to 

extract building footprints from satellite images and 

compared these with OSM data. The study demonstrated 

that this method was effective in identifying and correcting 

errors, thus improving the overall quality of OSM data. 

Hashemi and Ali Abbaspour (2015) explored logical 

consistency. They developed a framework to identify logical 

inconsistencies in OSM data using directional, topological, 

and metric distance relationships. Their study found that 

such inconsistencies could significantly impact data 

interpretation and analysis, emphasizing the need for 

improved consistency checks in VGI. 

Feature matching has proven to be a valuable approach 

for extrinsic quality assessment, particularly in evaluating 

positional accuracy and completeness. As a contribution to 

VGI quality research, this study employs feature matching 

(Chehreghan & Ali Abbaspour, 2017, 2018b) to assess 

positional accuracy as a key element of spatial quality. 

Moreover, analyzing the positional accuracy of features over 

time using historical data files offers a novel perspective that 

has not been extensively explored. While a few studies have 

examined positional accuracy trends over time, significant 

drawbacks and gaps remain: no research has yet investigated 

a large area, such as an entire metropolis with a high volume 

of features, over an extended period (e.g., 15 years). 

Additionally, the results of prior research have become 

outdated, underscoring the need for a new and 

comprehensive assessment. 

3. Proposed method 

    Feature matching is a valuable technique for extrinsic 

assessment, particularly in analyzing positional accuracy 

over time by utilizing the historical data of features across 

extensive areas, such as metropolitan regions. This study 

aims to evaluate the positional accuracy of all versions of 

volunteered geospatial features within the OSM project over 

time, employing a feature matching approach. This method 

is fundamental, significant, and complex, making it essential 

for effective extrinsic evaluation. 

The feature matching approach is central to this research, 

as it identifies corresponding features between OSM and the 

official dataset. This process enables the calculation of 

positional accuracy for volunteered features that have 

official counterparts. Subsequently, the registration or 

modification date for each volunteered feature with a 

corresponding official feature is obtained, allowing for the 

determination of the positional accuracy trend for all 

versions of these features over time. This trend is then 

statistically analyzed to assess its significance. The general 

workflow of this research is illustrated in Figure 1. 
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As shown, the first step involves acquiring the necessary 

volunteered and official datasets. The history of the OSM 

dataset is available for free download in Protocolbuffer 

Binary Format (PBF), containing all registered versions of 

volunteered features globally. After obtaining this OSM 

history file, features relevant to the study area are extracted 

and converted into a suitable format such as ESRI 

Geodatabase for further analysis. The official and verified 

dataset for the study area must also be obtained from 

authoritative mapping organizations and converted into a 

compatible format like ESRI Geodatabase. 

The next step involves a series of preprocessing 

procedures applied to both datasets to minimize structural 

differences and reduce ambiguity. Initially, the coordinate 

systems and projections of both the volunteered and official 

datasets are standardized. The boundaries of both datasets 

are then precisely aligned with the study area. Topological 

errors, such as pseudo-nodes and dangling edges, are 

corrected. Finally, all linear features in both datasets are 

segmented and converted into a graph structure, ensuring 

that there are no mid-line intersections. 

The feature matching approach is applied to identify 

corresponding features between the volunteered and official 

datasets. This method, which is based on three geometric 

criteria—Hausdorff distance, orientation difference, and 

buffer overlap—utilizes fuzzy normalization to standardize 

the resulting values. The choice of these criteria for feature 

matching and computing positional accuracy was informed 

by a comprehensive examination of various geometric 

measures. Visual inspections conducted in a small test area 

indicated that these three criteria exhibited the most 

effective matching performance. Their selection also 

considered the large number of features analyzed and the 

computational efficiency necessary to manage the dataset. 

Among the various spatial distance concepts introduced 

by researchers, the Hausdorff distance is considered a useful 

metric for the feature matching process of linear features. It 

measures the maximum deviation between two polyline 

features, indicating their spatial proximity. The values 

obtained for Hausdorff distance in this paper are in meters. 

A smaller Hausdorff distance value signifies greater spatial 

similarity and, consequently, higher positional accuracy of 

the volunteered feature. The Hausdorff distance calculation 

identifies the maximum of the shortest distances between 

points on one polyline feature and another. This is known as 

the Directed Hausdorff Distance. To compute it between 

two polyline features, volunteered and official, the process 

involves calculating the distance from each vertex of the 

volunteered feature to all vertices of the official feature and 

selecting the minimum distance for each vertex. In the end, 

the directed Hausdorff distance from the volunteered feature 

to the official feature equals the largest of these minimum 

distances. This process is repeated in reverse, from the 

official to the volunteered feature. Additionally, if the 

directed Hausdorff distance from the volunteered feature (𝑉) 

to the official feature ( 𝑂 ) is denoted as ℎ(𝑉, 𝑂) , its 

mathematical expression is given in Equation 1 

(Chehreghan & Ali Abbaspour, 2018a; Min et al., 2007).  

     , max ,
ov

oP O vP V
V O min d P Ph


  (1) 

Similarly, the directed Hausdorff distance from the 

official feature to the volunteered feature, denoted as 

ℎ(𝑂, 𝑉) , is expressed mathematically in Equation 2 

(Chehreghan & Ali Abbaspour, 2018a; Min et al., 2007). 

     ma, x ,
vo

o vP VP O
O V min d P Ph


  (2) 

 Finally, the Hausdorff distance is the maximum value 

obtained from both directed distances, as expressed 

mathematically in Equation 3 and denoted by 𝐻𝐷(𝑂, 𝑉) 
(Chehreghan & Ali Abbaspour, 2018a; Min et al., 2007). 

      , max , , ,HD O V h V O h O V  (3) 

Another useful criterion that can be used in the feature 

matching approach is the orientation difference criterion. To 

compute the orientation difference between a volunteered 

and an official linear feature, the direction of each feature is 

first determined by connecting its endpoints with a line and 

calculating the angle with the horizontal axis. The 

orientation difference is then obtained in degrees by 

comparing these angles. A smaller orientation difference 

value signifies greater spatial similarity and, consequently, 

higher positional accuracy of the volunteered feature. If the 

volunteered line is denoted by 𝑉 and the official line by 𝑂, 

with the direction of the volunteered line represented by 𝐴𝑣 

and the direction of the official line by 𝐴𝑂 , then the 

 
Figure 1. Workflow for Assessing OSM Positional 

Accuracy Over Time  
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orientation difference between these two lines, denoted as 

𝑂𝐷(𝑉, 𝑂) , is calculated according to Equation 4 

(Chehreghan & Ali Abbaspour, 2018a).  

( , )
V O

OD V O A A   (4) 

The buffer overlap criterion is also considered one of the 

most important criteria used in the matching approach and 

has received significant attention in previous research. The 

buffer overlap criterion refers to the overlapped area 

between the buffers of the volunteered and official features. 

To calculate this criterion, buffers with a predetermined 

radius are created around both features. The ratio of twice 

the area of the overlapping buffer to the total buffer areas 

indicates the buffer overlap criterion, inherently normalized 

between 0 and 1. A value closer to 1 indicates higher spatial 

similarity and, consequently, higher positional accuracy of 

the volunteered feature. In mathematical terms, if the area of 

the buffer around the volunteered feature is denoted by 𝑆𝑉, 

the area of the buffer around the official feature by 𝑆𝑂, and 

the area of the overlapping region by 𝑆𝑉−𝑂, then the buffer 

overlap criterion, denoted as 𝐵𝑂(𝑉, 𝑂) , is derived from 

Equation 5 (Chehreghan & Ali Abbaspour, 2018b; 

Teimoory et al., 2021). 

2( )
( , ) V O

V O

S
BO V O

S S





 (5) 

After computing the geometric criteria, the values of 

these three criteria must be normalized to ensure they share 

the same scale and structure for effective combination. Since 

the buffer overlap parameter is inherently normalized, with 

values ranging from 0 to 1, only the non-normalized criteria 

(Hausdorff distance and orientation difference) require 

normalization. For these, fuzzy normalization is applied 

using a Z-shape membership function, as illustrated in 

Figure 2. (Chehreghan & Ali Abbaspour, 2017, 2018b; 

Teimoory et al., 2021). This theory, first introduced by 

Professor Zadeh (1965), has gained significant attention for 

normalization in recent decades. Among various 

normalization methods, the efficient performance of fuzzy 

normalization in similar previous studies led to its selection 

for normalizing the criteria values in this research.  

In Figure 2, as input values increase from zero to 𝛽1, the 

membership value is set to 1. Between 𝛽1 and 𝛽2, the 

membership value decreases as per equation 6 (Chehreghan 

& Ali Abbaspour, 2017, 2018b; Teimoory et al., 2021). 

Values beyond 𝛽2  are assigned a membership value of 0. 

The parameters 𝛽1 and 𝛽2 are determined through expert 

consultation and trial and error for each geometric criterion. 
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(6) 

 

To establish correspondence between the volunteered 

and official features, each volunteered feature undergoes 

several steps to find its official counterpart. Initially, a buffer 

with a specified radius, determined through trial and error 

and literature review, is created around each volunteered 

feature. Official features within this buffer are considered 

candidate matches. The spatial similarity between the 

volunteered feature and each candidate official feature is 

then calculated using a weighted combination of the three 

geometric criteria. The inherent normalization of the buffer 

overlap criterion and fuzzy normalization of the Hausdorff 

distance and orientation difference facilitate this calculation, 

resulting in a normalized positional accuracy value between 

0 and 1. To better understand this weighted combination, if 

the orientation difference criterion is denoted as 𝑂𝐷 , the 

Hausdorff distance as 𝐻𝐷 and the buffer overlap as 𝐵𝑂 with 

corresponding weights as 𝑤𝑂𝐷 , 𝑤𝐻𝐷  and 𝑤𝐵𝑂  then spatial 

similarity, denoted as 𝑆𝑃  can be calculated using the 

weighted average in Equation 7. The mentioned weights 

have been determined based on consultations with experts 

and trial and error. 

   
   

   
H

HD OD B

D

O

OD BO

w w wHD O
SP

w w w

D BO

 

 



 (7) 

The official feature with the highest spatial similarity 

above a threshold of 0.7 is selected as the matching feature 

for the volunteered feature. The ID of the volunteered 

feature, its matching official feature, and their spatial 

similarity (normalized positional accuracy) are recorded. 

A key aspect of the matching approach used in this 

research is that some volunteered features are broken into a 

graph structure during preprocessing. For analysis, the 

positional accuracy of the original features is needed. To 

achieve this, the positional accuracy of the original feature 

is determined by calculating a weighted average of the 

positional accuracies of the graph segments that comprise 

 
Figure 2. Z-Shape Membership Function 
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the original feature, with the weights being proportional to 

the lengths of the respective segments. 

After calculating positional accuracy, the registration or 

modification dates of volunteered features with matching 

official features are extracted. Each version of the 

volunteered features in the OSM history dataset, which 

includes timestamp information, is categorized by the year 

of registration or modification. This process creates multiple 

categories, each containing features corresponding to a 

specific year of creation or modification. For each category, 

the average positional accuracy is computed, providing 

yearly values for comparison. These averages are plotted in 

a chart to reveal the trend of positional accuracy over time. 

To better visualize this trend, a line is fitted to the data, 

indicating the change in mean positional accuracy across the 

years. The statistical significance and reliability of the 

observed trend are then analyzed to ensure robust findings. 

4. Implementation 

This section outlines the implementation of the proposed 

methodology. The first step involves selecting Tehran, the 

capital city of Iran, known for its diverse participation 

patterns and high engagement in the OSM project, as the 

study area. A satellite image of Tehran, along with its 

location in Iran, is shown in Figure 3. 

 

To implement the proposed approach, voluntary and 

official datasets for Tehran need to be acquired. The OSM 

history file was downloaded from the OSM Planet website, 

and all versions of the voluntary features related to Tehran 

were extracted and processed into a suitable format, as 

shown in Figure 4. 

 
Figure 4. Volunteered OSM features for Tehran. 

 

The official dataset, at a 1/2000 scale of Tehran's road 

network produced by the Tehran Municipality in 2002, was 

also obtained and is presented in Figure 5. 

 

 
Figure 5. Official dataset of Tehran's streets 

 

With both the OSM history dataset and the official 

dataset for Tehran, the preprocessing steps described in the 

proposed methodology section are applied, including 

standardizing the coordinate systems and extents, fixing 

topological errors, and converting both datasets to graph 

structure. The feature matching process was then performed 

using the geometric criteria of orientation difference, 

Hausdorff distance, and buffer overlap as described earlier. 

The resulting positional accuracy map for all versions of the 

voluntary features with corresponding official features is 

shown in Figure 6. There are 71,761 voluntary features with 

corresponding official features. As seen in the figure, the 

calculated positional accuracy is normalized, with values 

closer to one indicating higher positional accuracy. 
Figure 3. Satellite image of Tehran and its location in 

Iran 
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Figure 6. Positional Accuracy Map for Voluntary Features 

Across All Years 

 

Figure 6 illustrates that the majority (57%) of voluntary 

features with corresponding official features have a 

positional accuracy above 92%, and most (87%) have an 

accuracy above 82%, which is also reflected in the 

histogram in Figure 7. 

Figure 7. Histogram of Calculated Positional Accuracy for 

Voluntary Features Across All Years 
 

A validation procedure was conducted to assess the 

accuracy of the implemented matching process. For this, 

2,500 random features were selected and visually inspected. 

The results revealed 821 true positives (real matches 

correctly identified as matches) and 276 false positives (real 

matches incorrectly identified as non-matches). 

Additionally, 193 false negatives (real non-matches 

incorrectly identified as matches) and 1210 true negatives 

(real non-matches correctly identified as non-matches) were 

found.  Based on these results, the matching process 

achieved an overall accuracy of 0.812, calculated by 

dividing the total number of correct matches (true positives 

and true negatives) by the total number of comparisons. 

In the next phase of the proposed approach, the year of 

creation or modification for voluntary features with 

corresponding official features from 2007 to 2022 was 

extracted and is shown in the map in Figure 8. 

 
Figure 8. Map of Voluntary Features by Year of Creation 

or Modification 

Figure 9 presents the histogram of the creation or 

modification years for the voluntary features with 

corresponding official features in Tehran. It shows that the 

number of voluntary features with corresponding official 

features was higher in the years 2012 and 2017 compared to 

other years. 

 
Figure 9. Histogram of Voluntary Features by Year of 

Creation or Modification 

 

To analyze the trend of positional accuracy over time, 

voluntary features with corresponding official features were 

grouped based on their creation or modification year, and 

the average positional accuracy for each group was 

calculated and plotted in Figure 10 along with the number of 

features in each group. This figure shows the trend of 

positional accuracy of voluntary features with 

corresponding official features over the years, with several 

fluctuations. 



 

 Changes in VGI Quality Over Time: Positional Accuracy Trends in Tehran City 

 

86 

 
Figure 10. Trend of Positional Accuracy for Voluntary 

Features Over Time 

 

In Figure 10, a line was fitted to the data to visualize the 

trend of positional accuracy over time. The slope of  

-0.001834 indicates a slight downward trend in positional 

accuracy from 2007 to 2022. The equation of the fitted line 

is depicted in Equation 8. This downward trend is visually 

apparent in Figure 10. Thus, it can be concluded that the 

positional accuracy of voluntary features has slightly 

decreased over time. 

0.001834 4.6Y X    (8) 

In the final step of analyzing the positional accuracy trend 

of voluntary features over time, the observed trend must be 

statistically validated to determine its significance. Since the 

data pertains to features in a specific region and has a large 

sample size, the central limit theorem allows us to 

approximate the data distribution as normal. Therefore, 

parametric tests are suitable. Considering the interval nature 

of the positional accuracy criterion and having more than 

two groups, either ANOVA or Welch ANOVA statistics 

tests are applicable depending on the variance equality 

assumption (McCrum-Gardner, 2008; Montgomery & 

Runger, 2010). 

Initially, Levene's test was conducted to assess the 

assumption of equality of variances among groups. The test 

yielded a P-value of 0.000 (less than the significance level 

of 0.05) and a test statistic of 81.81, indicating unequal 

variances. Thus, the Welch ANOVA test was used. The P-

value in this section is displayed as 0.000 due to its 

ridiculously small value beyond computer representation. 

The results of the Welch ANOVA test are shown in Table 1. 

 

Table 1. Welch ANOVA Test Results 

Statistical Metrics Calculated Values 

P-value 0.000 

F-value 213.74 

DF DEN 8065.66 

DF NUM 15 

 

The parameters in Table 1 include the P-value, indicating 

the probability of observed results under the null hypothesis, 

with values below 0.05 confirming statistical significance. 

The F-value measures the ratio of variance between groups 

to variance within groups, testing differences among group 

means. The degrees of freedom are divided into two 

components: DF NUM (Numerator), representing the 

number of independent groups being compared minus one 

(15 in this case, as there are 16 groups), and DF DEN 

(Denominator), which reflects the degrees of freedom 

related to variability within the groups, based on the sample 

size (8065.66 here, indicating a large dataset and complex 

variance structure). 

According to the Welch ANOVA test results in Table 1, 

the P-value of 0.000 is less than the significance level of 

0.05, rejecting the null hypothesis (Greenland et al., 2016) 

and confirming that there are statistically significant 

differences among the mean positional accuracies of the 

groups. This indicates that the observed trend of positional 

accuracy over time is statistically significant. 

5. Conclusion 

 This study aimed to evaluate the positional accuracy of 

VGI, with a specific focus on OSM data for Tehran, utilizing 

an extrinsic evaluation method. By employing a systematic 

approach that included data extraction, preprocessing, and 

advanced feature matching, we analyzed the temporal trends 

in the positional accuracy of OSM features. 

The preprocessing steps included critical tasks such as 

standardizing coordinate systems, aligning data extents, 

correcting topological errors, and converting both OSM and 

official datasets into graph structures. These steps were 

essential to ensure the integrity and compatibility of the 

datasets. 

Using a feature-matching approach that incorporates 

Hausdorff distance, orientation difference, and buffer 

overlap—normalized through fuzzy logic—we developed a 

comprehensive method for assessing the normalized 

positional accuracy of voluntary features in comparison to 

official records. The results indicated that the majority of 

voluntary features corresponding to official features in 

Tehran demonstrate high positional accuracy, with values 

exceeding 82%, and a significant proportion surpassing 

87%. 

Furthermore, the analysis of temporal trends revealed 

that the number of voluntary features corresponding to 

official features peaked in specific years, notably 2012 and 

2017. However, an examination of the overall trend in 

positional accuracy from 2007 to 2022 indicated a slight yet 

statistically significant decline. The fitted trend line, which 

has a negative slope of -0.001834, illustrates this downward 

trajectory, suggesting a gradual decrease in the positional 

accuracy of OSM data over time. Additionally, no 

significant fluctuations in the positional accuracy trend were 

observed in any particular year that could be attributed to 

external factors. 
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Statistical validation using the Welch ANOVA test 

confirmed that the differences in mean positional accuracy 

across the years are significant, underscoring the importance 

of continuous monitoring and quality assurance in VGI 

projects. The results of this study highlight that while OSM 

data generally maintain a high level of volunteer accuracy, 

there are fluctuations that require further investigation and 

potential intervention to sustain data quality. 

A noteworthy finding of this research is that 

advancements in technology do not necessarily lead to 

higher quality features in recent years compared to those 

recorded or modified in earlier years. Despite the 

availability of enhanced surveying tools and data collection 

methods, the accuracy of voluntary features has not 

demonstrated consistent improvement. This indicates that 

factors such as contributor expertise, the nature of the 

editing process, and the complexity of urban environments 

play significant roles in determining data quality. 

The novel aspect of this research lies in its 

comprehensive analysis of the positional accuracy of 

historical OSM data over an extended period. This study 

offers valuable insights into the evolution of data quality in 

a major metropolitan area. This approach not only enhances 

the understanding of VGI accuracy but also provides a 

robust framework for future studies aimed at improving the 

reliability of geospatial data contributed by volunteers. 

In conclusion, the feature matching methodology 

presented in this study demonstrates its effectiveness as an 

extrinsic assessment tool for evaluating the accuracy of 

VGI. By leveraging historical data, this research offers a 

nuanced perspective on how the quality of voluntary 

contributions fluctuates over time. As urban areas continue 

to expand and evolve, ensuring the accuracy of VGI 

becomes increasingly critical for urban planning, disaster 

management, and various other applications. Future 

research should concentrate on developing strategies to 

address the observed decline in accuracy and investigate the 

underlying causes of these temporal trends to enhance the 

overall quality of VGI. 
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