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Accurate prediction of road traffic speed has a crucial impact in estimating traffic conditions 

and plays a role in optimizing transportation and traffic system’s function. However, the 

nonlinear nature of traffic systems and the complexity of uncertainty introduce challenges for 

speed variables. Therefore, finding hidden patterns in traffic is the most critical issue in 

predicting traffic speed. This paper uses a new hybrid model to predict the traffic flow in the 

street highways. Previous methods proposed to address these challenges are fundamentally 

limited in providing optimal solutions due to their inability to capture local and global 

nonlinear patterns accurately. To overcome these limitations, this paper proposes a method 

that combines Convolutional Neural Networks (CNNs), Temporal Convolutional Networks 

(TCNs), and Long Short-Term Memory (LSTM) networks, denoted as CNN-TCN-LSTM.  

The incorporation of CNNs aims to effectively extract localized features within the data. 

Concurrently, Recurrent Convolutional Networks (RCNs) and Long Short-Term Memory 

(LSTM) networks are employed to model both local and global temporal dynamic 

dependencies. The dataset comprises information obtained from loop inductive detectors 

deployed along the freeways within the Seattle metropolitan region during the year 2015. Data 

was gathered from a total of 323 sensor stations positioned along the designated route. The 

evaluation of the proposed model shows a performance and accuracy improvement of 1% and 

9% compared to LSTM and RNN-based prediction methods, respectively. 
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1. Introduction 

As urban areas expand, they encounter a rise in various 

challenges, one of which is the escalation of traffic issues. 

We tend to model various phenomena even city expansion 

for better management (Hosseinali et al., 2014). Traffic 

management also needs modeling and forecasting. The 

intelligent transportation and traffic system represents a 

basic component within a smart city infrastructure. This 

system can play a main role in enhancing vehicular flow 

efficiency, reducing waiting times at intersections, and 

mitigating queue lengths and traffic congestion.  For 

instance, based on 2014 data Moskvitch (2014), drivers in 

the ten most congested cities in the USA spent an average of 

42 hours in traffic jams, leading to approximately $121 

billion in wasted fuel. Therefore, intelligent transportation 

systems can empower local residents and travelers to avoid 

road traffic congestion, facilitate route planning, identify 

points of interest, reduce traffic accidents, and effectively 

manage travel itineraries and eventually reduce the fuel 

consumed (Ni et al., 2016; Zeynali et al., 2015). Therefore, 

accurate anticipation of traffic dynamics through Internet of 

Things (IoT) technology stands as a crucial milestone in 

optimizing the efficacy of intelligent transportation and 

traffic systems (Dohler et al., 2011; Jin et al., 2014; Sethi & 

Sarangi, 2017). By predicting parameters like traffic 

volume, travel time, and real-time traffic status, commuters 

can plan routes to save time and reduce costs. Consequently, 

the precise prediction of traffic speed emerges as a pivotal 

metric for gauging the prevailing traffic conditions within 

road networks (Kazemi & Hosseinali, 2022; Tang et al., 

2017). 

In recent years, a multitude of methodologies has been 

introduced to forecast traffic variables including volume, 

speed, density, and travel time. These methods can be 

categorized into Machine Learning (ML) (Ahmad Rahi, 

2019; Kamble & Kounte, 2020; Mohammed & Kianfar, 

2018) and Deep Learning (DL) based approaches (Cui et al., 

2020; Wang et al., 2016). However, DL-based approaches 

mostly outperform previous ML-based ones due to their 

capability to address more dynamic and complex data. For 

example, Wang et al. (2016) proposed a deep learning 

method with a structure of error feedback recurrent 

convolutional neural network (eRCNN) for continuous 

traffic speed prediction. In Cui et al. (2020), a stacked 

bidirectional and unidirectional LSTM neural network (SBU 

LSTM) architecture is proposed for predicting forward and 

backward dependencies in traffic speed time series data at 

the network level.  

In Zhongjian et al. (2018), the LC-RNN model is 

introduced as a novel approach aimed at enhancing the 

accuracy of traffic speed prediction in contrast to prevailing 

solutions. Rahman and Hasan (2018) introduces a deep 

learning model tailored specifically for forecasting traffic 

speed on freeways. In another research, Fu et al. (2016) 

explores the utilization of Short-Term Memory (LSTM) and 

Gated Recurrent Unit Neural Networks (GRU) for short-

term traffic flow prediction. Further contributing to this 

field, BaloujiJonas et al. (2023) proposes an innovative 

deep-learning framework designed for predicting both the 

distance and travel time of vehicles. Despite the extensive 

research conducted, this domain exhibits the characteristic 

of persistent traffic issues that are amenable to enhancement 

while the issue of traffic congestion remains unsolvable. 

Consequently, continual opportunities for refinement and 

further exploration within this domain persist. 

Given that traffic data contains both spatial and temporal 

features, we aim to develop a model that efficiently captures 

both types of features to enhance prediction performance. 

To this end, we propose a hybrid model incorporating 

Convolutional Neural Networks (CNNs), Temporal 

Convolutional Networks (TCNs), and Long Short-Term 

Memory networks (LSTMs). CNNs (Convolutional Neural 

Networks) are designed to automatically learn spatial 

hierarchies of features from input data, making them 

effective for image and grid-like data analysis (Li et al., 

2022). TCNs (Temporal Convolutional Networks) handle 

temporal data, capturing short to medium-range 

dependencies with stability using causal convolutions (Bai 

et al., 2018; Lea et al., 2017; Lea et al., 2016). LSTMs (Long 

Short-Term Memory networks) capture long-term 

dependencies in sequence data by retaining information over 

extended periods with gated mechanisms (Graves, 2012).  In 

this paper, the aim of using CNN layers is to capture local 

correlations between traffic sensors. To capture dynamic 

temporal dependencies, a combination of TCNs and LSTMs 

is proposed, where TCNs effectively capture short- to 

medium-range temporal dependencies and LSTMs handle 

long-term dependencies. Spatiotemporal data collected from 

inductive loop detectors is utilized to predict traffic speed at 

the network level. The continuation of the article is as 

follows: 

In Section 2, we review previous works in the field of 

traffic speed prediction methods. In Section 3, the proposed 

method is presented. In Section 4, an analysis of the results 

of the proposed method is discussed. Section 5 concludes 

the article. 

2. Related works 

Intelligent transportation and traffic management 

applications heavily rely on the quality of traffic 

information. Recently, with a significant increase in the 

overall volume of traffic and the generated data, notable 

opportunities and challenges have emerged in the field of 

transportation and traffic management research. This 

includes how to effectively and accurately understand and 

leverage the received data. Short-term traffic prediction 

based on data-driven models utilizing machine learning for 

Intelligent Transportation Systems (ITS) applications is one 

of the rapidly developing areas of research, making 

extensive use of vast traffic data and influencing the overall 

performance of various transportation and traffic systems. In 
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the literature, various methods have been proposed for 

traffic prediction in terms of speed, volume, density, and 

travel time. 

In Wang et al. (2016), a deep learning method with a 

recurrent convolutional neural network with error feedback 

(eRCNN) structure was proposed for continuous traffic 

speed prediction. In this approach, the spatiotemporal traffic 

speed of continuous road sections is received as an input 

matrix, and eRCNN utilizes contextual correlations between 

adjacent sections to improve prediction accuracy. In Cui et 

al. (2020), a bidirectional and unidirectional stacked LSTM 

network architecture (SBU LSTM) is suggested, 

considering forward and backward dependencies in time 

series data to predict network-level traffic speed. Zhongjian 

et al. (2018) proposed a new model called LC-RNN for 

achieving more accurate traffic speed prediction. This model 

combines two RNN and CNN models logically to learn 

meaningful temporal patterns that can adapt to the dynamic 

traffic conditions in surrounding areas. Additionally, since 

traffic evolution is constrained by the underlying road 

network, an embedded convolution structure is suggested to 

capture topology-aware features. Integration with other 

information, including periodicity and environmental 

factors, is also considered for further improving prediction 

accuracy. 

In the study of Han et al. (2019), a new approach for 

predicting vehicle speed is presented by combining a one-

dimensional convolutional neural network with a 

bidirectional short-term memory network (CB-LSTM). This 

approach utilizes information provided by V2V (vehicle-to-

vehicle) and V2I (vehicle-to-infrastructure) 

communications. Basak et al. (2019) focus on analyzing the 

cascading effects of traffic congestion using LSTM 

networks. This data-driven approach proposes a function of 

congestion in adjacent sections to predict traffic density 

propagation in road sections. Moreover, an extensive urban 

set of connected LSTM models for intersection levels and 

mechanisms to identify congestion events using network 

predictions is suggested. 

In Rahman and Hasan (2018), a deep learning model for 

predicting traffic speed on highways under severe traffic 

demand, such as during evacuation scenarios, is introduced. 

This model, using a Short-Term Memory Neural Network 

(LSTM-NN), aims to predict speed. Modi et al. (2022) 

extended deep learning-based methods to provide accurate 

multi-step traffic speed predictions, considering 

spatiotemporal traffic dependencies. The proposed method 

was tested with real-world traffic speed data collected from 

various sensors in Los Angeles and the Bay Area (United 

Staes). 

Fu et al. (2016) employed short-term memory methods 

(LSTM) and gated recurrent unit neural networks (GRU) for 

short-term traffic flow prediction. Experiments 

demonstrated that recurrent neural networks (RNN) based 

on deep learning methods like LSTM and GRU outperform 

the Autoregressive Integrated Moving Average (ARIMA) 

model. Zheng et al. (2022) introduced a new deep learning 

model named SAGCN-SST to address the problem of multi-

step traffic speed prediction in large-scale road networks. 

This model considers the impact of different road sections 

on future traffic conditions, using graph convolutional 

networks for spatiotemporal dynamics. 

Chen et al. (2021) proposed a novel hierarchical learning 

framework called Adaptive Hierarchical Spatial-Temporal 

Network (AHSTN) for traffic forecasting. This approach 

uses adaptive spatiotemporal sampling for learning spatial 

patterns and obtaining spatial multi-scale correlations. The 

results of testing the approach with real data showed its 

advantages of it over the traditional previous models. 

Moreover, the learning rate of AHSTN is significantly 

improved. 

In Luo et al. (2022), a novel spatiotemporal transformer-

based framework named STGIN is proposed to tackle the 

challenge of long-term traffic prediction. Gated Attention 

Layers (GAT) and Informer layers are integrated to capture 

spatial and temporal relationships in traffic data.  

Thachayani and Rubavani (2023) proposed a framework 

based on RCNN for predicting the number of vehicles using 

records of traffic cameras. The system developed by Python, 

achieved an accuracy of 99.3%. By automatically counting 

the vehicles, the system is able to provide intelligent traffic 

light control. This was a basis for implementing an 

intelligent traffic management system.  

Jia et al. (2023) tried to combine Complete Ensemble 

Empirical Mode Decomposition with Adaptive Noise 

(CEEDMDAN) algorithm and LSTM neural network to 

build a predictor model and test it with real data. The 

proposed combined model revealed a high accuracy in 

predicting the travel time in various time laps. The accuracy 

of the proposed model was somewhat better than LSTM, 

Attention-Based LSTM, and Convolutional LSTM. The 

model is especially effective for short-time forecasting. 

However, the training time was a bit more than other 

previous models.  

Wang et al. (2024) introduced a model called Spatial-

Temporal Similarity Fusion Graphs Adversarial 

Convolutional Networks (STSF-GACN) for traffic flow 

forecasting which utilizes preprocessing techniques. The 

model Uses a directed graph in an integrated Generative 

Adversarial Network (GAN) architecture. They argued that 

their model is not only accurate but also robust against 

varying traffic conditions. 

Shi et al. (2024) addressed spatiotemporal graph learning 

for geographical traffic forecasting. For this purpose they 

developed a deep transformer-based 

heterogeneous spatiotemporal graph learning model which 

can be categorized as a geospatial artificial intelligence 

model. The model was implemented on data achieved from 

https://www.sciencedirect.com/topics/computer-science/spatiotemporal-graph
https://www.sciencedirect.com/topics/computer-science/artificial-intelligence
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California’s Highways (USA) and revealed desirable 

results. The model also achieved state-of-the-art results 

compared with other methods. 

Reviewing previous works, it is evident that deep 

learning methods in traffic prediction have not been fully 

exploited in terms of model architecture depth, spatial 

prediction area scale, and the ability to predict 

spatiotemporal data comprehensively. The proposed 

methods have often focused on either spatial or temporal 

information, neglecting the influence of other methods. 

Therefore, this article suggests a hybrid approach based on 

deep learning that incorporates both spatial and temporal 

dependencies for more comprehensive predictions. 

3. Proposed Method 

The general steps of the study are illustrated in Figure 1. 

The following explains the methodology and its related 

details. 

 

Figure 1. The flowchart of the study 

3.1. Convolutional Neural Networks 

Convolutional Neural Networks (CNN) utilize 

convolutional computations to extract features from data, 

making it suitable for scenarios where spatial features are 

crucial, such as images. The structure of this network 

typically includes a convolutional layer, a pooling layer, and 

a fully connected layer. The convolutional layer plays the 

role of feature extraction, the pooling layer performs 

subsampling of features, and finally, the fully connected 

layer is responsible for connecting the extracted features and 

obtaining classification results (Alferaidi et al., 2022). 

3.2. Temporal Convolutional Networks 

Temporal convolutional network (TCN) has emerged to 

hierarchically capture both temporal and spatial information 

(Hu et al., 2022). TCN is composed of one-dimensional 

convolution, causal convolution sequence model, expansion 

convolutions and residual connections. The performance of 

the activation function TCN in relation to equations (1) and 

(2) is specified. An overall structure of TCN with d layers is 

illustrated in Figure 2.  

Figure 2: The overall structure of a TCN model with 

dilation factors 1 and 2 in first and second layers, 

respectively. 

𝑅𝑡
(𝑖,𝑙)

= 𝐹(𝑊(1)𝑅𝑡−𝑠
(𝑖,𝑙−1)

+ 𝑊(2)𝑆𝑡
(𝑖,𝑙−1)

+ 𝑏)             (1) 

𝑅𝑡
(𝑖,𝑙)

= (𝑅𝑡
(𝑖,𝑙−1)

+ 𝑉𝑅𝑡
(𝑖,𝑙)

+ 𝑒)                                   (2) 

 where W indicates the trainable weight matrix, b 

represents the trainable bias, i and l represent unit and layer 

number, respectively. 𝑆
(𝑖,𝑙)

 indicate training function. 𝑅𝑡
(𝑖,𝑙)

 

indicates expansion convolution at t. 𝑅𝑡
(𝑖,𝑙)

 is the result of 

expansion convolution after adding residual value t.  

3.3. LSTM 

The purpose of designing short-term memory networks is 

to address the issue of long-term dependencies, which is 

resolved by using a continuous memory denoted as 𝐶𝑛 

(Hochreiter & Schmidhuber, 1997). The architecture of the 

short-term memory structure is illustrated in Figure 3.  

Figure 3: The overall structure of a LSTM model. 

In the first step, information needs to be erased from the 

cell state, a process performed by a sigmoid layer called the 

forget gate. This gate outputs a value of zero or one to the 

cell state 𝐶𝑛−1 based on the values of ℎ𝑛−1and 𝑥𝑛 for each 

element. If the value is one, all values of the cell state 𝐶𝑛−1 

are passed to 𝐶𝑡 , and if the value is zero, it erases the 

information from the cell state 𝐶𝑡−1 , and no values are 
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entered into 𝐶𝑛, as indicated in equation (3) (Hochreiter & 

Schmidhuber, 1997): 

𝑓𝑛 = 𝜎(𝑊𝑓 ∗ [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑓)                   (3) 

 In the second step, decisions need to be made to 

determine which new information should be stored in the 

cell state. This is accomplished by a sigmoid layer called the 

input gate. Next, a hyperbolic tangent layer produces values 

denoted as 𝐶𝑛, which are added to the cell state. Finally, 

these two steps are combined with each other to update the 

value of the cell state, as depicted in equations (4) and (5): 

𝑖𝑛 = 𝜎(𝑊𝑖 ∗ [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑖)                      (4) 

𝐶~𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑐)                      (5)      

Now, to update the cell state from 𝐶𝑛−1 to 𝐶𝑛 , it is 

necessary to multiply the previous cell state value by 𝑓𝑛 . 

Then, 𝑖𝑛 ∗ 𝐶~𝑛 is added, resulting in the new values for the 

cell state, as indicated in equation (6): 

𝐶𝑛 = 𝑓𝑛 ∗ 𝐶𝑛−1 + 𝑖𝑛 ∗ 𝐶~𝑛                                              (6) 

A sigmoid layer decides which part of the cell state 

should be sent to the output. Then, the value of the cell state 

is passed through a hyperbolic tangent layer, and its value is 

multiplied by the output of the previous sigmoid layer to 

determine the relevant portions to be sent to the output, as 

shown in equations (7) and (8) (Hochreiter & Schmidhuber, 

1997): 

𝑖𝑛 = 𝜎(𝑊𝑖 ∗ [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑖)                         (7) 

𝐶~𝑛 = 𝑡𝑎𝑛ℎ(𝑊𝑐 ∗ [ℎ𝑛−1, 𝑥𝑛] + 𝑏𝑐)                           (8) 

The proposed combined LSTM and TCN model's overall 

structure is depicted in Figure 4. The model comprises two 

parallel branches, consisting of LSTM and TCN models. 

Within each branch, a 1D convolution layer is employed for 

initial feature extraction. The outputs of these branches are 

aggregated and then passed through a sigmoid activation 

function to transfer feature values between 0 and 1. LSTMs 

are known for their ability to capture long-term 

dependencies due to their gating mechanisms, which help 

retain relevant past information over long sequences. This 

makes LSTMs particularly effective for tasks where patterns 

may recur over extended periods. On the other hand, TCNs, 

which utilize dilated causal convolutions, are adept at 

capturing local temporal patterns with a fixed receptive field 

that can also expand to cover a wide range of time steps due 

to the dilation. This structure allows TCNs to process 

sequences more efficiently and in parallel, potentially 

providing faster convergence and a more robust temporal 

representation. By combining LSTM and TCN, a model can 

benefit from both global and local temporal dependencies, 

which can reduce overfitting to specific temporal patterns 

and improve the overall robustness and accuracy in 

regression tasks. Subsequent sections elaborate on the 

implementation details, data preparation process, and 

results. 

Figure 4: The overall structure of the combined LSTM 

and TCN model. 

4. Implementation and Results 

This section presents details regarding the hardware and 

software settings, followed by an elaboration on the dataset 

employed for training, evaluation, and testing purposes. 

Furthermore, a quantitative comparison is also provided in 

Table 1. 

In this stage, the proposed method is implemented in the 

Python environment using PyTorch 2.0 for neural network 

models, and its performance is evaluated. All processes were 

performed on a computer with an Intel Core i7 – 8750H CPU 

@ 2.2 GHz and 32GB of memory. Additionally, all neural 

network models were trained and evaluated on an NVIDIA 

GeForce GTX 1080 with 12GB of memory.  

In this implementation, loop inductive detectors were 

used as traffic sensors to collect traffic data. The advantages 

of this technology include being unaffected by weather 

conditions such as rain, fog, and snow, as well as the ability 

to measure basic parameters such as volume, occupancy, 

speed, flow ratio, and distance between two vehicles. To 

obtain appropriate data, Seattle city in the state of 

Washington, USA was selected. Fig. 5 (a) shows the 

location of the city on the map of the United States. This 

research leverages two comprehensive datasets capturing 

real-world traffic speeds across a network. The first dataset 

comprises data from inductive loop detectors located on four 

major highways (I-5, I-405, I-90, and SR-520) in the Greater 

Seattle Area, as illustrated in Fig. 5 (b). Available publicly, 

this dataset includes traffic metrics from 323 sensor sites, 

recorded every 5 minutes throughout 2015. 
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Figure 5: (a) Seattle city in the United States, (b) Freeways of Seattle city 

 

 

 

To process the received dataset from roadside sensors, it 

is divided into two categories of train and test. In fact, 80% 

of data was used for training and the remained 20% was 

considered as the test dataset. Cross-validation technique 

was also utilized to prepare better usage of data. In the Train 

phase, which consists of two stages, input and output, the 

inputs include data received from roadside sensors up to the 

time t, and the output is the target for predicting traffic speed 

at the next time step. Once the model is trained using inputs 

and outputs, and the Train phase is completed, the next step 

is the Test phase. In this phase, the input data related to the 

Test phase is given to the model, and the received output is 

compared with the actual value. It is worth mentioning that 

in the model implementation, Back Training is used, 

meaning that in one training step, a random subset of the 

data is selected 

a 

b 
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and fed into the network, and the model  parameters are 

updated. Then, another subset of data is randomly selected. 

To evaluate the proposed method, its results are 

compared with the results of RNN and LSTM methods, as 

shown in Table 1. L1 (Norm1) and MSE are used to evaluate 

the accuracy of the proposed method. According to Table 1, 

the accuracy and performance of the proposed method are 

better compared to RNN and somewhat better compared to 

LSTM methods. 

Table 1. Evaluation Results of the Proposed Method compared to 

LSTM and RNN Algorithms 

MSE 

test- std 

Test L1 

mean 
MSE test 

MSE 

validation 
MSE train  

0.7679 9.0469 0.006745 0.007097 0.006338 RNN 

0.73935 8.3325 0.006157 0.006534 0.005854 LSTM 

0.6140 8.2726 0.006112 0.0065345 0.005833 
CNN-

TCN-

LSTM 

 

The loss curves of the proposed model are illustrated in 

Figure 6 (a) and (b). Figure 6 (a) indicates how well the 

proposed model aligns with the training data, while Figure 6 

(b) demonstrates the alignment of the proposed model with 

new data. 

 According to the implementation, the proposed model 

results in an increase in prediction accuracy of about 1% 

compared to the LSTM method and around 9% compared to 

the RNN method. 

 

 

 

 

 

Figure 6: The training loss (a) and the validation error (b) 

Table 2 presents the analytical test results across various 

input sequence lengths, ranging from 5 to 40 minutes, with 

metrics including mean error and standard deviation error. 

Regarding the results, the 10-minute sequence shows the 

lowest mean error at 8.3562, suggesting an optimal sequence 

length for reducing prediction error. However, increasing in 

the input sequence length slightly decreases the mean error 

and showing petter performance. In terms of Standard 

deviation, lower values suggest more stable predictions, 

with the 5-minute sequence length achieving the lowest 

standard deviation error of 0.6616, reflecting high 

consistency. Conversely, the 10-minute and 25-minute 

sequence lengths display the highest standard deviation 

errors, pointing to increased variability. These results 

underscore the 15-minute sequence length as potentially the 

most reliable, providing both accurate and stable 

predictions. 

Table 3 presents the analytical test results for various 

prediction time steps, with metrics including mean error and 

standard deviation error. The mean error decreases as the 

prediction time step shortens, with the lowest mean error 

(8.3512) observed at the 5-minute interval, suggesting that 

shorter prediction intervals improve accuracy. The highest 

standard deviation is observed at the 5-minute step (0.7479), 

compared to the lowest at 40 minutes (0.6313). 

Table 2: Analytical test results for 5, 10, 15, 20, and 25 minutes as 

different sequence lengths. 

40 25 20 15 10 5 
Input 

sequence 

length 

8.3801 8.482 8.3916 8.6805 8.3562 8.5041 
Mean 

error 

0.7646 0.6981 0.6988 0.6616 0.7717 0.6796 
Standard 

deviation 

error 
 

 

 

a 

b 
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Table 3: Analytical test results for different prediction time steps 

40 30 20 10 5 
Prediction 

time step 

8.6249 8.5299 8.4641 8.4370 8.3512 Mean error 

0.6313 0.6789 0.6875 0.7125 0.7479 
Standard 

deviation 

error 

 

Figures 7(a) and (b) illustrate the mean error and its 

associated standard deviation for varying prediction time 

steps (5, 10, 20, 30, and 40 minutes) and different input 

sequences (5, 10, 15, 20, and 25 minutes), respectively. The 

blue line represents the mean values, while the shaded area 

around it indicates the range of one standard deviation. 

 

 

Figure 7: Mean and Standard Deviation on different input 

sequences and different prediction time steps. (a) Different 

input sequences and (b) Different prediction time steps 

Overall, based on the results of this research, the main 

contributions of the article are follows: 

 A hybrid model named TCN-CNN-LSTM was 

proposed for predicting traffic speed, considering both 

temporal and spatial dependencies. 

 Simulation results show that the use of the proposed 

hybrid model leads to an increase in prediction accuracy of 

16.95% compared to LSTM and 20.04% compared to 

RNN. 

 The use of the proposed model has advantages such as 

travel time management, the possibility of emergency 

response for emergency vehicles, fuel consumption 

reduction, and decreased air pollution. 

3. Conclusion 

    Predicting traffic speed is a challenging problem in 

transportation and traffic systems. Traditional methods in 

the field of transportation and traffic management are not 

responsive to the essential needs of this area. Furthermore, 

the performance of transportation and traffic systems 

depends significantly on the quality of the collected data. 

Therefore, utilizing Internet of Things (IoT) technology and 

machine learning for the collection and processing of traffic 

data, and consequently modeling traffic networks in various 

dimensions, especially in the field of traffic speed 

prediction, is a crucial step towards optimizing 

transportation and traffic systems. In this article, a combined 

CNN-TCN-LSTM method was proposed for predicting 

traffic speed. Based on the results obtained from the 

accuracy evaluation of the combined CNN-TCN-LSTM 

model compared to LSTM and RNN models, it has shown 

improvements in accuracy performance by 1% and 9%, 

respectively. For future work, the impact of environmental 

conditions, social events, traffic incidents, etc., could be 

considered in traffic speed prediction modeling to achieve 

the best available transportation and traffic system.  
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