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Fully polarized images are renowned for their superior ability to classify land surface features 

compared to single-polarized images. Despite their advantages, the acquisition of fully 

polarized images poses significant challenges due to technical and logistical limitations. This 

scarcity makes it difficult to access such images or to utilize the results from decomposition 

algorithms like Freeman-Durden and H/α, which are specifically designed for fully polarized 

data. This study utilizes the UNet++ deep learning model to reconstruct fully polarized images 

and decomposition features, such as H/α and Freeman-Durden decompositions. The 

performance of this approach is evaluated using metrics such as Mean Absolute Error (MAE), 

Mean Squared Error (MSE), and the Universal Image Quality Index (UIQI). The results show 

that the deep learning models perform exceptionally well in the image reconstruction tasks. 

Specifically, the MAE values for the reconstructed images are below 0.1 for all methods, 

indicating high accuracy. The MSE values are generally below 0.025, further confirming the 

precision of the models. Notably, the UIQI values for the reconstruction of fully polarized 

images are impressive, reaching 95.95%, which highlights the excellent visual similarity 

between the reconstructed and original images. These findings underscore the potential of deep 

learning models to address the limitations associated with the availability of fully polarized 

images, providing a robust solution for improved environmental and land cover monitoring. 
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1. Introduction 

    Synthetic Aperture Radar (SAR) (Chan & Koo, 2008) 

technology encompasses diverse elements, including 

polarization and classification features. SAR images are 

classified into various polarization types, such as Single 

Polarization (Single-Pol), Dual Polarization (Dual-Pol), and 

Full Polarization (Full-Pol or Quad-Pol), each offering 

unique advantages for information extraction and 

classification. Polarimetric SAR enhances insights into 

terrain and target characteristics comprehensively 

(Shirvany, Chabert, & Tourneret, 2012). A comparative 

study on SAR image classification features investigates both 

image and physical domains. It evaluates single-polarized 

and quad-pol SAR data, providing valuable insights for land 

use/land cover classification. 

Furthermore, SAR applications in earth observation 

underscore the interaction of different polarization types 

with objects. This emphasizes the crucial role of polarization 

in SAR technology (Zhang, Wang, Xu, & Jin, 2017; Y. 

Zhou, Wang, Xu, & Jin, 2016). Understanding SAR's 

polarization capabilities is vital for applications like SAR 

image colorization and is integral to earth observation 

practices. 

Full-polarization SAR captures data in all four 

polarization states (HH, VV, HV, VH), generating a more 

comprehensive dataset compared to single or dual 

polarization. This wealth of information enhances the ability 

to discern and interpret features within the scene. Full 

polarization enhances target detection, particularly in 

challenging environments. The combination of different 

polarizations helps address issues like shadowing, leading to 

better identification of subtle features. This makes full-

polarization SAR valuable for applications such as ship 

detection. This kind of data minimizes interpretation 

ambiguity by providing a more complete picture of the 

scattering behavior in the observed scene. This reduction in 

uncertainties enhances the reliability of information 

extracted from SAR imagery. 

The reconstruction of fully polarimetric Synthetic 

Aperture Radar (SAR) images from single-polarization 

grayscale SAR images enriches the information by 

transforming single-polarization grayscale SAR images into 

fully polarimetric ones. This process contributes to a more 

thorough understanding of the scene. Reconstructed fully 

polarimetric Synthetic Aperture Radar (SAR) images 

exhibit a close alignment with authentic full-pol images, 

ensuring not only visual similarity but also heightened data 

accuracy. This alignment significantly enhances the 

interpretation and analysis of images, leading to improved 

insights. Integrating deep neural networks into the 

reconstruction process enhances the efficient mapping of 

spatial features. This, in turn, enables a more precise 

transformation from single-pol to fully polarimetric images, 

harnessing the capabilities of deep learning.  

Optical image colorization is divided into two primary 

categories: semi-automatic and fully automatic colorization. 

In Semi-automatic Colorization category, users actively 

participate in the colorization process, providing input like 

selecting specific areas or offering color hints (Levin, 

Lischinski, & Weiss, 2004). This method offers greater user 

control and customization, making it ideal for situations 

where human input is crucial. In contrast to semi-automatic 

methods, fully automatic colorization operates without user 

intervention. Advanced algorithms, often leveraging deep 

learning techniques, analyze grayscale images and 

autonomously generate colorized versions. This automated 

approach is well-suited for scenarios where user input is 

minimal or unnecessary. Convolutional Neural Networks 

(CNN) play a pivotal role in the fully automated colorization 

of Synthetic Aperture Radar (SAR) images (Oveis, Giusti, 

Ghio, Martorella, & Magazine, 2021). The process involves 

converting single-polarization SAR images into fully 

polarimetric representations. CNNs excel in extracting 

features, identifying significant patterns and structures in 

SAR images. This proficiency aids in comprehending the 

inherent characteristics of the images, contributing to 

precise colorization. Fully automatic colorization utilizes 

deep learning techniques, where CNNs analyze and learn 

intricate relationships within grayscale SAR images. This 

empowers the network to autonomously generate colorized 

versions without requiring user intervention. CNN 

architectures enhance the classification of SAR images, 

ensuring accurate color assignment based on learned 

patterns. This guarantees that the colorization process aligns 

with the content and features present in the SAR data. 

Beyond colorization, CNNs may also contribute to other 

aspects of SAR image processing, such as despeckling, 

thereby enhancing the overall image quality before the 

colorization stage.  

In this study, we utilize the UNet++ deep learning network 

to map single-polarized images to fully polarized ones. 

Initially, feature extraction from the single-polarized images 

is carried out using a convolutional network. Subsequently, 

the mapping process to fully polarized images is executed 

through the convolutional layers of the UNet++ model. 

Notably, the training of the EfficientNet-B7 pre-trained 

convolutional neural network involves a pair of Synthetic 

Aperture Radar (SAR) images. The single-polarized image 

serves as the input data, while the fully polarized image acts 

as the target image. This methodology is implemented using 

the NASA/JPL UAVSAR (Q. Song, F. Xu, & Y.-Q. Jin, 

2017) L-band SAR image as a reference. Additionally, 

besides the process of mapping single-polarized images to 

fully polarized ones, we have established a model to map the 

single-polarized images to the outcomes obtained from 

PolSAR target decomposition methods like Freeman-

Durden and Cloude and Pottier. 

While this study focuses on demonstrating the conversion 

from single-pol to full-pol data and the specific 

decomposition features, the framework is adaptable for 

converting various non-full-pol data forms, encompassing 

compact-pol and dual-pol to full-pol data or another 

decomposition features. The adaptability of this method 
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paves the way for creating a wide range of applications 

beyond the demonstrated conversion from single-pol to full-

pol. 

This article begins with a review of existing concepts and 

studies in the field. The next section examines the theoretical 

foundations and study methodology. Following that, the 

research results are analysed. The article concludes with a 

general summary in the final section. 

 

2. Materials and Methods 

    In this study, we address the significance and diverse 

applications of fully polarized images in remote sensing 

across various fields. However, acquiring such images 

presents challenges in different geographical areas. To 

overcome this, we utilize Deep Learning networks to 

convert single-polarized VV images into fully polarized 

ones. Specifically, we employ the UNet++ deep learning 

model for this conversion process, as outlined in the 

preceding section. Additionally, we highlight the pivotal 

role of decomposition methods in applications like land 

cover classification and intricate scattering analysis. Despite 

these methods typically requiring fully polarized images, the 

reconstruction of such images is crucial. Thus, leveraging 

the aforementioned neural network architecture, we 

establish a mapping between single-polarized images and 

the outcomes of Freeman-Durden and H/α ̅ target analysis 

algorithms. In this paper, the networks are trained using 

pairs of SAR images, where single-polarization images 

serve as input and full polarized images act as targets. 

Subsequently, the trained models are tested on additional 

SAR images. To illustrate the efficacy of the proposed 

approach, experiments are conducted using NASA/JPL 

UAVSAR L-band SAR imagery. Figure (1) displays both 

single-polarized and fully-polarized images. 

 

 
 

a 

 
b 

Figure (1). Demonstration of SAR image of the 

UAVSAR image, a) Single-polarized and b) Full-

polarized image 

2.1. Freeman Durden Decomposition 

 This method integrates three fundamental scattering 

mechanisms (Ballester-Berman, Lopez-Sanchez, & 

Sensing, 2009; Freeman & Durden, 1998): 

 Canopy scatter from randomly oriented dipoles in 

a cloud-like structure. 

 Even- or double-bounce scatter from orthogonal 

surfaces with distinct dielectric constants. 

 Bragg scatter from moderately rough surfaces. 

It characterizes the polarimetric scattering of natural 

objects, distinguishing flooded from non-flooded forests and 

areas undergoing deforestation or afforestation. 

Additionally, it calculates scattering mechanisms for VV, 

HH, and HV polarizations. One fundamental challenge in 

polarimetric SAR image analysis lies in comprehending the 

scattering mechanisms linked to the polarization parameters' 

features. Decomposition methods encounter limitations as 

they rely solely on mathematical principles, often resulting 

in combinations of three distribution matrices unrelated to 

physical distribution models. The standard volume 

distribution mode matrix S is represented as eq. (1): 

0

0

v

h

S
S

S

 
  
 

                           (1) 

To derive the scattering matrix for a specific scatterer, it 

involves transforming to a coordinate system aligned with a 

standard direction, extracting the field, and subsequently 

reorienting it to the radar coordinate system. The eq. (2) 

illustrates the distribution matrix within the radar coordinate 

system, expressed in terms of the scattering matrix within 

the distribution coordinate system. The symbol ∅ represents 

the angle at which the signal impacts the surface. 

cos sin cos sin

sin cos sin cos

vv vh

hv hh

S S
S

S S

   

   

     
     

    
    (2)                   
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And then: 

2 2

2 2

sin cos ( )cos sin

( )cos sin cos sin

vv vh h v v h

hv hh v h h v

S S S S S S

S S S S S S

   

   

   
   

    
   (3)  

In this context, it's inferred that 𝑆ℎ𝑣  is equivalent to 𝑆𝑣ℎ, 

and the coordinate system for both transmitting and 

receiving radars aligns, resulting in a symmetrical S matrix. 

The probability density function (PDF) governing the 

propagation direction conforms to the function f in eq. (4): 

2

0
( ) ( )f d f p



        (4) 

22 2 2*

1 2 32 Revv v h v hS a S a S S a S      

22 2 2*
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4
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2
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4
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                                          (6)   
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3
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0
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These relationships can be simplified by assuming a 

cylindrical distribution. In this scenario, Sℎ = 0 and S𝑣 = 1. 

Thus, we can assume  a1 = a3 =  
3π

4
 , a2 =  

π

4
, and  a4 = a5 =

 0. By factoring out π for the volume distribution mode, we 

obtain eq. (7): 

2 2
1hh vvS S     

2* 1

3
hh vv hvS S S                                              (7)   

* * 0hh hv hv vvS S S S     

In double-bounce mode, we model these components 

using a two-sided surface, each side potentially possessing 

distinct dielectric properties. Vertical surfaces exhibit 

reflection coefficients R𝑡ℎ  and 𝑅𝑡𝑣  for horizontal and 

vertical polarizations, respectively. The horizontal surface 

features Fresnel reflection coefficients R𝑔𝑣  and  R𝑔ℎ . To 

account for a broader scenario, we must also incorporate 

propagation factors ej2γv  and ej2γh . Here, γ represents a 

mixed parameter, affecting any attenuation or phase changes 

of vertically and horizontally polarized waves. This 

phenomenon occurs during radar transmission to and from 

the ground, encompassing the effects of diffusion in volume 

distribution mode. Thus, the matrix S for the Double-bounce 

distribution is outlined in eq. (8): 

2

2

0

0

v

v

j

gv tv

j

gh th

e R R
S

e R R





 
 
 
 

                 (8)   

In this case, according to the VV term, we will have eq. 

(9): 

2 2

hhS     

2
1vvS     

*

hh vvS S                                                                    (9)   
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2
0hvS     

* * 0hh hv hv vvS S S S     

Where: 

2 ( )
( )h v gh thj

tv

gv

R R
e R

R

  
                               (10)   

Two characteristics of this model in the double-bounce 

mode are crucial: 

 The amplitudes of HH and VV terms must not be 

equal to each other. 

 The phase difference between HH and VV terms 

should not be equal to ±π. 

These features ensure the model closely aligns with the 

behavior observed in the distribution of natural targets. In 

this approach, the surface scattering is modeled using a first-

order Bragg model. After normalization, the resultant model 

exhibits as eq. (11): 

2 2

hhS     

2
1vvS     

*

hh vvS S                                                              (11)   

2
0hvS     

* * 0hh hv hv vvS S S S     

In this context, it's assumed that β is a real value. Each 

scattering component assumes mutual scattering, with cross-

polarized and co-polarized components considered non-

overlapping. Additionally, within this model, the three 

diffusion mechanisms remain distinct from each other. 

Consequently, to derive the total surface distribution, the 

values from these mechanisms are summed together. 

2 2 2

hh s d vS f f f       

2

vv s d vS f f f      

* 3hh vv s d vS S f f f                           (12)   

2
3hv vS f    

* * 0hh hv hv vvS S S S       

If we estimate 𝑓𝑠 , 𝑓𝑣 and 𝑓𝑑 , we can discern the 

contributions of surface distribution, double-bounce, and 

volume distribution to HV, HH, and VV distributions. With 

4 equations and 5 unknowns (excluding states between 

Cross-pol and Co-pol), solving for one unknown enables 

equation resolution. Notably, the HV term isn't linked to the 

mentioned mechanisms, allowing estimation of volume 

distribution's share. Removing 𝑓𝑣 from the equations leaves 

us with 4 unknowns and 3 equations: 

2 2 2

hh s dS f f      

2

vv s dS f f                                                          (13)   

*

hh vv s dS S f f      

Then, we assess whether the double-bounce or the surface 

scattering predominantly influence the residuals. If 

𝑅𝑒(𝑆𝑣𝑣𝑆ℎℎ
∗)is positive, the surface distribution dominates, 

setting α= -1. Conversely, if this component is negative, the 

double-bounce distribution prevails, with β=1. 

Consequently, we derive α, β, 𝑓𝑑  and 𝑓𝑠 from the remaining 

radar measurements. This method is most effective when 𝑓𝑑 

or 𝑓𝑠  approach zero, or when α and β equal 1 and -1, 

respectively. Finally, we evaluate the contribution of each 

scattering mechanism to the span P. It should be noted that 

P is only four times the usual expression for total power. 

2 2 2
( 2 )s d v hh hv vvP P P P S S S        (14)   

 

With: 

2
(1 )s sP f      



 

 Earth Observation and Geomatics Engineering, Volume 7, Issue 2, 2023 

 

49 

2
(1 )d dP f                                                     (15)   

8

3

v
v

f
P     

2.2. Eigen-analysis target decomposition 

In this approach, we examine the eigenvalues of the 

Coherency matrix and employ a three-level Bernoulli 

statistical model to estimate the parameters of the target S 

matrix (Cloude & Pottier, 1997). The diffusion entropy 

plays a crucial role in assessing the randomness within this 

model and serves as a primary parameter in polarimetric 

challenges encountered in remote sensing. In this approach, 

we employ a statistical model that presupposes the presence 

of a consistent distribution mechanism for every pixel, 

thereby deriving the parameters of this element. Previous 

research indicates that in environments exhibiting reflection 

symmetry, the Coherency matrix is approached as follows 

(Nghiem, Yueh, Kwok, & Li, 1992). 
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 (16) 

If we assume that λ₂ equals λ₃, this relationship can be 

expressed as eq. (17): 
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Where: 

  31 2
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(18) 

This matrix is obtained from the maximum eigenvalues of 

the matrix [T] and its degree of randomness or entropy is 

defined through eigenvalues. So we get eq. (19): 

1

log
n

i i

i

H P P


       

1

i
i n

j

i

P








                  (19) 

In Bragg scattering, entropy (H) is zero, and α depends 

solely on the incident angle and the dielectric value of the 

surface, irrespective of surface roughness. 

However, this model has two key limitations: 

 It's constrained to environments with symmetric 

reflection, where scattering coefficients in co-pol 

and cross-pol polarizations don't overlap. 

 

 When 𝜆2  and 𝜆3 aren't equal, entropy loses its 

uniqueness as a measure, leading to polarization 

dependence on the incident wave's polarization, 

notably in the presence of spherical diffusers. 

2.3. CNN architecture for SAR colorization 

U-Net++ or nested U-Net model (Long et al., 2024; 

Zongwei Zhou, Rahman Siddiquee, Tajbakhsh, & Liang, 

2018; Zongwei Zhou, Siddiquee, Tajbakhsh, & Liang, 2019) 

is designed and developed based on the U-Net model. This 

model is an advanced architecture in the field of medical 

image segmentation; In other words, this model is an 

extension of the original U-Net model, which was proposed 
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to solve some of the limitations of this model and also to 

improve its accuracy in the segmentation of medical images. 

The U-Net++ network consists of an encoder subnet or 

backbone followed by a decoder subnet. 

Unlike U-Net, this model uses redesigned skip paths that 

connect two subnets and uses deep monitoring (Snoek et al., 

2015). In the U-Net model, the feature maps obtained from 

the encoder network are directly transferred to the decoder 

network at the same level. But in the U-Net++ model, nested 

convolutional blocks are used to communicate between 

encoder and decoder networks, and the number of skip 

connections between convolutional blocks has increased (Z 

Zhou, Siddiquee, Tajbakhsh, & Liang). The dense 

convolutional block makes the feature maps of the encoder 

network and the corresponding feature maps of the decoder 

network to be conceptually similar to each other, and the 

network optimization problem is partially solved and the 

results are more accurate. U-Net++ is derived from the 

original U-Net architecture. In a skip path, all convolutional 

layers are composed of k 3x3 filters. For deep monitoring, 

each target node is assigned a 1×1 convolution layer with a 

sigmoid activation function. The final segmentation map is 

generated by averaging the four segmentation maps 

generated by U-Net++. Also, in this model, deep monitoring 

is used to improve the efficiency of the network training 

process. The architecture of this model is presented in the 

Figure (2). 

 
Figure (2). U-Net++ network architecture 

The architecture of this network is basically a supervised 

encoder-decoder deep neural network and similar to U-Net 

architecture; But in this network, a series of nested and dense 

skip paths connect the encoder and decoder subnets. Among 

the innovations in this network is the design of these paths, 

which is aimed at reducing the semantic gap between the 

feature maps of encoder-decoder subnets. If the semantic 

similarity of feature maps of both subnets can be ensured, 

the optimizer is able to improve the performance of the 

network in the segmentation process. 

The use of nested decoder subnets with dense connections 

in U-Net++ improves the processing of extracted features 

and causes better information transfer between encoder-

decoder sections. The results of this network are more 

accurate in image classification compared to the original U-

Net model. In other words, with the help of nested 

connections, this model extracts the features in different 

depths of the images and improves segmentation accuracy. 

Also, this will reduce the probability of overfitting the 

model. 

Furthermore, the learning rate, which is an important 

hyper parameter that impacts the performance of the 

network during training and convergence, was determined 

with the aid of the grid search. Several researchers have 

utilized the torch_lr_finder library, initially developed by 

Leslie N. Smith (Smith, 2017) for PyTorch, to determine the 

best learning rate. In order to train the network, this tool 

gradually increases the learning rate within a specified 

range. 

By analyzing how loss varies with different learning rates, 

we can pinpoint the optimal rate for training. This is 

typically observed at the point where the loss function shows 

a significant decrease, indicating the steepest descent. 

Initially, the network converges effectively with a low 

learning rate; however, as the learning rate increases, it may 

begin to diverge. This iterative approach allows us to 

discover the ideal learning rate at which the network 

achieves its best performance (Figure (3)). 

 

 

a 

 

b 
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c 

Figure (3). Finding learning rate for three 

networks, a) fully polarized images, b) Freeman-

Durden decomposition images, and c) 

H/α ̅decomposition images Reconstruction. 

This model is more complicated than the U-Net, and as a 

result, a higher computational load and more memory are 

needed for this model. Also, the increase in the complexity 

of this model has caused the training time of the model to be 

relatively longer; Especially when the data set is larger or 

the resolution of the images is higher. Also, in this model, 

due to its greater complexity, the hyper parameters must be 

carefully selected so that the model can perform properly. 

The general research process is illustrated in Figure (4). As 

shown, the process begins with the acquisition of the 

specified dataset. These images are then fed into the UNet++ 

deep learning model for training. During the training and 

validation phases, hyper parameters are optimized to fine-

tune the model. Once the model is fully trained, it is applied 

to a set of test images, and its performance is evaluated. 

 

 

Figure (4). Flowchart of the overall research process 

3. Results and Discussion 

In order to evaluate the results of this study, a part of the 

dataset of primary images was selected as test data and then 

the performance of the model was examined with the help 

of evaluation criteria such as MAE and MSE between the 

original fully polarized images and the Reconstructed ones 

(Chai & Draxler, 2014; Chicco, Warrens, & Jurman, 2021). 

The equations of these criteria are displayed in eq. (20) and 

(21). In this equation, y is the actual observed value, p is the 

estimated value, and n is the number of observations. 

2( )i iy p
MSE

n


                                                (20) 

i iy p
MAE

n


                                                   (21) 

In this study, another evaluation criterion was used to 

analyze results quantitatively. The Universal Image Quality 

Index, or UIQI (Liu et al., 2023; Wang & Bovik, 2002), 

evaluates the quality of an image based on its comparison 

with a reference image. It takes three components into 

account when comparing the distorted image to the 

reference image: luminance, contrast, and structure. The 

UIQI value ranges from -1 to 1, with 1 indicating perfect 

similarity between images, 0 indicating dissimilarity, and 

values near -1 suggesting a high level of dissimilarity, 

possibly accompanied by inversion or severe distortion (eq. 

(22)). 

2 2 2 2

4

( )( )

xy x y

x y x y

UIQI
  

   


 
                           (22) 

𝜇𝑥  and 𝜇𝑦represent the original image and the distorted 

image, respectively. 𝜎𝑥
2 and 𝜎𝑦

2  are the variances between 

the original and distorted images. In this case, 𝜎𝑥𝑦  is the 

covariance between the original image and the distorted 

image. Figure (5) shows the process of MSE loss changes 

during the process of training single polarized images and 

converting them to fully polarized images. Moreover, this 

image illustrates the process of changes of this function 

during the training of two other networks in order to 

reconstruct Freeman-Durden and H/𝛼 decompositions from 

single polarized images. All three networks (as illustrated in 

this figure) showed a completely downward trend in MSE 

values during the training process. This indicates that all 

three networks are convergent. 
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a 

 

b 

 

c 

Figure (5). The trend of changes in the MSE criterion, a) 

Reconstruction of fully polarized images, b) 

Reconstruction of Freeman-Durden decomposition 

images, and c) Reconstruction of H/α ̅decomposition 

images 

The following table shows the values of MSE, MAE and 

UIQI for three processes of converting single polarized 

images into fully polarized images, the results of Freeman-

Durden and H/α decomposition algorithms. The deep 

learning model demonstrates successful execution of the 

image reconstruction process, as indicated by the results in 

Table (1). As shown, the MAE values for these three 

methods are below 0.1. According to the study (Song, Xu, 

& Jin, 2018; Q. Song, F. Xu, & Y.-Q. J. I. A. Jin, 2017), this 

suggests that the deep learning models perform well in the 

image reconstruction process. In the reconstruction process 

of fully polarized images and H/α decomposition images, 

the MAE value has been equalled and is lower than the MAE 

value in the Freeman-Durden decomposition reconstruction, 

indicating a higher degree of accuracy with these two 

methods. It is also true for the MSE values, which generally 

fall below 0.025 for all three trends. Additionally, the UIQI 

values, which reflect the degree of similarity between the 

reconstructed images and the original, are generally above 

90%, indicating that the images are at least 90% similar. 

Specifically, the UIQI values for the reconstruction of fully 

polarized images surpass those of the other two processes, 

reaching 95.95%. This demonstrates the excellent 

performance of the deep learning model in reconstructing 

fully polarized images. 

Table (1). Model evaluation criteria in three different processes 

The type of 

reconstructed images 
MAE MSE UIQI(%) 

Full pol 0.063 0.010 95.95 

Freeman-Durden 0.087 0.022 90.35 

H/α ̅ 0.063 0.010 95.83 

One of the objectives of this research is to reconstruct 

fully polarimetric images from single-polarized VV images. 

The results are presented in Figure 6. In the first row (a) of 

this figure, the original single-polarized VV images are 

displayed. The corresponding fully polarimetric images are 

shown in the second row (b). The third row (c) illustrates the 

reconstructed fully polarimetric images generated by our 

method. Finally, the fourth row (d) highlights the differences 

between the original and reconstructed fully polarimetric 

images. As illustrated in the Figure (6), the reconstruction of 

the fully polarized images stands out compared to the results 

from the other two methods. The reconstructed images 

closely resemble the original images, with minimal 

differences between them. This suggests that image 

reconstruction utilizing deep learning models are highly 

effective, which are often inaccessible in many areas. 

a 

   

b 

   

c 
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d 

   

Figure (6). Reconstruction of fully polarized images 

from single polarized images, a) single polarized images 

(VV), b) full-pol images, c) reconstructed images by 

model, d) difference of original images and reconstructed 

images. 

In interpreting various objects in radar images, fully 

polarized images are crucial, but different decompositions, 

often derived from these fully polarized images, also play a 

significant role. Each decomposition technique excels in 

interpreting specific types of objects, and the choice of 

decomposition depends on the surface characteristics being 

analysed. For this study, we focused on two decompositions, 

H/α and Freeman-Durden, as they have demonstrated 

superior performance in analysing three main land cover 

classes: vegetation, residential areas, and water bodies. The 

visual results demonstrate that the UNet++ deep learning 

model has performed exceptionally well in reconstructing 

images from these two decompositions. A comparison 

between the reconstructed and original images, along with 

an analysis of their differences, reveals a high degree of 

similarity, highlighting the model's effectiveness. 

Figure (7) presents the results of this method in 

reconstructing decomposition features. The first row (a) 

displays the single-polarized VV images used as input data. 

The second row (b) shows the original Freeman-Durden 

feature decomposition images, while the third row (c) 

depicts the reconstructed images. The differences between 

the original and reconstructed images are highlighted in the 

fourth row (d). 

a 

   

b 

   

c 

   

d 

   

Figure (7). Reconstruction of Freeman-Durden 

decomposition images from single polarized images, a) 

single polarized images (VV), b) output of Freeman-

Durden decomposition, c) reconstructed images by 

model, d) difference of original images and 

reconstructed images. 

 

Figure 8 displays the results of image reconstruction for 

H/α feature decomposition. The first row (a) shows the 

monopolarized VV images. The second row (b) presents the 

original H/α decomposition feature images, while the third 

row (c) contains the reconstructed images. The fourth row 

(d) highlights the differences between the original and 

reconstructed images. 

 

a 

   

b 

   

c 

   

d 

   

Figure (8). Reconstruction of H/α ̅decomposition images 

from single polarized images, a) single polarized images 

(VV), b) output of H/α ̅decomposition, c) reconstructed 
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images by model, d) difference of original images and 

reconstructed images. 

The results obtained in this study demonstrate the efficacy 

of deep learning models, such as UNet++, in reconstructing 

fully polarized images or the results derived from 

decomposition algorithms applied to them. This capability 

is particularly significant as it provides a viable method for 

generating fully polarized images from single-polarized 

ones, which addresses the challenge posed by the limited 

availability of fully polarized images. Fully polarized 

images are crucial for in-depth analysis and interpretation of 

terrestrial features, yet they are often less available than 

single-polarized images due to various constraints, 

including acquisition difficulties and the higher complexity 

of the imaging process. By utilizing deep learning models to 

reconstruct these images, this research offers a solution to 

bridge the gap caused by the scarcity of fully polarized 

images. 

The ability to reconstruct fully polarized images enhances 

our understanding and interpretation of various terrestrial 

phenomena. This advancement not only facilitates more 

accurate and comprehensive analyses but also supports more 

effective monitoring and assessment of environmental and 

land cover changes. As fully polarized images become 

increasingly accessible through these reconstruction 

techniques, their importance in providing detailed and 

nuanced insights into the Earth's surface is further 

underscored. 

4. Conclusion 

In this study, we effectively demonstrated the potential of 

deep learning techniques, specifically the UNet++ 

architecture, to convert single-polarized SAR images into 

fully polarized ones. This conversion is essential for 

applications that require fully polarized data but face 

limitations due to the scarcity of such data in various 

geographical regions. For training and testing, we utilized 

the NASA/JPL UAVSAR L-band SAR images, a robust and 

reliable dataset. 

The results of our experiments revealed that the deep 

learning models, including the UNet++ model, were highly 

effective in reconstructing fully polarized SAR images with 

remarkable accuracy. The MAE and MSE values for the 

reconstructed images were consistently below 0.1, 

demonstrating the models' ability to minimize errors during 

the reconstruction process. Additionally, UIQI scores were 

close to 1, further confirming the high quality of the 

reconstructed images compared to the original fully 

polarized images. 

We also extended our approach to the reconstruction of 

PolSAR target decomposition images, specifically the 

Freeman-Durden and H/α decompositions. The models 

achieved similar levels of accuracy, with MAE and MSE 

values again below 0.1, and UIQI scores reflecting a strong 

similarity between the reconstructed and original 

decomposition images. Notably, the model exhibited higher 

accuracy in reconstructing fully polarized and H/α 

decomposition images compared to the Freeman-Durden 

decomposition, indicating its robustness in handling 

different types of PolSAR data. 

In conclusion, the deep learning framework we proposed 

not only improves access to fully polarized SAR data by 

converting single-polarized images but also provides a 

reliable method for reconstructing PolSAR target 

decomposition features. This study lays a solid foundation 

for further research into applying similar techniques to other 

types of SAR data and decomposition features, thereby 

expanding the potential applications of SAR technology in 

remote sensing and earth observation. 
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