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Wetlands are invaluable ecosystems at risk of destruction due to drought. Continuous 

monitoring of drought over the years is crucial for environmental management. Traditional 

mapping methods are expensive and time-consuming. Remote sensing techniques provide a 

more efficient alternative, allowing for the survey of large geographic areas in a short period. 

This research aims to detect drought-affected areas in the Miankale wetland, Mazandaran 

province, Iran, from 2009 to 2021 using a semi-automatic hybrid approach combining multiple 

anomaly detection algorithms. Time series Landsat satellite images were used to identify 

effective drought indicators. Clustering-based methods identified anomalous temporal and 

spatial breakpoints, followed by statistical and machine learning techniques to produce an 

accurate wetland drought map. Evaluation using ground truth images yielded an overall 

accuracy of 97.89% and an F1 Score of 98.91%. This study fills a gap by utilizing anomaly 

detection methods for drought monitoring, presenting a fast and accurate approach that 

leverages the maximum capacity of satellite data and minimizes errors through a combination 

of different methods. 
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1. Introduction  

Natural wetland ecosystems provide not only important 

habitats for many wildlife species but also food for 

migratory and resident animals (Lin et al., 2018). They 

generate a variety of benefits to society and nature, such as 

providing fertile soils for agriculture, food, and habitat for 

shorebirds, generating oxygen, adjusting climate, improving 

water quality, etc. Therefore, they have been regarded as one 

of the most valuable resources in the world (Barbier et al., 

2011). However, the landscapes of wetlands have changed 

or even been lost due to negligent wetland management 

(Gong et al., 2010; Nicholls et al., 1999). Totally, because 

of the increasing population, industrialization, increasing 

dependence on irrigation, infrastructure deficiencies, and the 

inherent high variability of precipitation and discharge; 

water resource scarcity is already common in many regions 

of the world (Thakur et al., 2021). In the context of wetlands, 

drought refers to prolonged periods of insufficient 

precipitation resulting in reduced water levels, which affect 

both the land and water parts of the wetland ecosystem. On 

land, drought can lead to soil moisture depletion, vegetation 

stress, and habitat loss for terrestrial wildlife. In the water 

parts, it can cause reduced water quality, diminished aquatic 

habitats, and a decrease in the overall water volume. 

Therefore, it is crucial to monitor and manage these changes 

to maintain the ecological balance and health of wetlands. 
In any case, considering the importance of the mentioned 

topic, the continuous monitoring of wetlands from different 

perspectives should be the attention of researchers and 

managers in the field of environment. For example, it is very 

important to examine the process of changes in wetlands 

over time. Usually, changes in wetlands are the reduction of 

water volume and droughts that occur over a long period. 

Therefore, continuous monitoring of these changes will be 

very helpful to prevent their loss. In addition to that, in the 

issue of drought, there are various factors involved, whose 

identification can control the process of drought. 
According to the mentioned necessities, several kinds of 

research have been conducted in the direction of wetlands 

drought monitoring. In 2018, Yua et al. presented a study on 

this issue. In their study, Vegetation Temperature Condition 

Index (VTCI) derived from NDVI and LST1 was used to 

observe the drought status of the wetland in the Tumen River 

Basin from 1991 to 2016. For this purpose, the Landsat 

TM/ETM+ data for six periods were used for the analysis 

(Yu et al., 2019). Although the results of this research have 

had good quality, the number of factors considered for 

review was limited. Also, the preparation and pre-

processing of the used time series required a lot of time. In 

2019, Lv et al. focused on the drought in the Xiong'an New 

 

 

 
1 Land Surface Temperature 

Area. The studied period was from 1980 to 2015, for which 

Landsat data was used. Their proposed approach was based 

on three indices NDVI, NDWI, SMMI2, and Z_statistics. 

Their investigation showed a degradation, a slight 

improvement and a degradation trend in the study area, 

respectively (Lv et al., 2019). Li et al. used multiple drought 

indices (DIs), including Percent of Normal (PN), 

Standardized Precipitation Index (SPI), statistical Z-Score, 

and Effective Drought Index (EDI) at 18 different timesteps 

were employed to evaluate the drought condition in Wuyuer 

River Basin, Northeast China. Daily precipitation data for 

50 years (1960–2010) from three meteorological stations 

were used in this study. They found DIs with intermediate 

time steps (7 to 18 months) to have the highest predictive 

values for identifying droughts and DIs showed a better 

similarity in the 12-month timestep. Their results showed 

among all the DIs, EDI exhibited the best correlation with 

other DIs for various timesteps (Li et al., 2019). Research 

had shown that in the field of identifying changes and 

droughts, the use of related indicators has been effective. In 

this regard, using and combining different approaches can 

provide better results. In the following, in 2021, Sarkar et al. 

(Sarkar et al., 2021) made an attempt at spatiotemporal 

change analysis of three floodplain wetlands of Eastern 

India using GIS tools. It was found that the surveyed 

wetlands have reduced in size by 37.20–57.68% coupled 

with a reduction in minimum and maximum depth reported 

from these wetlands. The analysis of data (1985–2018) 

indicated a considerable change in climate with an average 

temperature (1.9 °C) and rainfall anomaly (−698.1 mm) in 

the study area during the year 2018. Therefore, the factors 

used in this research were precipitation and temperature. 

One of the common points of most research is utilizing a 

large volume of remote sensing data in a long time series. 

This issue increases the processing time and, in some cases, 

the implementation of the algorithm faces hardware 

challenges. For this reason, using a web-based cloud system 

such as Google Earth Engine can significantly help to carry 

out research more easily. 

Remote sensing satellite imagery provides long-term 

earth observations, accumulating a large amount of time 

series data and providing a possible means to learn the long-

term spatiotemporal distribution of wetland land cover types 

(Wang et al., 2020). Among various remote sensing data, 

Landsat images providing the large-scale historical and 

current status of natural resources have been widely 

employed for examining long-term wetland dynamics (Ji et 

al., 2018; Ji et al., 2015). Recently, a system called Google 

Earth Engine (GEE) has made it easy to access a huge 

number of different images, including the Landsat satellite. 

Since its official establishment in 2010, Google Earth 

Engine (GEE) has developed rapidly and has played a 

2 Soil Moisture Monitoring Index 
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significant role in the global remote sensing community 

(Pham-Duc et al., 2023). It enables cloud computation and 

is an operative tool for analyzing global geospatial big data 

(Zhao et al., 2021). It also supports more types of geospatial 

data (for example, Sentinel and Landsat data) and provides 

services accessible to all users. GEE is currently the most 

approved cloud computing platform in geoscience studies 

and is broadly used to process data related to a variety of 

fields, including agriculture (Shelestov et al., 2017; 

Teluguntla et al., 2018), water (Huang et al., 2018; Zhou et 

al., 2019), land cover/land use (Zurqani et al., 2018), 

disasters (DeVries et al., 2020), climate change (Hao et al., 

2019), soil (Ivushkin et al., 2019), wetland (Amani et al., 

2019), forest (Bullock et al., 2020) and urbanization (Gong 

et al., 2020) as well as other fields. GEE can provide users 

with public free Earth observation data at the petabyte scale, 

advanced algorithms for analyzing geographic big data, and 

an interactive programming environment. It also hosts long 

time series of Earth observation records and plays a vital role 

in environmental monitoring and analysis (Amani et al., 

2020). For this purpose, in the present research, the 

mentioned system has been utilized to use the high volume 

of data in a time series format for study area monitoring. 

Since wetland drought is an inconsistency in nature, 

anomaly detection algorithms can be used to monitor this 

issue. Anomaly detection is a prominent data analysis 

technique that detects anomalous or abnormal data from a 

given dataset (Ahmed & Mahmood, 2014). Anomalies are 

considered important because they indicate eloquently but 

out of ordinary events and can prompt critical actions to be 

taken in a wide range of application domains (Ahmed et al., 

2016); Anomaly detection algorithms, identifying unusual 

data patterns, are valuable for monitoring inconsistencies 

like wetland droughts. Despite their potential, these 

algorithms are rarely applied in wetland monitoring. This 

research proposes a semi-automatic method combining 

simple and fast anomaly detection algorithms to monitor 

wetland droughts. Key contributions include: 

 A combined method reducing error probability in 

drought monitoring while minimizing user 

intervention and enhancing automation. 

 Inclusion of multivariate remote sensing factors to 

improve drought detection accuracy. 

 Long-term Landsat data for periodic monitoring 

was implemented on the GEE cloud system to 

reduce processing time and hardware needs. 

 Preparation of a ground truth map using Landsat 

and Google Earth images, validated by user 

knowledge. 

According to the items mentioned above, this research is 

divided into different sections, including materials and 

methods, experimental results, discussion, and conclusion. 

 

2. Material and methods 

This section of the research describes the details of the 

various parts of the implementation approach, such as the 

study area, the data used, the proposed approach, and its 

different stages. For this reason, the material and method 

section is divided into three sub-sections, including the 

study area, data, and proposed method. 

2.1. Study area 

      The study area in this research is the Miankale wetland 

located in the southeast extremity of the Caspian Sea in 

Mazandaran province of Iran (52°25′–54°02′E 

longitude and 36°46′–36°53′N latitude), which has 

suffered from a drought crisis in recent years. Its water level 

has decreased due to various reasons, such as climatic 

changes, a decrease in rainfall, human factors, etc. Miankale 

Wetland is one of the most productive ecological harbors in 

West Asia and maybe the world. The elongated wetland is 

48 kilometers (30 miles) long and between 1.3 and 3.2 

kilometers (1,400 and 3,500 yards) wide. The mean annual 

precipitation of this area is about 600 mm, and the region's 

mean annual temperature is 17 °C with a climate ranging 

from warm semi-humid to temperate. The wetland's 

maximum, minimum, and mean elevations are −27, −20, and 

−24 m, respectively (Gholami et al., 2020). An overview of 

the study area can be seen in Fig.1. 

 

 

 

 

 

 

Figure 1. Study area. 

2.2. Data and Pre-processing 

Given that drought occurs over a long period, a compact 

time series is needed. Table 1 describes the time series 

prepared from Landsat satellite images with a spatial 

resolution of 30 meters. 
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Table 1. Dataset preparation. 

Platform Date Number of 

images 

Landsat 5 TM 2009-05-22, 2009-09-

23 

 

23 images 
Landsat 5 TM 2010-05-22, 2010-09-

23 

Landsat 5 TM 2011-05-22, 2011-09-

23 

Landsat 8 OLI 2013-05-22, 2013-09-

23 

 

 

 

 

95 images 

Landsat 8 OLI 2014-05-22, 2014-09-

23 

Landsat 8 OLI 2015-05-22, 2015-09-

23 

Landsat 8 OLI 2016-05-22, 2016-09-

23 

Landsat 8 OLI 2017-05-22, 2017-09-

23 

Landsat 8 OLI 2018-05-22, 2018-09-

23 

Landsat 8 OLI 2019-05-22, 2019-09-

23 

Landsat 8 OLI 2020-05-22, 2020-09-

23 

Landsat 8 OLI 2021-05-22, 2021-09-

23 

The time series consists of 12 years, all of which the 

summer season is considered. In this way, implementations 

are possible under the same conditions for each year. In 

addition, since rainfall does not usually occur in summer, 

this season is better for examining drought. On the other 

hand, instead of Landsat 7 images, Landsat 5 is used to 

prevent further calculation errors. It should be noted that due 

to the use of the GEE platform and Landsat TOA reflectance 

images that have already undergone pre-processing, no other 

corrections have been made, accelerating the process of 

future processing. Fig.2 shows the mean image of each year 

mentioned in the table above. 
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Figure 2. Mean of images in different years 

The accuracy assessment step can be considered one of 

the main steps in developing algorithms and implementing 

various research operations. This action requires having a 

ground truth map so that the accuracy evaluation criteria can 

be estimated with its help. This research provided the ground 

truth map based on images from Landsat and Google Earth. 

This map can be seen in Fig.3. 

 

 

 

 

Class  Color  

Anomaly (Drought)  

Normal (Non-drought)  

Figure 3. Ground truth map 

2.3. Methodology 

     This part presents the proposed approach, which 

ultimately forms a hybrid and semi-automatic method. Fig.4 
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shows the processing flowchart by running the methods for 

detecting anomalies in Google Earth Engine. 

We adopt a comprehensive approach integrating remote 

sensing data and anomaly detection techniques to identify 

drought conditions in the Miankale wetland. The analysis 

spans a time series of Landsat data from 2009 to 2021, 

processed using Google Earth Engine (GEE) for efficient 

image analysis. To assess drought comprehensively, we 

consider multiple factors influencing wetland health: the 

Normalized Difference Vegetation Index (NDVI), Modified 

Normalized Difference Water Index (MNDWI), Land 

Surface Temperature (LST), and Soil Salinity Index (SI). 

NDVI and MNDWI assess vegetation and water dynamics, 

respectively, while LST and SI provide insights into 

temperature and soil conditions affecting both land and 

water areas. The anomaly detection process begins with 

spectral and spatial breakpoint identification. Spatial 

breakpoints are identified using K-means clustering on a 

comprehensive stack of all Landsat data bands. This 

clustering approach categorizes the wetland into distinct 

clusters based on spectral characteristics, identifying areas 

with anomalous behavior indicative of potential drought 

conditions. Subsequently, histograms of time series values 

within each cluster pinpoint temporal breakpoints, marking 

years of significant environmental change. Automatic 

training sample preparation for drought mapping involves 

statistical methods such as Z-score analysis applied to the 

anomalous clusters identified earlier. The Z-score measures 

each factor’s deviation within anomalous clusters from its 

mean, facilitating the selection of training samples that 

accurately represent drought and non-drought conditions. 

We employ a Random Forest classifier on Landsat 8 Top of 

Atmosphere (TOA) Reflectance images to generate the final 

drought map. Random Forest is chosen for its ability to 

handle large datasets with multiple features, robustness 

against overfitting, and high accuracy in classification tasks. 

Training samples derived from the anomaly detection phase 

guide the classifier in delineating drought-affected areas 

within the wetland. To validate the method’s accuracy, the 

resulting drought map is compared against a ground truth 

map prepared using Landsat and Google Earth images. 

Evaluation metrics, including F1 score, overall accuracy, 

and Kappa coefficient, are computed to assess the reliability 

and performance of the classification model. 

In summary, this methodological approach ensures a 

comprehensive assessment of drought conditions in the 

Miankale wetland, addressing both land and water aspects 

crucial for effective wetland management under changing 

environmental conditions. 

In the following, all the steps of the proposed approach are 

described in detail. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 

 

 

 

 

 

 

Figure 4. Proposed method’s flowchart 

2.3.1. Multivariate remote sensing factors 

Many factors cause wetland changes. For example, 

climate change-induced temperature and precipitation 

alterations affect wetland distribution (spatial extent and 

health of wetland areas, indicating how well the wetland is 

maintaining its ecological functions) by changing 

hydrological and biochemical cycles (Junk et al., 2013). Soil 

properties are one of the critical factors in wetland 

distribution (Meng et al., 2020). Research has shown that 

areas with high soil organic matter and low soil salinity are 

more favorable for maintaining healthy wetland ecosystems. 

In addition, anthropogenic activities, like cultivation for 

agricultural land use, are the most influential factors 

attributed to wetland loss (Bolca et al., 2007). In addition, 

these factors often interact with wetland changes 

(McLaughlin & Cohen, 2013), and the dominant factors 

resulting in wetland change are inconsistent during various 

periods (Li et al., 2021; Werkmeister et al., 2018). 

According to the investigations (Ghosh et al., 2018; Hou et 

al., 2020; Walter & Mondal, 2019; Zhang et al., 2021), four 

critical factors have been extracted as the basis of anomaly 

detection from the time series in each year. These factors 

include the Normalized difference vegetation index (NDVI) 

(Jiang et al., 2006), Modified normalized difference water 

index (MNDWI) (Xu, 2006), Land surface temperature 

(LST) (Ermida et al., 2020), and Salinity index (SI) (Aksoy 

et al., 2022), the details of which can be found in the 

references. In the following, processing has been done on 

these factors due to their strong impact on drought detection. 
2.3.2. Spectral and Spatial Breakpoints Detection 

In the second step, it is necessary to identify breakpoints 
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during the existing time series from different years. In terms 

of time, the breakpoint in this study means the years when 

the values of the factors in the region have changed 

drastically. In terms of location, it is also necessary to 

recognize areas with severe changes. At first, spatial 

breakpoints are identified by clustering and image 

processing algorithms. Therefore, the Kmeans clustering 

(Sinaga & Yang, 2020) approach, which can automatically 

classify the image into different clusters, is applied to the 

factors. This clustering is done on a complete stack of all 

data including 44 bands.  
The rationale for using this stack of 44 bands is to: 

 Facilitate Time-Series Analysis: Clustering algorithms 

and anomaly detection methods often require time-series 

data to identify significant changes or anomalies over 

time. By stacking NDVI, MNDWI, LST, and SI for each 

year, the dataset provides a comprehensive temporal 

profile of environmental conditions in the wetland area. 

 Enhance Spatial and Temporal Resolution: Combining 

multiple indices over a long period (11 years) ensures a 

robust dataset with sufficient temporal resolution. This 

allows for more detailed analysis and detection of 

anomalies related to wetland dynamics, such as drought 

events or changes in vegetation and water content. 

After that, on each cluster, a histogram of the time series 

values of the factors was drawn to identify the probability of 

anomalous occurrence from the range of values and the 

intensity of its changes. In this case, the location of the 

anomalies occurring on the clusters is detected. After 

identifying the anomaly in terms of location, the time of 

occurrence of breakpoints will be defined from those 

histograms. Up to this stage, the approximate temporal and 

spatial ranges of the anomaly and drought events have been 

identified, and it is necessary to improve the results. 

2.3.3. Training sample preparation 

To prepare training samples automatically and without 

user intervention, it is not possible to rely only on the results 

of the clustering-based method. Therefore, to increase the 

accuracy of the results and also to ensure the correctness in 

extracting automatic samples, statistical methods were also 

used in this research. In this step, the Z-score of each factor 

in the Anomalous cluster and drought year was calculated. 

Z-score is Another criterion to show the significant 

differences in accuracy between the methods (Tamimi et al., 

2017). It is used to compare each of the optimized methods 

with other basic methods to assess whether the other 

methods significantly differed in terms of accuracy or not. It 

is more appropriate as it also is more precise and sensitive 

(Mushore et al., 2017; Tamimi et al., 2017). McNamar’s chi 

squared is computed as (DeVries et al., 2020):  

𝑍 =
𝑋− μ

σ
                                                                                            (1) 

 X is the value of the observation. 

 μ is the mean of the population. 

 σ is the standard deviation of the population. 

The difference in accuracies was tested at a 95% 

significant level and deemed different if Z > 1.96 (Mushore 

et al., 2017; Tamimi et al., 2017). Next, all the Z-scores were 

aggregated to form a single image. The remaining values in 

the aggregated image will be used to extract samples of 

anomaly and non-anomaly classes for the classification step. 

2.3.4. Drought map generation 

In this research, the type of Random Forest described in 

(Breiman, 2001), which is one of the machine learning 

methods, was considered. The application of machine 

learning in surveying fields related to earth has a history of 

about 7 decades. Machine learning can be defined as the 

ability of computers to recognize patterns without being 

explicitly programmed (Alférez et al., 2022). 
By using the training sample extracted automatically from 

the last step, Random Forest classification is implemented 

on Landsat 8 TOA Reflectance image for identified drought. 

Theoretical results (Breiman, 2001) demonstrate that 

Random Forest do not overfit when more trees are added. In 

addition, Random Forest produces high accuracy for many 

datasets; they can process data with a large number of 

features where each feature is weak, that is, carries a small 

amount of information; they are relatively robust to mixed 

variable types, missing data, outliers, and noisy data; 

constructing Random Forest is relatively fast (faster than 

bagging and boosting). In brief, a Random Forest is a 

classifier that consists of decision trees, each of which 

provides a vote for a certain class. Combining a large 

number of trees in a Random Forest can lead to more reliable 

predictions, while a single decision tree may overfit the data 

(Devetyarov & Nouretdinov, 2010).  

2.3.5. Accuracy assessment  

Validation plays an important role in the performance of 

different algorithms which confirms the accuracy of the 

proposed approach (Vazini Ahghar, 2023). In order to assess 

the proposed method, the classification map can be 

compared against the reference data (ground truth). The 

ground truth map of the region was prepared by the 

researcher from Landsat images at the time of classification 

and with the help of Google Earth images. Then, the 

F1_score, overall accuracy, and Kappa coefficient (De 

Leeuw et al., 2006) and some other assessment criteria can 

be calculated (Kiani et al., 2019). 

3. Experimental Results  

In this section, the output of different implementation 

parts has been presented. Subsections included multivariate 

factors, breakpoint detection, training sample preparation, 

drought map, and accuracy assessment. 
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3.1. Multivariate factors 

First, the various factors estimated for each year are 

shown in Fig.5, 6, 7, and 8. Fig.5 shows the NDVI of each 

year. 
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Figure 5. NDVI images of each year. 

NDVI and its values always ranges from −1 to+1. Thus, 

the value of +1 indicates a high possibility of dense 

vegetation, while the values of NDVI close to Zero mostly 

refers to urbanization and water extent (Abu El-Magd et al., 

2023). In the above pictures, the process of changes and the 

amount of water reduction can be seen to some extent. But 

this index has noises that alone can cause problems in 

clustering performance.   
In the following, MNDWI images of each year are shown 

in Fig.6. 
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Figure 6. MNDWI images of each year. 

MNDWI index has more capability in terms of efficiency 

in identifying water areas. But it seems that it will face 

problems in identifying other classes. For this purpose, the 

soil index, which has received less attention in other 

research, has been used. SI images of each year are shown 

in Fig.7. 
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Figure 7. SI images of each year. 

The SI index has good efficiency in separating and 

displaying the areas that suffered from drought. In addition, 

water areas seem to have a good identification capability.  

In the following, the last factor, LST images of each year are 

shown in Fig.8. 
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Figure 8. LST images of each year. 

Land surface temperature is mainly used for determining 

the surface radiation and the energy exchange. It is also 

essential for determining the dynamics of the earth’s 

surface, which impact-feedback loops that occur over a wide 

range of temporal and spatial scales (Tariq et al., 2020). 
Here, the decrease in precipitation and the increase in 

temperature will accelerate the process of drought in water 

areas. The temperature increases or decreases do not have a 

specific trend over time. But to be more precise, in the above 

time series, an increase in temperature can be seen in the 

drought-affected area. Therefore, this factor will also be 

very effective in identifying drought. 

3.2. Breakpoints detection 

       Breakpoints are identified using a combination of 

clustering and image processing algorithms applied to a 

stack of 44 bands representing NDVI, MNDWI, LST, and 

SI for each year from 2009 to 2021 (excluding 2012). 

Clustering, specifically Kmeans clustering, is employed to 

classify the multi-dimensional data into clusters based on 

spectral similarities. These clusters help identify spatial 

anomalies or areas where significant changes occur. 

Subsequently, temporal breakpoints are determined by 

analyzing the temporal behavior of these clusters over the 

study period. Histograms of the time series values for each 

cluster are examined to pinpoint years with anomalous 

values indicative of potential drought events or other 

significant changes in wetland conditions. 
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It should be noted that according to the environmental 

conditions, the number of land uses in the image, and Trial 

and error, the number of clusters was considered 5. Due to 

the disproportion of the values of the images, normalization 

was done before clustering to set the range of values 

between 0 and 1. Fig.9 shows the result of clustering. 

 

 

 

 

 

 

 

 

Cluster Name  Color 

C0 Agriculture   

C1 Shallow water (low intensity)  

C2 Deep water (high intensity)  

C3 Barren land 1  

C4 Barren land 2  

Figure 9. Clustering result. 

The purpose of implementing the clustering algorithm is 

to identify the anomalies spatially. In general, a cluster that 

has a low density can be identified as an anomalous cluster. 

Also, if the difference in the values of remote sensing factors 

is high in a cluster, then that cluster can be considered an 

anomaly. To check this, the histogram of each factor's values 

has been drawn for each cluster in the time series. A look at 

Fig.10 reveals the histograms of each cluster. 
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Figure 10. Histogram of each factor in different clusters. 

Based on the above histograms, the range of values for 

cluster 1 in all factors is much larger than the others, which 

increases the possibility of anomaly and detection of 

breakpoint location. In the following, the identical 

histograms of cluster 1 are used to identify the time break 

point. 
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Figure 11. Detecting anomalous year. 

As seen in the above figures, in 2019 and 2021, all the 

factors have undergone sudden changes. Therefore, until 

this stage, 2019 is recognized as the first year of drought 

occurrence in the time series. 

3.3. Training sample preparation 

Next, the primary anomaly is calculated using the Z-Score 

technique to generate training data. This section displays the 

results calculated on cluster 1 in 2019 by equation 1. 
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Figure 12. Z_score on each factor for 2019. 

Regarding the above maps, the lighter or darker the color, 

the greater the intensity of the difference in 2019 from the 

time series. The light color indicates the positive direction, 

and the dark color indicates the negative direction of this 

difference. Finally, all the obtained Z_Scores are limited by 

a threshold and aggregated to produce a single image. The 

final result is presented in Fig.13. 
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Figure 13. Aggregated Z_Score. 

Since training samples are very effective in implementing 

supervised classification algorithms, the researcher selects 

training points at this stage on an aggregated Z_Score image. 

In this way, the sample selection process is semi-automatic 

but accurate. Here, the desired classes were divided into 

anomalous (drought) and non-anomalous (other). It should 

be noted that the number of training samples was considered 

very small to retain the automation level. Fig.14 shows these 

training samples. 
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Figure 14. Training samples on Z_Score (2019). 

3.4. Drought maps and accuracy assessment 

Random Forest classification was implemented to 

complete the anomaly detection process in the Miankale 

wetland using the semi-automatic hybrid method. The 

number of trees used in this classification was considered 

100, but it is worth considering that changing this number to 

150 and 200 did not affect the final classified image much. 

Therefore, their unnecessary and repetitive display was 

avoided. Since the applied classification was pixel-based, 

noise-like errors are common in the final map. 

Morphological operations are also performed to remove 

these noises and visually improve the final map. The final 

anomaly map is shown in Fig.15. 
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Figure 15. Final anomaly map. 

Finally, the two drought maps obtained with the proposed 

algorithm were evaluated by the ground truth map in Table 
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2. 

Table 2. Accuracy Assessment 

                     Map  

Criteria    

RF (100 

trees) 

RF (100 trees) 

with morphology 

Overall accuracy 97.75 97.89 

Kappa coefficient 67.21 68.43 

F1_score 98.84 98.91 

Producer 

accuracy 

97.75 97.89 

User accuracy 97.72 97.82 

Commission 

error 

2.27 2.18 

Omission error 2.24 2.11 

As seen from the above table, the results are highly 

accurate for identification, which indicates the high 

efficiency of the proposed method in this research. Also, the 

low impact of the morphology algorithm on the accuracy of 

the initial map can be seen. As mentioned earlier, this 

operation was mainly due to the visual improvement of the 

final map to remove some noise from the pixel-based 

classifier. 

4. Discussion  

In this research, drought areas in one of Iran's most 

important wetlands were identified by analyzing time series 

images. The aim was to develop a simple, fast, and accurate 

method using a cloud processing system—Google Earth 

Engine—that enables swift and effortless image analysis of 

large datasets without the need for powerful hardware. A set 

of Landsat images from 2000 to 2021 during the summer 

season was selected for this purpose. 

In this context, drought is defined as an unusual event 

occurring in the wetland's water zone. Anomaly detection 

methods, seldom used in wetland drought identification, 

were employed to detect these events. Using these methods, 

the time and place of anomalies/drought can be identified 

simultaneously, providing a comprehensive view of the 

subject. 

Given that multiple factors contribute to the drought 

process, several indices were calculated annually: 

vegetation, water, soil salinity, and temperature. The 

selection of these indices was based on their direct impact 

on wetland health and drought conditions: 

1. Vegetation and NDVI: Vegetation health, 

indicated by the Normalized Difference Vegetation 

Index (NDVI), is crucial because it reflects the 

overall ecological status of the wetland. Healthy 

vegetation usually implies adequate water 

availability and good soil conditions. Conversely, 

declining NDVI values may signal water stress or 

drought conditions. 

2. Soil Salinity Index: Soil salinity is included 

because it significantly affects vegetation and 

water quality in wetlands. Research has indicated 

that areas with high soil organic matter and low soil 

salinity are more conducive to robust wetland 

distribution and health. High soil salinity can 

exacerbate drought conditions by reducing soil 

moisture retention and adversely impacting plant 

growth. Thus, monitoring soil salinity helps 

understand how drought conditions are evolving in 

the wetland's land and water zones. 

3. Water Indices: Water indices directly measure the 

presence and extent of water bodies within the 

wetland, directly indicating drought when 

significant reductions are observed. 

4. Temperature Indices: Temperature variations 

affect evaporation rates and water availability, 

which are critical in drought dynamics. 

The integrated analysis of these indices through statistical 

and clustering-based anomaly detection algorithms allowed 

for creating a preliminary drought map of the wetland. This 

map was refined using a machine learning supervised 

classification algorithm, with training samples provided by 

user intervention to ensure high accuracy. The final map, 

evaluated against ground truth data, achieved an accuracy of 

97.89% and an F1 score of 98.91%. 

Despite the robust approach, there are limitations. The 

process remains semi-automatic, with user intervention 

needed for selecting training samples and identifying 

breakpoints. Future research should focus on fully 

automating these steps and incorporating related indices 

such as the Standardized Precipitation Evapotranspiration 

Index (SPEI) to improve anomaly identification. 

Additionally, using deep learning algorithms could further 

enhance the accuracy of the final drought map. 

In conclusion, the combined use of various indices, 

including soil salinity and NDVI, provided a comprehensive 

assessment of drought conditions in the Miankale wetland, 

addressing land and water aspects crucial for understanding 

and managing wetland health under changing climatic 

conditions. 
5. Conclusion 

The importance of preserving and maintaining wetlands 

is always emphasized worldwide as one of the critical 

natural habitats. Due to the trend of temperature changes, 

global warming, and a decrease in precipitation, the drought 

in these areas is increasing rapidly. Therefore, it is essential 

to provide quick and accurate methods to identify sudden 

changes in land use, which can be referred to as anomalies. 

In this research, a hybrid method was proposed that 

combined simple and standard anomaly detection 

algorithms. In addition to simplicity and ease of 

implementation, it is highly accurate in presenting results. 

These methods included clustering-based algorithms, 

statistical methods with light calculations, and classification 

methods, which were used for quick implementation using 

the Google Earth Engine system. This system allowed us to 

use and process many satellite images for a long time series 

in a short time, which is essential for anomaly detection 
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techniques. Finally, the evaluation of the obtained map's 

accuracy shows the presented method's quality. However, 

like other research, there have been some challenges in this 

research that can be improved in future research. For 

example, although an attempt has been made to automate the 

executive process fully, this level of automation has 

decreased in determining the year of the anomaly in the time 

series. In future research, efforts will be made to automate 

this part. In addition, in the Z_score section, techniques 

should be implemented to improve the final aggregated 

image to increase the accuracy of this map and to 

automatically obtain training samples for classification. 

Lastly, using kernel-based methods can greatly improve the 

final map. 
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