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1. Introduction 

For outdoor positioning, GPS can be adopted (Li et al., 

2012; Zhuang et al., 2015). However, GPS signals are 

blocked, weakened, or reflected inside the building 

(Groves, 2015; Huang et al., 2020; Pratama & Hidayat, 

2013). Therefore, other approaches including ultra-

wideband (UWB) (Otim et al., 2020; Zhou et al., 2021), 

Bluetooth (Bencak et al., 2022; Daníş et al., 2021) , and 

WLAN-based (Yang & Shao, 2015)  are adopted for indoor 

positioning. While mentioned techniques require additional 

infrastructure, positioning based on Pedestrian Dead 

Reckoning (PDR) is infrastructure-free (Li et al., 2012; 

Nilsson et al., 2013). Step detection, estimating step length, 

and determining heading are the fundamental components 

of PDR positioning. In the smartphone-based PDR method, 

data are collected from various smartphone-embedded 

sensors including the accelerometer, gyroscope, and 

magnetometer, and the current position is estimated based 

on estimated step lengths, estimated headings, and position 

of the previous step. Step length estimation errors and 
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ABSTRACT 

Indoor positioning is one of the most challenging issues in location-based services. Smartphone-based 

Pedestrian Dead Reckoning (PDR) is commonly used as an indoor positioning system because it does 

not require infrastructure. The positioning estimation errors, however, are cumulatively increased over 

time. In this approach, step length estimation error is one of the main sources of positioning error. In this 

study, to improve indoor positioning accuracy using smartphone-embedded sensors, the pedestrian's 

gender and walking speed are considered effective factors in adjusting the parameters of step length 

estimation methods. Accordingly, collected data are divided into six classes based on walking speed 

(high, medium, low) and gender (female, male). K-Nearest Neighbors (KNN), Support Vector Machine 

(SVM), and Decision Trees (DTree) algorithms are adopted for classification. The classification 

accuracy of each of the KNN, SVM, and DTree algorithms are 93.4%, 92.4%, and 76.6% respectively. 

Moreover, the peak detection method is applied to identify the pedestrian's steps, and Weinberg and 

Ladetto methods are adopted to estimate step length. Step detection accuracy was 99.015%. Also, the 

error of step length estimations using Weinberg and Ladetto methods are 2.48% and 1.95%, 

respectively. In addition, the Extended Kalman Filter (EKF) filter is used for heading estimation, and 

fast walking results in the highest heading estimation error for both males and females. The mean and 

STD of the heading estimation error using EKF algorithms are 2.97 degrees and 2.99 degrees, 

respectively. In the final, the pedestrian's position is estimated according to the PDR method using 

estimated step lengths and estimated headings. Along a 25.8-meter path, using the Weinberg method for 

step length estimation, the average absolute and relative positioning errors are 0.76 and 2.95%, 

respectively. Moreover, using Ladetto s method for step length estimation, the average absolute and 

relative positioning errors are 0.92 and 3.57%, respectively. 
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heading estimation errors are the two main sources of 

positioning error in the PDR method (Munoz Diaz et al., 

2017). Accordingly, since positioning error increase 

cumulatively, positioning accuracy is significantly affected 

by errors with PDR method  (Jin et al., 2011; Woodman, 

2007; Wu et al., 2018). 

A crucial factor in PDR positioning is heading estimation, 

as it contributes significantly to positioning's cumulative 

error. As gyroscope sensors' data contains a high level of 

noise, they can cause significant errors if used for long-term 

heading estimation Therefore, accelerometer and 

magnetometer sensors are also employed to decrease 

heading estimation errors (Metge et al., 2014). In addition, 

Magnetic disturbance can cause considerable errors in 

heading estimation (Li et al., 2021). Accordingly, Various 

methods have been proposed to reduce heading estimation 

errors. Zhao et al. (2019) reduced heading estimation errors 

to less than 4 degrees using the GDA algorithm. Li et al. (Li 

et al., 2021) applied the Kalman filter to decline magnetic 

disturbances. Furthermore, they mitigated the cumulative 

error in positioning resulting from heading estimation by 

employing the Zero Lateral Displacement Update 

optimization technique. In this method, the heading 

estimation and positioning errors were 2 degrees and 2 m, 

respectively. 

Furthermore, the identification of steps plays a crucial 

role in Pedestrian Dead Reckoning (PDR) positioning. 

Numerous techniques utilizing acceleration have been 

suggested, including the thresholds setting, peak 

identification, and correlation analysis. (Jang et al., 2007; 

Sheu et al., 2014). Moreover, step length estimation plays a 

pivotal role in PDR positioning. There are various methods 

for step length estimation including acceleration's integral 

methods, deep learning-based methods, and computational 

models (Luo et al., 2020). The main advantage of 

acceleration's integral methods is that they do not require a 

training process or training data which are collected from 

individuals with distinctive characteristics. However, since 

the smartphone-embedded sensors are not accurate enough, 

acceleration's integral methods do not estimate step lengths 

accurately (Díez et al., 2018). In addition, deep-learning-

based step length estimation methods are applied using 

deep-learning algorithms and various sensor data. The 

major advantage of this method is that it requires one to be 

trained only once. However, requiring a large number of 

training data and complicated implementation are its main 

drawbacks (Gu et al., 2018). 

Many studies have utilized computational models for 

step-length estimation. Ladetto (2000) proposed a method 

using acceleration's frequency and variance to estimate step 

length. In addition, Weinberg (2002) used the steps' 

maximum and minimum acceleration values of the Z-axis 

for step length estimation. Kim et al. (2004) employed an 

approach by utilizing the average acceleration value of 

steps to accurately estimate the length of each individual 

step. Since the methods are not computationally complex, 

they are easy to implement on smartphones. However, these 

methods have several parameters that should be adjusted 

based on different individuals' characteristics and 

movement habits (Díez et al., 2018). Lu et al. (2020) 

developed a fuzzy controller utilizing the fuzzy logic 

algorithm to estimate the coefficient of Weinberg's 

constant, considering various walking speeds. The average 

step length error of five pedestrians was less than 4 m of the 

100 m path. Moreover, Huang et al. (2022) estimated step 

length based on nonlinear regression models of extracted 

features of five phases of the step. The relative error of the 

step length estimation of various walking speeds was less 

than 2%. To improve positioning accuracy, Klein et al. 

(2018) used machine learning algorithms to classify phone-

carrying modes and adjust the step length estimation 

models accordingly. Wu et al. (2021) also identified six 

pedestrian activities using machine learning algorithms and 

adjusted Weinberg's constant coefficient accordingly. The 

average positioning error was 1.79 meters in a multi-story 

building. A movement's speed affects the domain of 

acceleration data, and acceleration data in turn affects the 

step length. Furthermore, since the step length of females 

and males differs, gender should be considered in adjusting 

step length parameters. Khalili et al. (2022) proposed an 

adaptive Pedestrian Dead Reckoning (PDR) approach to 

tackle challenges related to smartphone-carrying modes, 

pedestrian activities, and movement speeds. They utilized 

SVM and DTree algorithms for motion state and walking 

speed identification. However, they did not incorporate 

matching learning algorithms for gender recognition and 

only the Weinberg method was used for step length 

estimation. whereas, this study applies a classification 

technique based on machine learning to effectively 

distinguish between males and females at varying walking 

speeds. Utilizing matching learning algorithms for motion 

recognition, specifically in gender recognition for 

Pedestrian Dead Reckoning (PDR), brings significant 

advantages including increased accuracy, enhanced 

classification of gender-based motion patterns, and superior 

performance compared to methods that do not employ 

matching learning techniques. In addition, step length was 

estimated using Weinberg and Ladetto methods. To 

increase the accuracy of positioning, the step length 

parameters are adjusted based on gender and movement 

speed, since these factors have a significant influence on 

adjusting step length parameters. This paper is organized as 

follows: Section 2 outlines the proposed method and 

associated details. The third section of the paper provides a 

comprehensive overview of the proposed PDR positioning 

algorithm. In the fourth section, the results are presented, 

and suggestions for future research directions are provided. 
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2-Proposed method 

    As shown in Figure (1), This study proposes the PDR 

method, which involves multiple stages. Initially, raw data 

were collected with accelerometer, gyroscope, and 

magnetometer smartphone-embedded sensors. Furthermore, 

to enhance the quality of the signals used in the system, a 

low-pass filter was implemented to eliminate high-

frequency noise from both the acceleration and gyroscope 

signals. Additionally, for accurate magnetometer readings, 

an ellipsoidal model approach was employed for 

magnetometer calibration. Since the pre-processing data 

was insufficient to distinguish one motion mode from other 

modes, time-domain features were extracted from 

acceleration and angular velocity data in each time window. 

In the following, the acceleration-based peak detection 

algorithm, both Weinberg and Ladetto algorithms, and the 

Extended Kalman filter (EKF) (Einicke & White, 1999) 

were applied to step detection, step length estimation, and 

heading estimation, respectively (Goyal et al., 2011). 

Finally, the pedestrian’s position was estimated based on 

the pedestrian’s initial position, estimated step lengths, and 

headings. 

 

 
Figure 1. The proposed PDR system’s structure. 

According to (1) and (2), in the PDR positioning, the 

current pedestrian’s location is determined based on the 

pedestrian's location, estimated step length, and estimated 

heading in the previous step (Deng et al., 2015). 

𝑿𝒊 = 𝑿𝒊−𝟏 + 𝑳𝒊 × 𝒄𝒐𝒔𝜳𝒊                                                 (1) 

𝒀𝒊 = 𝒀𝒊−𝟏 + 𝑳𝒊 × 𝒔𝒊𝒏 𝜳𝒊                                                  (2) 

where 𝑋𝑖  and 𝑌𝑖  are the coordinates representing the 

location of the pedestrian in step I. Also, at step in, 𝐿𝑖 and 

𝛹𝑖  are the length and direction of the pedestrian's 

movement, respectively. The initial location of the 

pedestrian is either pre-set by default or determined by 

scanning QR codes in the building. 

2-1-Data Collection and Calibration 

Data were collected using smartphone-embedded sensors 

including an accelerometer, gyroscope, and magnetometer 

with a sampling rate of 100 samples per second. The 

measured data contained several errors such as bias error 

and random noise. Also, magnetic disturbances caused hard 

iron and soft iron errors in magnetic data. Accordingly, 

since the positioning error increased cumulatively over 

time, the accuracy of the final estimated location decreased. 

Therefore, it was necessary to identify and eliminate the 

errors in measured data. A bias error is a difference between 

measured and actual values, which is one of the errors of 

measured data. The bias error is modeled as matrix b in (3) 

(Jurman et al., 2007; Olivares et al., 2013). 

 

b = [

bx

by

bz

]                                                                           (3) 

where 𝑏𝑥, 𝑏𝑦, and 𝑏𝑧 are the bias values in the x, y, and z-

axis, respectively. A scale factor error also refers to the 

ratio of input to output data in the measured data of 

smartphone sensors. This error is modeled as an SF matrix 

in (4) (Jurman et al., 2007; Olivares et al., 2013). 

 

SF = [

1 + sfx 0 0
0 1 + sfy 0

0 0 1 + sfz

]                                 (4) 

 

where 𝑠𝑓𝑥 , 𝑠𝑓𝑦 , and  𝑠𝑓𝑧 are the scale factor values in the 

x, y, and z axis, respectively. In this measurement data, 

there was also random noise that may be associated with 

sensor characteristics or external factors. To eliminate high-

frequency noise, it was necessary to apply a low-pass filter 

on the data. The low-pass filter (cutoff frequency 5 Hz - 

order 6) was applied to the acceleration data. Besides the 

mentioned errors, undesirable magnetic fields also caused 

hard iron and soft iron errors. The hard iron error appears 

due to the permanent magnetic field and its effects are like 

bias. The soft iron error also appears due to materials that 

affect the magnetic field but does not necessarily create the 

magnetic field itself (Ozyagcilar, 2012). In (5), a 

mathematical model for modeling the magnetic error is 

shown (Olivares et al., 2013; Pylvänäinen, 2008). 

 

hm = A × (h − b)                                                            (5) 
where ℎ and ℎ𝑚 are real and measured magnetic fields, 

respectively. Matrices A and b are also considered for 

modeling soft and hard iron errors, respectively. 

2-2-Data Classification 

The collected data after preprocessing is divided into six 

distinct categories according to pedestrians’ gender (male 

and female) and the pedestrians’ movement speeds (slow, 

medium, and high). During data collecting, pedestrians are 

not advised in advance about which speeds to use, and the 

speeds are determined by their movement habits. Based on 

this classification, six categories including walking at low, 

medium, and high speeds of each gender have been 

considered. Since texting mode is more common than other 
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modes in the indoor environment, this smartphone-carrying 

mode was considered (Figure 2). 

 

Figure 2. Carrying a smartphone in texting mode 

As shown in Figure (3), a smartphone is equipped with a 

variety of sensors such as a light sensor, sound sensor, 

accelerometer, gyroscope, magnetometer, and barometer. 

To carry out this research, three distinct types of sensors 

including an accelerometer, gyroscope, and magnetometer 

were used, and data were collected with a sampling rate of 

100 samples per second. 

 

 

 

 

 

 

 

Figure 3. smartphone’s sensors 

2-2-1- Features Extraction and Classification Algorithm 

For data classification, six categories were considered, 

including walking at low, medium, and high speeds for each 

gender. The pre-processed data is not adequate to 

differentiate between different types of motion. To this end, 

features including the difference of maximum and 

minimum, mean, variance, zero crossing rate, and skewness 

of the acceleration and angular velocity of three x, y, and z 

axis in each time window were extracted. Data were 

classified using the K-Nearest Neighbors (KNN) algorithm 

based on pedestrian movement speeds (low, medium, high) 

and genders (male, female). The KNN algorithm is a 

supervised and non-parametric machine learning technique 

applied for both classification and regression problems. A 

sample is assigned to the closest class based on similarity 

criteria (distance measurement) (Fang et al., 2016). In this 

paper, the KNN algorithm utilizes the Euclidean distance as 

the distance metric, and the value of K is set to 3. The 

accuracy of the KNN algorithm has been compared with 

two other classification algorithms including DTree 

(Elhoushi et al., 2015) and SVM (Martinelli et al., 2017). A 

DTree consists of nodes, specifically leaf nodes and 

decision nodes. Leaf nodes represent decisions and hold the 

classification values, while decision nodes represent 

attributes or class labels. The parameters of the DTree 

model were estimated using the recognized gender of the 

pedestrian and their identified walking speed. The criterion 

parameter was set to Gini to minimize impurity, while the 

maximum depth was limited to five to avoid overfitting.  

SVM is a machine learning algorithm utilized for both 

classification and regression purposes. SVM employs 

different kernel functions to transform input data into a 

higher-dimensional space, enabling the identification of an 

optimal hyperplane that effectively separates data into 

distinct classes. The paper utilizes the radial basis function 

kernel as the chosen kernel function for the SVM. 
 

2-3- Step Detection 

The peak detection method was used to recognize the 

pedestrian’s steps (Jang et al., 2007). In Figure (4), the blue 

points and the blue curves are the peak points and the 

acceleration value, respectively. Three threshold values 

were used to determine the peak and valley acceleration 

points for step detection. The first threshold was the peak 

threshold, and peak points were recognized when 

acceleration values exceeded this threshold. The second 

threshold was the peak-valley threshold, and steps were 

valid if the difference between their peaks and valleys 

exceeded this threshold. Finally, steps were detected if the 

time interval between two consecutive steps exceeded the 

third threshold, which was the time threshold.  

 
Figure 4. Step detection algorithm 

2-4- Step Length Estimation 

Different approaches can be used to calculate the stride 

length of pedestrians. The computational model is one of 

the most popular methods of estimating the pedestrian's step 

length in the PDR. Since the computational model is less 

computationally complex, it is easily implemented on a 

smartphone. The step length computational model's 

parameters can be either set to adjust automatically or 

manually. In this study, an automatic approach was used, 
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and the algorithm was trained using data collected from 

different pedestrians. To increase the accuracy of 

parameters’ adjustment, individuals of various genders, 

heights, and ages have participated to collect training data. 

The parameters of these step length models were modified 

according to the pedestrian’s movement speeds and gender. 

Two computational models based on acceleration were 

used, including Weinberg and Ladetto. In (6) and (7), 

Weinberg (Weinberg, 2002) and Ladetto (Ladetto, 2000) 

step-length models are shown, respectively. 

S = K×√aMax − aMin
4                                                      (6) 

where aMax and aMin are the maximum and minimum 

acceleration during one step, respectively. In addition, K is 

Weinberg models’ parameters. The least squares method 

was also used to adjust K based on the pedestrian's 

characteristics and walking speeds. 

S = P10 × F + 𝑃01 × V + P00                                            (7) 
where F and V are the frequency and variance of 

acceleration during one step, respectively. Also, P00 , 𝑃01, 

and P10 are models’ parameters.  

 
2-5- Heading estimating  

The representation of an orientation or attitude in three-

dimensional space can be expressed with Euler angles and 

quaternions. Euler angles represent an orientation or 

attitude in three-dimensional space using three angles, 

termed yaw, pitch, and roll. The values for the angles are 

derived from the rotation matrix through a sequence of 

three individual rotations. In this paper, the heading was 

estimated using the EKF algorithm based on the quaternion 

rotation. Since Euler angles may cause singularity problems 

and make the heading estimation process more complex, 

quaternion has been used to determine the device's 

orientation. In (8), the normalized quaternion is represented 

with q. 

𝑞 = 𝑞0 + 𝑞1�̂� + 𝑞2�̂� + 𝑞3 �̂�                                             (8)  

where 𝑞0 is the scalar part and 𝑞1, 𝑞2 and 𝑞3 are the 

quaternion vector parts. Collected data, including 

acceleration and angular velocity, were measured in the 

smartphone coordinate system. In (9), the matrix that 

describes the transformation of the smartphone coordinate 

system to the global coordinate system is displayed (Diebel, 

2006). Using (10), the heading can be calculated by 

comparing the rotational matrix derived from the Euler 

angles to the rotational matrix computed from the 

quaternion. 

                                                                                                            (9)  
𝑅𝑁

𝐵

= [

     𝑞0
2 + 𝑞1

2 − 𝑞2
2 − 𝑞3

2 2(𝑞1𝑞2 + 𝑞0𝑞3) 2(𝑞1𝑞3 − 𝑞0𝑞2)

2(𝑞1𝑞2 − 𝑞0𝑞3) 𝑞0
2 − 𝑞1

2 + 𝑞2
2 − 𝑞3

2 2(𝑞0𝑞1 + 𝑞2𝑞3)

2(𝑞1𝑞3 + 𝑞0𝑞2) 2(𝑞2𝑞3 − 𝑞0𝑞1) 𝑞0
2 − 𝑞1

2 − 𝑞2
2 + 𝑞3

2

] 

 

 

𝑦𝑎𝑤 = tan−1 (
2(𝑞2𝑞3−𝑞0𝑞1)

𝑞0
2−𝑞1

2+𝑞2
2−𝑞3

2)                                  (10)           

The acceleration model is shown in (11) [36]. 

𝑞𝑘+1̂ = 𝑞𝑘+1
− + 𝐾𝑘+1(𝑎𝑘+1 − 𝑅𝑁

𝐵(𝑞𝑘+1
− )𝑔 + 𝑒𝑘+1

𝑎 )     (11) 

where the 𝑔 is the gravity vector in the global coordinate 

system, and 𝑎𝑘+1and 𝑒𝑘+1
𝑎  are the acceleration vector and 

the accelerometer’s noise, respectively. Since the equation 

is non-linear, The EKF approach linearizes the right side of 

the equation (11) by calculating the Jacobian matrix. In 

addition, the actual value of 𝑞𝑘+1 is unknown in this 

equation, its value is replaced by its previously estimated 

value, 𝑞𝑘+1
− . Therefore, the estimation model can be 

linearized according to the (12) (Deng et al., 2015). 

𝐻𝑘+1 =
𝜕

𝜕𝑞𝑘+1
𝑎𝑘+1|𝑞𝑘+1=𝑞𝑘+1

−                                           (12) 

Using the EKF approach, heading estimation requires 

calculating posterior state estimation values 𝑞𝑘+1̂ and its 

corresponding covariance matrix 𝑃𝑞
𝑘+1. Therefore, at first, 

the previous state and the related error covariance matrix 

are calculated with (13) and (14) (Deng et al., 2015). 

𝑞𝑘+1
− = 𝐴𝑘𝑞�̂�                                                           (13) 

𝑃𝑞−
𝑘+1 = 𝐴𝑘𝑃𝑞

𝑘𝐴𝑘
𝑇 + 𝑄𝑘                                          (14) 

where 𝑞�̂� and 𝑃𝑞
𝑘  are the posterior state and its covariance 

matrix in the previous step, respectively. Also, 𝑞𝑘+1
−  and 

𝑃𝑞−
𝑘+1 are the previous state estimation and its corresponding 

covariance matrix, respectively. The matrix 𝐴𝑘  and 𝑆(𝑤) 

are also calculated according to the (15) and (16) (Wu et al., 

2018).  

𝐴𝑘 = 𝐼4×4 +
𝑇

2
× 𝑆(𝑤)                                                    (15) 

𝑆(𝑤) =

[
 
 
 
 

0 −𝑤𝑘
𝑥

𝑤𝑘
𝑥 0

𝑤𝑘
𝑦

−𝑤𝑘
𝑧 

𝑤𝑘
𝑧 𝑤𝑘

𝑦

   

−𝑤𝑘
𝑦

−𝑤𝑘
𝑧

𝑤𝑘
𝑧 −𝑤𝑘

𝑦

0 𝑤𝑘
𝑥

−𝑤𝑘
𝑥 0 ]

 
 
 
 

                              (16)        

where wk are the values of the angular velocity of each of 

the X, Y, and Z axis. Also, 𝐼 and 𝑇 are the Identity matrix 

and the period between samples 𝑘 +1 and 𝑘, respectively. 

Then the Kalman coefficient is estimated with (17) (Deng et 

al., 2015). 

𝐾𝑘+1 =
𝑃𝑞−

𝑘+1 𝐻𝑘
𝑇

𝐻𝑘+1𝑃𝑞−
𝑘+1 𝐻𝑘+1

𝑇+𝑅𝑘
                                     (17) 

where 𝑅𝑘 the estimated variance. Then, the posterior state 

𝑞𝑘+1̂ and its corresponding covariance matrix 𝑃𝑞
𝑘+1 are 

estimated with (18) and (19) (Deng et al., 2015). 

𝑞𝑘+1̂ = 𝑞𝑘+1
− + 𝐾𝑘+1(𝑎𝑘+1 − 𝑅𝑁

𝐵(𝑞𝑘+1
− )𝑔)           (18) 

𝑃𝑞
𝑘+1 = 𝑃𝑞−

𝑘+1 − 𝐾𝑘+1𝐻𝑘+1𝑃𝑞−
𝑘+1                               (19) 

After estimating 𝑞𝑘+1̂, the pedestrian’s heading can be 

estimated using (10). 

 

3- Positioning Experiment and Evaluation of Results 
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Raw data were collected with smartphone-embedded 

sensors including an accelerometer, gyroscope, and 

magnetometer for positioning with the PDR method. The 

parameters of the step length models were adjusted based 

on the pedestrians' genders and movement speeds, so 

individuals of different genders, heights, and ages collected 

training data. To this end, 18 females and 14 males 

participated in the data collection. In Table (1), pedestrians' 

age is reported. Also, In Table (2), pedestrians' height is 

reported for both males and females. As shown in Tables 

(1) and (2), individuals with a wide range of ages and 

heights participated in data collection. 

Table 1. Experimenters' age 
Age 15-18 18-24 24-30 30-36 36-46 46-56 

Female 3 7 1 0 4 3 

Male 0 8 1 3 0 2 
 

Table 2. Experimenters' height 
180-190 170-180 160-170 150-160 Height (cm) 

0 2 13 3 Female 

5 8 1 0 Male 
 

3-1- Data Classification 

The combination of six states including two genders 

(female, and male) and three movement speeds (fast, 

normal, and slow) was considered as different states. To 

collect data, 18 females and 14 males walked across low, 

medium, and high speeds. More details about participants 

are reported in Tables (1) and (2). Data were split into two-

second windows (samples) containing two hundred data 

points in each, with a 50% overlap coming from the 

accelerometer and gyroscope sensors. In total, 1443 

samples were collected. For females, 199, 260, and 297 

samples and for males, 206, 240, and 241 samples were 

collected at high, medium, and low speeds, respectively. To 

validate the classification algorithm 5fold Cross Validation 

method was used (Moreno-Torres et al., 2012). The 

accuracy of KNN, SVM, and DTree algorithms is reported 

in Table (3). According to Table (3), the KNN classification 

algorithm with an average accuracy of 93.2% and a 

standard deviation of 0.41%, performed better than the 

other two algorithms. 

Table 3. Comparison accuracy of three classification 

algorithms 
STD Mean  5 4 3 2 1 Method 

0.4% 93.2% 93.2% 93.8% 93.8% 93.2% 93.4% KNN 
0.63% 91/7% 91.7% 91.2% 91.2% 92.1% 92.4% SVM 
0.69% 76.8% 74.9% 76.5% 75.8% 90.2% 76.6% DTree 

The confusion matrix of the KNN classification algorithm 

is reported in Table (4) and the number of samples reported 

in Table (5). In these tables, high, medium, and low 

walking speeds are indicated by F1, F2, and F3 for females, 

and M1, M2, and M3 for males. According to Table (4), the 

data related to categories F1 and M1 were distinguished 

with 100% accuracy. Nevertheless, 3.4% of instances of the 

F2 were misrecognized as the F3. In addition, 2.1% of 

instances of the M1 were misrecognized as the F3. 

Moreover, 6.3% of instances of the M2 were wrongly 

identified as other categories. 

Table 4. Confusion Matrix of KNN classification 

M3 M2 M1 F3 F2 F1 
 

 

0% 0% 0% 0% 0% 100% F1 

0% 0% 0% 3.4% 96.6% 0% F2 

0% 0% 0% 96.6% 3.4% 0% F3 

0% 0% 100% 0% 0% 0% M1 

2.1% 93.8% 2.1% 2.1% 0% 0% M2 

97.9% 0% 0% 2.1% 0% 0% M3 
 

Table 5. Number of samples according confusion matrix 

M3 M2 M1 F3 F2 F1 
 

 

0 0 0 0 0 199 F1 

0 0 0 9 250 0 F2 

0 0 10 287 0 0 F3 

0 0 206 0 0 0 M1 

5 225 5 5 0 0 M2 

236 0 0 5 0 0 M3 
 

3-2- The Implementation of PDR Positioning Algorithms 

Different parts of the PDR method including step 

detection, step length estimation, and heading estimation 

were implemented considering various walking speeds and 

genders to improve the robustness of PDR positioning using 

smartphone-embedded sensors. 
 

3-2-1- Step Detection 

To assess the accuracy of the step detection algorithm, 

three females and three males of different heights, weights 

and ages walked along a 35 m rectangular path at slow, 

normal, and fast speeds. The mean height and age of the 

women were respectively 167.1 ± 4.5 cm and 24.5 ± 3.1 

years, while those of the men were respectively 32.2 ± 4.3 

years and 181.6 ± 7.7 cm. To implement the step detection 

algorithm, the acceleration data collected was processed 

with a low-pass filter (cutoff frequency equal to 5 Hz) and 

the peak detection algorithm was applied. In this method, 

the value of three thresholds including peak threshold, 

peak-valley threshold, and time threshold were 11 m/𝑠2, 1.5 

m/𝑠2, and 0.2 s, respectively. In Table (6), the step 

detection accuracies of males and females are reported and 

the step detection error is less than 2% in all six classes, and 

the average accuracy is 99.015%. 

 

 

Table 6. Step detection accuracy in each class 

Gender Speed Accuracy  

 

Female 

High 99.3% 

Medium 99.3% 
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Slow 99% 

 

Male 

High 99.3% 

Medium 99.4% 

Slow 99.4% 

Average 99.28% ±0.018% 
 

3-2-2- Step Length Estimation 

The parameters of Weinberg and Ladetto s algorithms 

were estimated according to pedestrians' walking speeds 

and their characteristics including gender and height. In 

Table (7), estimated values of the K factor in the Weinberg 

algorithm of various walking speeds are reported. 

According to Table (7), the K coefficient in Weinberg's step 

length model is different for each gender and walking 

speed. The K value increased with walking speed. 

Furthermore, the K value of males was higher than that of 

those of females at the same speed. In Table (8), estimated 

values of the P00, P01, and P02 in the Ladetto algorithm of 

various walking speeds are reported. 

Table 7. Estimated K factor in the Weinberg method 
Gender Speed Estimated K  

 

Female 

High 0.42 

Medium 0.39 

Slow 0.37 

Average 0.393 

 

Male 

High 0.45 

Medium 0.41 

Slow 0.38 

Average 0.414 
 

Table 8. Estimated coefficients in the Ladetto method 

Gender Speed 𝐏𝟎𝟎 𝐏𝟏𝟎 𝐏𝟎𝟏 

 

Female 

High 1.56 -0.407 -0.000195 

Medium 0.37 0.242 -0.00014 

Slow 1.08 -0.312 -0.00016 

 

Male 

High 1.58 -0.529 0.00832 

Medium 1.08 -0.287 0.00078 

Slow 0.91 -0.226 -0.0023 
 

3-3-Positioning Experiments and Evaluation 

The experiments took place at the University of Tehran, 

School of Surveying and Geospatial Engineering in Iran. As 

can be seen in Figure (5), the experimenter moved along a 

25.8 m rectangular path using a Samsung Galaxy S4 at 

three different speeds. To assess the positioning accuracy, a 

group of six individuals was chosen for the experiment 

consisting of three males and three females of varying ages 

and heights. The average age for men was 31.2 years old 

and an average height of 179.4 cm, while the average age 

for women was 27.4 years old and an average height of 

165.9 cm. Also, the initial point of the test was known in 

advance. 

 
Figure 5. Experiment’s 2D plan  

In Table (9), the relative error of step length when 

effective parameters, such as walking speeds and genders, 

were ignored is compared with the proposed method that 

considered these factors. According to Table (9), 

consideration of walking speed and gender improved the 

accuracy of step length estimation. 

Table 9. Comparison of step length estimation error 

considering and ignoring walking speed and gender 

Relative Error of Step Length Step 

Length 

Method 
Without 

Classification (%) 
With Classification (%) 

9.52% 2.48% Weinberg 

9.98% 1.95% Ladetto 
 

Figure (6) shows the relative error of step length 

estimation of the Weinberg model and Ladetto model for 

both males and females at slow, medium, and high walking 

speeds. The mean relative error of the proposed method 

making use of Weinberg's model and Ladetto algorithms 

was 2.48% and 1.95%, respectively. 

 
Figure 6. Comparison of relative error of step length 

estimation of Weinberg and Ladetto methods in different 

walking speeds and genders. 

The mean and STD of the heading estimation error using 

3.61%

2.31%

0.60%

4.18%

4.46%

1.90%

0.61%

1.66%

3.30%

0.45%

2.30%

3.34%

0.00% 1.00% 2.00% 3.00% 4.00% 5.00%
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normal
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fast

normal

slow

Ladetto Weinberg
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the EKF were 2.97 degrees and 2.99 degrees, respectively. 

According to Figure (7), during fast walking, the body 

fluctuates the most, leading to the highest heading 

estimation error of 3.96 degrees. 

 
Figure 7. Heading estimation error of EKF method of 

different walking speeds and genders. 

As shown in Figure (8), walking at high speeds results in 

a higher cumulative error in heading estimation using the 

EKF algorithm, as compared to walking at medium and low 

speeds. 

 

Figure 8. Comparison of the cumulative error of heading 

estimation with the EKF algorithm at different walking 

speeds 

Figure (9) shows the estimated routes of different 

experiments with different walking speeds. As shown in 

Figure (9), in each considered walking speed and gender, 

three estimated paths were close to the designed path. The 

calculated errors for step length, heading, and position 

estimation are shown in Table (10). According to Table 

(10), along a 25.8-meter path, using the Weinberg method 

for step length estimation, the average absolute and relative 

positioning errors were 0.76 and 2.95%, respectively. 

Moreover, using the Ladetto method for step length 

estimation, the average absolute and relative positioning 

errors were 0.92 and 3.57%, respectively.  

 

Table 10. Experiment results on the rectangular path 

Method Gender Speed Step Length Heading Estimation Position Estimation 

Relative Error Mean STD Absolute Error Relative Error 

 

 

 

Weinberg 

Female Fast 3.61% 3 3.1 0.93 3.59% 

Medium 2.31% 3.04 4.35 0.81 3.15% 

Slow 0.6% 2.4 2.1 0.9 3.51% 

Male Fast 4.18% 5.47 3.72 0.41 1.58% 

Medium 4.46% 2.85 2.73 1.05 4.06% 

Slow 1.9% 2.25 2.03 0.46 1.8% 

Average 2.48% 3.17 3 0.76 2.95% 

 

 

 

Ladetto 

Female Fast 0.61% 3 3.1 0.63 2.44% 

Medium 1.66% 3.17 4.34 1.04 4.01% 

Slow 3.3% 2.4 2.1 1.27 4.87% 

Male Fast 0.45% 5.47 3.72 1.19 4.58% 

Medium 2.3% 2.89 2.73 1.11 4.26% 

Slow 3.34% 2.25 2.03 0.33 1.29% 

Average 1.95% 3.21 3 0.92 3.57% 

 

 

2.79 2.63
2.35

3.96

2.82

2.34

Fast Normal Slow

male

female
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b) Fast walking (female) a) Fast walking (male) 

  
d) Normal walking (female) c) Normal walking (male) 

  
f) Slow Walking (female) e) Slow Walking (male) 

Figure 9. Estimated paths of various speeds and genders 

 

4- Conclusion    
 

In this paper, the step length model parameters were 

calculated based on different variables such as pedestrians' 

walking speeds and genders to increase the accuracy of step 

length estimation. This strategy consisted of two primary 

components, data classification, and estimation of PDR 

parameters. Accordingly, data were divided into six 

categories based on speed (high, medium, low) and gender 

(female, male). Additionally, K-Nearest Neighbor was 

utilized for determining the pedestrian's walking speeds and 

gender with an overall classification accuracy of 93.2%. In 

addition, Weinberg and Ladetto algorithms were utilized for 

step-length estimation. According to the experimental 

result, the values of the parameters associated with the step 

length model increased as the walking speed increased, and 

these parameters were greater for males than for females. 

The step length estimating errors of the Weinberg method 

and Ladetto method were 2.48% and 1.95% respectively. In 

addition, for heading estimation, the EKF was used. The 

position was calculated by utilizing the estimated heading 

and step length, and it was determined that the average 

positioning error was 2/95%. This study demonstrates the 

significant impact of considering gender and walking speed 

on step length estimation and indoor positioning accuracy. 
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