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ABSTRACT 

Corn and soybeans are crucial crops for feeding the world's population, and it is essential to monitor and 

map these fields for effective agricultural planning. With recent advancements in remote sensing 

technology and deep learning algorithms, more intelligent management of these crops has become 

possible. In this paper, we compare modern deep learning (DL) architectures for mapping corn and 

soybean crops in the state of Iowa, in United States of America (USA), using temporal Landsat 8 (OLI) 

images. Our analysis focuses on the performance of six different DL networks, namely 1-D CNN, 1-D 

CNN-LSTM, 2-D UNet, 2D UNet 3+, 2D Attention UNet, and 2D Recurrent Residual UNet. For each 

network, we use time-series Normalized Difference Vegetation Index (NDVI) data derived from Landsat 

8 images taken between April and November 2020 as input, while ground truth labels are taken from the 

United States Department of Agriculture (USDA). Our experimental results show that the 2-D Recurrent 

Residual U-net model achieved the highest accuracy for identifying corn and soybean classes, with an F-

score of 92.85. This indicates the model's ability to distinguish complex features and patterns with similar 

spectral characteristics from multi-temporal remote sensing data. Conversely, the CNN and CNN-LSTM 

models had the worst performance among the considered models, with an F-score of about 89.50. 

Nevertheless, all the DL methods examined in this study achieved acceptable classification kappa 

coefficients (above 82%), indicating their significant potential for accurately mapping and monitoring 

Corn and Soybean crops. 
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1. Introduction 

Corn and soybean production in the United States of 

America (USA) holds tremendous significance as these crops 

serve as vital sources of energy, protein, and oil, accounting 

for a third of the global production, and they are primary 

types of summer crops in the central States (Zhong et al, 

2016). Understanding the spatial distribution of corn and 

soybean planting areas is critical in different aspects (e.g., 

food security and environmental monitoring) since corn has 

high water use, while soybeans have the ability to fix 

nitrogen (Zhong et al, 2014). Therefore, accurate monitoring 

of corn and soybean crops are necessary not only for USA, 

but also for all of the countries on the worlds (McNairn et al, 

2014).  

In recent years, due to technological advancements and 

the increased availability of open-access Remote Sensing 

(RS) data acquired from space/airborne sensors with 

varying characteristics (e.g., spectral, spatial, temporal, and 

radiometric resolutions) (Moghimi et al, 2021a, Amani et al., 

2020), RS technology has been viewed as an efficient 

solution for overcoming the challenges of costly traditional 

crop field mapping. Moreover, variety of space-borne RS 

variety of images including optical (Landsat, Sentinel-2, etc.) 

and radar images (e.g., Sentinel-1), can be used to deal with 

economic and social challenges caused by supply, demand, 

and a food crisis by providing information such as 

agricultural area, crop types, crop rotation dynamics, and so 

on (Zhong et al, 2014).  

Multitemporal maps of Vegetation Indices (VIs) (e.g., the 

Normalized Difference Vegetation Index (NDVI), Enhanced 
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Vegetation Index (EVI), Soil Adjusted Vegetation Index 

(SAVI), Transformed Vegetation Index (TVI) and so on) 

derived from Optical RS images widely used for crop 

mapping using researchers. Based on these indices crops can 

be mapped through phenology analysis and/or Machine 

Learning (ML)-based methods. For example, Land Surface 

Phenology (LSP) extracted from multitemporal vegetation 

indicator maps is widely used to track biological events in 

response to climatic conditions. This involves analyzing 

varying values of vegetation indices during different stages 

of crop growth, such as the beginning and end of the growing 

season, the maximum value of the vegetation index, and the 

length of the growing season (Fathi, & Shah-Hosseini, 

2021). 

Random Forest (RF) and Decision Tree (DT) classifier as 

the traditional ML classifiers have been frequently used for 

crop mapping and monitoring. For example, the RF 

algorithm has been applied on the MODerate-resolution 

Imaging Spectroradiometer (MODIS) reflectance product to 

separate corn and soybeans based on the best features by Liu 

et al, 2019. Zhong et al, 2016 used the DT classifier to map 

corn and soybeans using extracted phenology from the 

surface reflectance of the shortwave infrared band of the 

Time series MODIS reflectance product (MCD43A4). 

McNairn et al, 2014 also proposed using TerraSAR-X and 

RADARSAT-2, along with a DT classifier, for early season 

monitoring of corn and soybeans.  

Some studies have used various input features, such as 

spectral features at imaging dates, phenological metrics 

derived from EVI time series, accumulated temperature 

during phenological stages, and features derived from 

Landsat, Sentinel-2, and SRTM+ data (Paludo et al, 2020; 

Zhong et al, 2014, Zhong et al, 2016).  

In recent years, deep learning algorithms such as hybrid 

CNN-RF, LSTM-RNN and DeepCropMapping have been 

developed for crop field monitoring and mapping (Yang et 

al, 2020, Sun et al, 2019; Xu et al, 2020). These methods take 

advantage of the temporal patterns of crops across image 

time series to improve accuracy and reduce complexity. For 

instance, Xu et al, 2020 used six optical bands of Landsat as 

input features for DeepCropMapping, which is based on a 

long short-term memory (LSTM) structure with attention 

mechanisms. 

Although the DL models have shown promising results for 

corn and soybean crop mapping, they still face challenges 

due to inter-annual variations. These variations include 

changes in imaging dates, climate changes, cloud cover, 

phenological variation, and other factors that can make 

trained classification models for a specific year unusable for 

other years. Creating a spatially generalizable model due to 

the spatial heterogeneity of weather conditions, topographic 

features, and phenological diversity can be also another 

challenge.  

To overcome the challenges mentioned earlier, it is 

recommended to train classification models for multiple 

years or use phenological metrics. Furthermore, to 

determine the methods that perform well despite these 

challenges, a comparison of the performance of various DL 

models for crop and soybean mapping using time series 

vegetation indices is required. 

To address these issues, this study aims to compare the 

performance of six different DL networks, including 1-D 

CNN, 1-D CNN-LSTM, 2-D UNet, 2D UNet 3+, 2D Attention 

UNet, and 2D Recurrent Residual UNet, for mapping 

soybean and corn fields. The study will extract the NDVI 

index from time series Landsat 8 images and assess the 

performance of the models under the influence of inter-

annual variations, spatial heterogeneity of weather 

conditions, topographic features, and phenological diversity. 

By comparing the results of different DL models, this study 

hopes to provide insights into the best approaches for 

accurately mapping crops, which could have important 

implications for agriculture and food security. 

2. The studied area and material 

2.1. Study area 

The study covers a total of seven counties in Iowa State, 

including Hamilton, Hardin, Boone, Story, Dallas, Polk, and 

Jasper. The research regions that were considered for the 

investigation are shown in Figure 1. 

2.2. Dataset 

    Landsat-8 OLI images were used in this study to map 

crops. Since corn and soybeans are typically planted in April 

and May, and harvested in September and November, cloud-

free images from March to November were utilized. It is 

essential to perform radiometric normalization prior to 

processing and analyzing multitemporal remote sensing 

images (Moghimi et al, 2021b). There is two type of 

radiometric correction methods: absolute and relative 

approaches (Moghimi et al, 2022a, Moghimi et al, 2022b). 

In this study, as we want to preserve the characteristics of 

vegitataion per each image, an absolute radiometric 

correction was used to radiometricaly calibrate each of 

multitemporal Landsat-8 images. In the next step, derived 

spectral bands and VIs from pre-processed Landsat-8 

images (i.e., listed in Table 1) were used as inputs for 

considered DL models to map corn and soybean fields. 

2.2.1. Feature selection 

The Landsat-8 multi-temporal images were used to derive 

the NDVI Index (i.e., NDVI=(NIR-RED)/(NIR+RED)), 

which was the feature used for the research. Using NDVI 

multi-temporal indices, it enables us to reconstruct a 

chronology of crop production (Ramadhani et al, 2020). The 

extracted phenology curves for corn and soybean fields 

during the planting season are shown in Figure 2. We next 
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assessed the mapping of corn and soybean fields using six 

alternative networks. 

Table 1. The date of considered Landsat-8 images from 

study area 

Number Acquisition Date 

1 2020/03/04 

2 2020/04/21 

3 2020/06/08 

4 2020/07/10 

5 2020/08/11 

6 2020/09/03 

7 2020/10/30 

8 2020/11/22 

2.2.2. Ground truth 

The ground truth map (Cropland Data Layer) with spatial 

resolution 30 m was retrieved from USDA. Prior to 2006, 

crop fields were categorized using Landsat TM/ETM 

satellites and the Maximum Likelihood classifier algorithm. 

However starting in 2006, the USDA employed the Decision 

Tree approach to categorize agricultural areas using the 

Landsat 8 sensor, the Disaster Monitoring Constellation 

DEIMOS-1, UK2, ISRO ResourceSat-2 LISS-3, and the ESA 

Sentinel-2 A/B sensors. Since satellite imagery and polygon 

reference data were not georeferenced with the same level of 

precision in the past (i.e., everything "stacked" less 

perfectly), the training and validation data used to calculate 

and assess classification accuracy had to be spatially 

conservative and eliminate spectrally-mixed pixels at land 

cover boundaries. The accuracy evaluations as they have 

been provided are slightly exaggerated since buffered data 

is utilized for accuracy assessment, which implies that the 

edge pixels are not evaluated entirely with the rest of the 

classification. The kappa coefficient for corn and soybean 

fields in 2020 (respectively) is 97% and 88.9%, according 

to the error matrix supplied for the state of Iowa (Fathi & 

Shah-Hosseini, 2023). The ground truth map is shown in 

Figure 1. 

 

 
Figure 1. Study Area Overview. a) United States of America. b) Study area. c) Cropland Data Layer (CDL). 
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Figure 2. Extracted phenology curve of NDVI multi-

temporal index for corn and soybean fields. 

3. Method 

For the automated mapping of corn and soybean fields in 

the state of Iowa, we used optical images from Landsat-8 in 

this research to compare some DL architectures. As 

discussed before, multitemporal NDVI indices retrieved from 

Landsat-8 images was utilized as input to map corn and 

soybean fields using U-net, Attention U-net, Recurrent 

Residual UNet, and UNet 3+, 1D CNN and 1D CNN-LSTM 

networks. The ideal classification technique was chosen for 

mapping corn and soybean fields after the analysis of the 

confusion matrix. Figures 3–4 depict the method's flowchart 

and the network design. 

 
Figure 3. Flowchart of the proposed method. 

3.1. Convolution Neural Network 

The convolution neural network has four parts: a 

convolution layer, a pooling layer, an activation function, 

and a fully connected layer. The input for the convolution 

layer is an image with r feature band of size m*n. The input 

feature layer and output feature layer are concatenated by a 

K filter with a size of l*l*q in the convolution layer. The layer 

convolution output of the feature layer (X) with weight W and 

bias b is shown by the formula Z=W*X + b. The activation 

function (a=f(Z)) is a nonlinear function that applies to Z. 

Considering that the feature dimensions are large, a pooling 

layer (like max-pooling) is employed to lower the feature 

dimensions after the convolution layer in order to avoid over 

fitting. The dense layer, which is the last layer of the CNN 

network and is completely linked, connects every neuron to 

every output node from the layers before it (Indolia et al, 

2018). 

3.2. CNN-LSTM Network 

The CNN-LSTM network combines the CNN and LSTM 

networks. An input gate, a forget gate, and an output gate 

make up an LSTM. LSTM permits memorization of the 

context information in sequence data over a lengthy time 

period. The input vector, the output from the previous cell, 

the current cell's output, the memory value from the values 

cell, the forget gate (a neural network with sigmoid 

activation function), the candidate date (a neural network 

with tanh activation function), the input gate (a neural 

network with sigmoid activation function), and the output 

gate (a neural network with sigmoid activation function) 

make up each LSTM cell (Rawat et al, 2021). 

3.3. UNet Network 

UNet design comprises of an encoder and a decoder 

elements and effectively utilized in numerous image 

processing applications. The input image is downsampled by 

a succession of convolutional and pooling layers that make 

up the encoder, while an upsampling and convolutional layer 

sequence creates a segmentation map in the decoder. The 

UNet architecture's ability to enable the smooth transfer of 

high-level information learnt during the encoding step to the 

decoding stage is one of its benefits (Ronneberger et al, 

2015). 

3.4. RR-UNet Network 

Recurrent Residual U-Net combines the power of both 

residual connections and recurrent neural networks (RNNs). 

The RRU-Net architecture has a similar structure to the U-

Net, with encoder and decoder parts that are connected by 

skip connections. Recurrent connections between the layers 

are included into RRU-Net, which enables the model to 

maintain temporal information. Moreover, RRU-Net 

employs residual connections rather than recurrent ones, 

which helps to solve the vanishing gradient issue and enables 

training to complete more quickly (Alom et al, 2018). 

3.5. Attention-UNet Network 

Layers of Attnention-UNet are commonly referred to be 

soft attention gates. This layer extracts spatial data from 

detailed feature maps. The information is then included in 

the decoding stage. The inputs to the attention gate consist 

of two vectors: vector x, which undergoes a strided 
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convolution, and vector g, which is obtained from the 

network's next-lowest layer and undergoes a 1x1 

convolution. Aligned weights increase in size as a 

consequence of the sum of the x and g vectors. Result vector's 

dimensions are reduced after it passes through a ReLU 

activation layer and a 1x1 convolution. The attention 

coefficients (weights) are created by scaling this vector 

between the [0, 1] range, with coefficients closer to 1 

denoting more relevant information (ReLU was used in our 

work). Trilinear interpolation is used to upsample attention 

coefficients to the x vector's original dimensions. The initial 

x vector is multiplied by the attention coefficients, and the 

result vector is handed along in the skip connection (Oktay 

et al, 2018). 

3.6. UNet 3+ Network 

The UNet 3+ architecture has several parts such as the 

encoder, the decoder, and the skip connections allow the 

decoder to access information from the corresponding layers 

in the encoder. This helps to preserve fine-grained details 

during upsampling and allows the network to better handle 

objects of different sizes and shapes. Thus, UNet 3+ 

combines the multi-scale features by re-designing skip 

connections as well as utilizing a full scale deep supervision, 

which provides fewer parameters (Huang et al, 2020).  

 

 

(a) 1D CNN-LSTM (b) 1D CNN 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) 2D UNet 

 

 

(d) 2D UNet 3+ 
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(e) 2D Attention UNet 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(f) 2D Recurrent Residual UNet 

 

 

Figure 4. Architecture of proposed networks. 
 

 

4. Results 

According to Table 1, NDVI multi temporal index is 

calculated by using Landsat-8 multi temporal images as 

input networks. We use from image patches with the size of 

256˟256˟8 as input for each of the networks. In this study, 

1773936 and 368890 number pixels were selected to train 

and test the networks, respectively (Table 2).  

Table 2. The number of used patches/pixels for training 

and test of each class. 

The number 

of patches 

The number of pixels 

for Soybean class 

The number of 

pixels for corn class 

35 686077 1087859 

7 130485 238405 

According to Fjgure 4, the common part of network 

architecture is divided into two phases: encoding and 

decoding. The encoding step included a convolution block, a 

ReLU activation function, max pooling, and downsampling 

(the number of feature channels is doubled). The decoding 

step comprises of an up-sampling of the feature map, 

convolution for half the number of feature map (up-

convolution), a concatenation, convolution block, and ReLU 

activation function. Finally, a 1*1 layer convolution is 

utilized with the required number of classes (Ronneberger et 

al., 2015). Dropout is used to minimize overfitting and build 

various topologies by randomly eliminating neurons (Garbin 

et al., 2020). Batch Normalization is used to maintain the 

distribution of each layer's input values and to accelerate 

learning (Garbin et al.,2020). The decoding phase had five 

layers: a 2D Convolution block, a ReLU activation function, 

a Batch Normalization layer, and a max-pooling layer. The 

number of filters in each layer of the decoding step was 16, 

32, 64, 128, and 256, respectively. The decoding phase also 

included four layers: a 2D Convolution block, a ReLU 

activation function, a Batch Normalization layer, and an up-

sampling layer. The number of filters in each stage of the 

decoding step was 128, 64, 32, and 16, respectively.  
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Table 3. Results by UNet family networks, CNN, and CNN-LSTM. (green-best results, red-worst results) 

Method Metric Soybean Corn Total Time 

CNN 

OA 92.90 91.18 92.04 

22m 29s 
Kappa 82.49 82.20 82.35 

Recall 86.4 93.30 89.67 

F-score 87.47 91.19 89.33 

CNN-LSTM 

OA 93.20 91.29 92.25 

2h 30m 
Kappa 83.14 82.42 82.78 

Recall 87.31 92.54 89.93 

F-score 87.89 91.40 89.64 

Attention-UNet 

 

OA 95.19 93.17 94.48 

23m 51s 
Kappa 87.99 87.41 87.70 

Recall 91.37 94.99 93.18 

F-score 91.34 93.88 92.61 

UNet 3plus 

OA 94.22 92.71 93.46 

1h 52m 
Kappa 85.59 85.28 85.37 

Recall 90.67 93.33 92.00 

F-score 89.46 92.85 91.15 

RR-UNet 

 

OA 95.37 93.90 94.63 

1h 11m 19s 
Kappa 88.46 87.66 88.06 

Recall 91.73 95.00 93.33 

F-score 91.69 94.00 92.85 

UNet 

 

OA 94.94 93.45 94.19 

31m 23s 
Kappa 87.33 86.77 87.05 

Recall 91.66 94.67 93.16 

F-score 90.85 93.56 92.21 
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Figure 5. Accuracy and Loss curves for the six architectures used in the training phase. 

After the decoding phase, the last layer included a 2D 

Convolution and Softmax activation function. Ultimately, the 

category Entropy loss function is utilized to determine weight 

and bias parameters, and the network is trained using the 

ADAM method. In the final model, the batch size was 5 and 

the number of epochs was 100. In this work, the callback 

function was employed to regulate the loss function with a 

learning rate of 0.002. 

The UNet family was compared to the CNN and CNN-

LSTM models. The suggested 1D-CNN model consists of 

three 1-D convolution layers with 32, 64, and 128 neurons, 

a ReLU activation function, a Dropout layer with a rate of 

0.5, and a fully connected (Dense layer) with a softmax 

activation function. The suggested 1-D CNN-LSTM model 

has three 1-D convolution layers with 32, 64, and 128 

neurons, as well as LSTM layers with 64, 128, 256 neurons, 

a ReLU activation function, a Dropout layer with a rate of 

0.5, and a fully connected (Dense layer) with a softmax 

activation function. Table 3 displays the categorization 

findings for two types of corn and soybean. Figure 5 depicts 

the accuracy and loss curves for the six architectures with 

kernel size 3×3 using training datasets. Figure 6 shows the 

maps generated by six distinct architectures for test images. 

5. Discussion 

To map crop fields at the state and county level, remote 

sensing methods and deep learning algorithms have been 

suggested. Optical and radar sensors are employed to map 

agricultural lands. The primary obstacles to mapping crop 

fields are (1) the cloud in optical views, (2) the inability to 

recognize tiny crop fields, (3) the poor accuracy of mapping 

crop fields using radar images relative to optical images, 

and (4) the spectral similarity of crop classes (Fathi & Shah-

Hosseini, 2021). To map agricultural fields, machine 

learning and deep learning algorithms are used. Since high-

level characteristics are derived from spectral bands and 

indices, deep learning techniques are more accurate than 

machine learning approaches. (Fathi & Shah-Hosseini, 

2021). Machine learning and deep learning algorithms are 

used to map crop fields. Deep learning techniques are more 

accurate than machine learning methods due to the 

extraction of high-level characteristics from spectral bands 

and indices by deep learning algorithms. Using deep 

learning algorithms with phenological factors, the accuracy 

of mapping agricultural fields is enhanced. 
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According to Figure 6, the primary issue with mapping 

crop fields using 1D CNN and 1D CNN-LSTM is the inability 

to recognize crop field edge pixels and the lack of class 

separation in some portions. Unet family networks might be 

used as a means of resolving this difficulty. In this research, 

we mapped corn and soybean fields using UNet, UNet 3+, 

Attention UNet, and Recurrent Residual UNet networks. 

UNet 3+ incorporates skip-connections across several 

resolutions and densely linked convolutional blocks, in 

compared to UNet. UNet 3+ is more sophisticated than 

UNet, resulting in a longer training period but fewer 

parameters than UNet. In our research, full-scale 

aggregated feature maps have eighty channels. In this 

investigation, UNet 3+ had the lowest accuracy, kappa, 

recall, and f-score. Compared to UNet, Attention UNet has 

an extra attention module that prioritizes more relevant 

characteristics during encoding and decoding. Since the 

architecture of the Internet is increasingly complicated, it 

requires more memory. In terms of precision, kappa, recall, 

and f-score, Attention UNet performed better than UNet and 

UNet 3+. Attention UNet was quicker than three other UNet 

in terms of speed. In this study, the ReLU function was used 

to gate attention. Recurrent Residual UNet employs a mix of 

recurrent and residual neural network blocks (RRNN) to 

enhance the performance of picture categorization in 

comparison to UNet. The recurrent blocks aid in capturing 

long-range relationships in a picture, while the residual 

blocks address the issue of gradients that disappear. 

Recurrent Residual UNet had the greatest accuracy in this 

investigation. Recurrent Residual UNet is slower than 

Attention UNet and UNet, but quicker than UNet 3+. 

Recurrent Residual UNet has the most stringent settings 

compared to the other three UNet networks. Table 4 lists the 

number of network parameter values. Thus, according to 

Tables 4, the Recurrent Residual UNet network had the 

highest accuracy (94.63), kappa (88.06), recall (93.33), 

and f-score (92.85). Among the UNet family, the Recurrent 

Residual UNet network has the most parameters. Attention 

UNet was the fastest network in the UNet family (23m 51s). 

The UNet 3+ network showed the lowest accuracies (93.46), 

kappa (85.37), recall (92.00), and f-score (91.15). UNet 3+ 

was the slowest of the UNet series of networks (1h 52m). 

According to Table 4, UNet 3+ had the fewest parameters 

(1.6 M), whereas Recurrent Residual UNet had the most (6.3 

M). 

Table 4. The number of network parameters 

Method Parameter Number 

CNN 32,995 

CNN-LSTM 581,091 

UNet 2,164,595 

UNet 3+ 1,638,515 

Attention UNet 2,000,799 

Recurrent Residual UNet 6,391,699 

 

6. Conclusions 

This research was conducted to evaluate the performance 

of different deep learning models in distinguishing between 

soybean and corn fields. The models that were tested 

included UNet, UNet 3+, Attention UNet, Recurrent 

Residual UNet, 1D CNN, and 1D CNN-LSTM. The 

experimental results showed that the Recurrent Residual 

UNet model performed the best in accurately identifying 

soybean and corn fields, with Kappa values of 88.46% and 

87.66%, respectively. This means that the model had a very 

high level of agreement with human raters in identifying the 

correct crop type.  
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Figure 6. Generated maps by six different architectures (Green=corn and Blue=soybean). (a) CNN, (b) CNN-LSTM, (c) 

UNet, (d) UNet 3plus, (e) Attention UNet, (f) Recurrent Residual UNet, and (g) ground truth. 

 

 

The study also found that the 2D Recurrent Residual UNet 

network was particularly effective in mapping multiple crop 

varieties. This is significant because it suggests that deep 

learning models could potentially be used to distinguish 

between different types of crops and map them accurately, 

which could be beneficial for agricultural research and 

management. Overall, this research highlights the potential 

of using advanced deep learning models for crop 

classification and mapping, which could have important 

implications for improving agricultural efficiency and 

sustainability. 
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