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ABSTRACT 

Numerous variables, including vehicle volume, road width, on-street parking, and border parking, can all 

affect the amount of time a vehicle travels on a given route. While these factors have varying effects, they 

are typically considered invariant across all segments of a route. None of the previous studies considered 

an area where these factors could exert influence. In this paper, a new model named "weighted BPR" is 

proposed that considers an effective area in for each factor where the vehicle’s speed changes. These 

areas are incorporated in the model using some weights. True travel times across many streets are then 

used to estimate the model weights. Provided that we know which factors are present in a route, we can, 

then, estimate how long it would take for a vehicle to travel through the route. In addition to estimating 

the travel time, such model can be used to guide city planners how new structures affect the travel time in 

cities.  Due to the large number of such factors, this research examines only three: bus stops, crosswalks, 

and speed bumps. To estimate the weight The prototype was evaluated on 37 distinct sections of Tehran's 

streets. The results indicated that the estimated travel time using the developed model is more precise than 

that computed using conventional methods. Experiments demonstrated that the technique developed in 

this paper can estimate the travel time with an accuracy of 2.93 to 3.27 minutes while this value computed 

by the model developed by national traffic experts ranges between 7.8 to 23.09 minutes. 
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1. Introduction 

Travel time estimation in urban streets is a very important 

task that is used in several applications including 

optimization of driving sign locations, road design, 

development of intelligent transportation systems and traffic 

management plans. Different models are available in the 

literature, most important of which are Neural Network 

Based (Fu et.al., 2020, Ye et.al, 2022, Jin et.al, 2022, Fang 

et.al 2022), multi-task learning model (Xu et.al., 2020), 

Lagrangian-Space based (Yang 2020), feed-forward network 

based (Sun et.al., 2021), copula-based (Chen et.al., 2019), 

tensor-based bayesian probabilistic model (Tang   

et.al., 2018), incomplete traffic data method (Tani et.al., 

2020), cellular network signaling (Gundlegård & Karlsson  

2020), artificial neural network (Amita et.al., 2015), 

maximum likelihood (Leurent et.al., 2020), consideration of 

link geometry (Yoon 2021), deep learning (Tran et.al., 2020), 

linear (Friesz et.al., 1993), logarithmic (Kemal 2004), 

exponential (Henry et.al., 1975), polynomial (Silverman 

1986), and Bureau of Public Road (BPR) (Akcelik  1991 ;  

Bureau of Public Roads 1964) 

Many factors influence the vehicle's travel time over a 

given route including volume, street width, and on-street 

parking. Qi (Qi et.al., 2020) created a novel prediction 
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model for bus inter-stop travel times (BISTTs) that uses five 

input variables: stop distance, historical inter-stop travel 

times, number of intersections, intersection traffic volumes, 

and intersection signal timing schemes. A test was performed 

in this technique to check for autocorrelation in the model 

residuals. Based on field data, cases of two bus routes in 

Harbin (China) have been studied. The results showed that 

the mean average errors for both bus routes were less than 

8%, indicating a high level of prediction accuracy in 

predicting BISTTs. 

Kelsey Maass (Maass et.al., 2020) proposed a method for 

estimating street-level travel times in a given metropolitan 

area using coarse-grained and aggregated travel time data. 

Several techniques, including graph-based routing, trip 

sampling, graph sparsification, and least-squares 

optimization, were used in that study to estimate street-level 

travel times. Constrained least-squares problems are 

iteratively solved using sampled trips and weighted shortest-

path routing to obtain travel time estimates. Ma (Ma et.al., 

2019) proposed a novel segment-based method for 

predicting bus travel times that uses a combination of real-

time taxi and bus datasets to automatically divide bus routes 

into dwelling and transit segments. By combining distinct 

effect traffic parameters, two models were created to predict 

them individually. The results of the experiments show that 

this method enhances the accuracy of bus travel time 

prediction, particularly under unusual traffic conditions. The 

deep network was created by Rong Cheng (Cheng & Feng 

2020) using a stacked denoising autoencoder. The method 

could directly estimate the travel time of any path and solve 

the long path estimation error accumulation problem. The 

taxi trajectory data set's experimental results revealed that 

the stack noise reduction self-encoder-based travel time 

prediction method has good prediction accuracy and 

stability. 

In very recent years a lot of attention has been paid to the 

use of deep neural networks to improve the accuracy of 

travel time estimation in cities. Wang et.al. (2022) proposed 

a meta learning based framework to continuously provide 

accurate travel time estimation over time by leveraging well-

designed deep neural network mode. In another study, 

Rajagopal et.al. (2022)  developed a hybrid deep learning 

model that extracts the optimal feature points from the 

existing dataset using a stacked autoencoder is presented. 

Handcrafted feature points are fed into the hybrid deep 

neural network to predict the travel path and travel time 

between two geographic points. 

In most of the above studies,  to calculate the travel time, 

the influencing factors are mostly assumed to be constant 

throughout the street. In addition, many researchers estimate 

travel time taking no account for local effects of small on the 

road factors. This assumption, however, is not always 

correct, and can, thus, lead to an inaccurate travel time 

estimation. Thus in this model, we propose a model that takes 

into account the local effects of on the road factors like bus 

stops, speed bumps, and zebra lines,. These factors are many.  

Based on the above, the main contribution of this paper is 

the development of a new mathematical model that in 

contrast to the current models (which use only volume and 

capacity) involves additional on the road factors like bus 

stops and zebra lines to estimate the travel time. These 

factors are introduced by adding weights to basic models 

used in current travel time estimation models.  

In the following section, the principle of the proposed 

weighted model  s presented first.. Then the methodology of 

estimating the weights is also described. In Section 3 several 

tests carried out to evaluate the model are presented and the 

results discussed. Finally, in Section 4, the conclusions are 

made and suggestions for future studies are presented. 

2. The proposed model and methodology of estimating its 

parameters 

2.1 Principle of the proposed model 

In this section the principle of the proposed model along 

with the methodology of estimating its parameters are 

described. In general, this model is uses real-time traffic 

data. In California, for example, several tests were 

conducted, and based on the results, it was determined that 

the Akcelik model (Dowling  2006) was best suited to predict 

travel time. According to the findings of a comprehensive 

study conducted in Tehran, the BPR model (Friesz et.al., 

1993),  was found to be the best model due to its simplicity 

and integrity The BPR model is based on three parameters 

(Qi et.al, 2020): volume (the number of vehicles passing 

through a point of lane in one hour), capacity  (the amount 

of time it takes for a vehicle to travel one kilometer of an 

empty street) and free flow travel timeThe time it takes for a 

vehicle to travel one kilometer on a street under ideal 

conditions, i.e. without any other vehicles . The BRP model 

is as follow: 

 

𝑡 = 𝑡0[1 + 𝑎(𝑣/𝑐)𝑏]                                          (1) 

Where t is the actual travel time [s], c is the capacity; v is 

volume and to [s] is the free flow travel time. The constants 

a and b are fitted to data actually obtained from the traffic 

within a city (these constants were estimated to be a = 0.15 

and b = 4 for Tehran. These values were defined by Tehran 

Traffic and Transportation Company (TTTC) in 1995 (TTTC, 

1995).  

The standard BPR model, the area of influence for the 

factors is not considered in the BPR model (Equation 1), but 

rather the overall effects of different factors are considered 

based on volume and capacity. Nevertheless, as we know 

each factor only affects a specific zone, which can decrease 

the car speed only in that zone. A commercial building, for 

example, can cause a change in vehicle speed and therefore 

increase traffic volume within approximately fifty meters 

before and after the building. A similar effect occurs when a 
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bus stops in a bus stop. Indeed, this situation causes a lane 

to be banded or reduced in width, resulting in a reduction in 

street capacity and an increase in vehicle travel time. As a 

result, the model should take into account the area 

surrounding the factors that influence travel time. 

Considering the variety of factors of such, in this paper we 

develop our model to be based to only on those that have the 

most significant effects on travel time. For this, we conducted 

a comprehensive study in various streets of Tehran to identify 

the most effective factors. The study suggested that bus stops, 

speed bumps, and zebra lines, were the most influential 

parameters. We call them from now on "on the road factors", 

based on which we will expand the BPR model. 

Equations 2 and 3 depict the standard BPR model 

extended to include the mentioned zones of influence. Here, 

ti represents the travel time associated with the each factor 

while tFree denotes the travel time when none of the road 

factors but volume and capacity (see below) are considered. 

 

𝑡𝑇𝑜𝑡𝑎𝑙 = ∑ 𝑡𝑖
𝑛
𝑖=1 + 𝑡𝐹𝑟𝑒𝑒                                                   (2) 

𝑡𝑖 = 𝑡0 × (1 + 𝛾𝑖 × 𝑎 × (
𝑣

𝑐
)

𝑏

) × 𝐿𝑖                              (3) 

As shown in Equation 3, for each factor i, the coefficients 

γi and Li are defined as the weight and the zone of influence 

for each factor respectively. The zone of influence is 

measured in meters and is the distance before and after the 

on the road factor that affects the travel time of a vehicle. In 

the following the methodology of estimating the travel time 

using the proposed model is described.  

2.2 Methodology of estimating the parameters of the proposed 

model 

To solve the Equation 3 for different γi and Li, we need to 

have the travel time (ti), the volume (v), and the capacity (c) 

for some streets. The first two, are collected via field 

observations while the last one is estimated using an existing 

model used by traffic experts. In Iran, this is the HCM model. 

Since this model is developed for Australian streets, we use 

a calibration coefficient to improve its accuracy.  

Figure … shows how these values are used to estimate the 

parameters of the proposed model. At first the values for v, 

c, and travel time are defined for some train streets. At his 

stage also an initial value for the calibration coefficient is 

defined. The value of this coefficient in the denominator is 

between 0 and 1. The initial value for this coefficient is 0.001. 

Then, using the train data, the observation equations are 

formed and solved to estimate the weight and zone of 

influence of each on-the-road factor. The estimated model is 

then evaluated by estimating the travel time for some test 

streets. The process is repeated with different calibration 

coefficient values, with increments of 0.001. In the end, the 

model giving the best accuracy for the travel time of test 

streets, is presented as the final model. These steps are 

further explained in the following subsections. 

 
Figure 1. The flowchart of estimating the parameters of the proposed model 

3.2. Data collection 

As mentioned, at this stage the data about travel time, 

volume and capacity of some train and test streets are 

gathered.  

 Travel time: Human observation, closed circuit 

cameras, radar equipment, and license plate detection are 

all methods for calculating actual travel time (Shahi  2003 ; 

Li et.al., 2020 ). In this paper, the license plate detection 

method is used. This technique calculates travel time by 
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recording the time it takes vehicles to cross a segment with a 

known length of a specified route. The license plate and time 

for each vehicle are recorded at the beginning and end of the 

segment, and the average time for all vehicles is used for that 

segment. 

 Volume: There are two methods for calculating 

traffic volume: mathematical and statistical models. In the 

first technique, a mathematical model is used to predict the 

volume of vehicles passing through a given cross section of 

a route. This technique is simple, but it can predict outcomes 

that are not consistent with reality. As a result, the more 

reliable statistical-based approach is used in this paper, in 

which the number of vehicles passing through a given cross 

section is counted and considered as the volume. It should be 

noted that the type of vehicle has an impact on the volume of 

traffic. In other words, a car takes up the space of several 

motorcycles; thus, the car takes up a larger portion of the 

street. In addition, a taxi stops several times along the route, 

causing more congestion than a private car. To consider 

vehicle size, regular vehicles are used as a reference with a 

scaling coefficient of one, and the following coefficients are 

used for other types of vehicles: 2.5 for a truck, 0.5 for a 

motorcycle or bicycle, 2.5 for a bus or minibus, 3 for a city 

bus, and 2 for a taxi. 

 Capacity: Statistical or numerical methods can be 

used to estimate traffic capacity. Usually, the traffic volume 

and travel time for many streets of the same type (for 

example, Arterial– 1) are taken into account in statistical 

methods, and an average value for that street type is 

calculated using linear interpolation. Such methods can't 

properly model "on-the-road factors" because an average 

value represents the overall effects of a street type. In 

numerical methods, each effect is estimated separately 

before the total effect is calculated. The capacity is computed 

using these methods by taking into account the contribution 

of each traffic factor, such as traffic regulations used in the 

United States (HCM 2000 ; AlKheder  2020), Australia 

(Akcelik  1981 ;  Prassas & Roess 2020), and the United 

Kingdom (Transport and Road Research Laboratory  1963 ; 

Rolison  2020). Using a specific mathematical model, the 

impact of each traffic factor on capacity is calculated. 

According to Norozi (2004), of the three models, the 

American model (HCM 2000) is the most suitable for Tehran 

streets (Norozi  2004). He was able to calculate the delay at 

a signalized intersection in Tehran with accuracy (Norozi  

2004). The proposed model, which is used to compute the 

traffic capacity, is also based the HCM model. These models 

must be calibrated for the city of Tehran. For this we start 

with some initial calibration coefficient fc. To obtain this 

coefficient, we set it to 0.001 and change it with increments 

of 0.001. The value giving the most accurate model is chosen 

as the final coefficient  

The calibration process produces a coefficient for 

computing the actual capacity “c” (equation 4). In this 

equation, fc is the calibration coefficient and c' is the 

approximate capacity at the model of a route far from 

intersection. This coefficient is calculated using equation 5. 

 

    𝑐 = 𝑐 ′ × 𝑓𝑐                                                (4) 

𝑐′ = 𝑠0 × 𝑁 × 𝑓𝑤 × 𝑓𝑎 × 𝑓𝑔 × 𝑓𝑙𝑢 × 𝑓𝑝 × 𝑃𝐻𝐹   (5) 

Where So is the “base saturation flow rate”   which in this 

paper is equal to 1900 for arterial streets (Shahi  2003); N is 

the number of traffic lanes; fw is the road width adjustment 

factor; fa is area adjustment factor; fg  is the lane grad 

coefficient; flu is the lane utilization coefficient; fp is the 

parking activity coefficient and PHF is the peak hour factor.  

  

2.3. Estimating the weights and influential zones of all on-the-

road factors 

Once the data is collected, a system of equations in which 

the number of equations is more than unknowns is 

constructed for the proposed model. These equations are 

formed using the training data. The data includes volume, 

travel time and the capacity. The capacity is estimated using 

the HCM model calibrated using an initial coefficient of 

described in previous section.  The initial value of this 

coefficient is equal to 0.001.  

The general form this equations is   L = F(X) where x is 

the unknown vector (i.e. the weights and influential zones of 

the on-the-road factors) and L is the vector of observation 

(i.e. the travel time, volume and capacity). This system is 

solved using least squares method of weighted residuals to 

obtain an equivalent L = AX system. The unknown 

coefficients are then computed (Vanicek  1986) by: 

 

𝑋 = (𝐴𝑇𝑃𝐴)−1(𝐴𝑇𝑃𝐿)                              (6) 

Where P is a weight matrix that accounts for differences in 

travel time on observations; in this case, it is unity because 

the observations were made uniformly and with the same 

level of accuracy for each of the streets used to calibrate the 

model.  

Once the unknowns are computed, the HCM calibration 

coefficient is incremented by 0.001 and the adjustment 

process is repeated. This is done until the coefficient value is 

equal to 1. At each stage, the travel time is computed for the 

test data using the resulting weighted model. The travel times 

thus computed are sorted and the model giving the minimum 

travel time is considered as the final model. 

In the following, tests carried out to evaluate the proposed 

model in the city of Tehran are reported.  

3. Evaluations 

3.1. Data 

In this study, to estimate the weights and influential zones 

of the proposed factors, the data for 37 sections of 22 streets 

in Tehran were used. For travel time, license plate detection  
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was used, and for traffic volume, a statistical method was 

used. The traffic influence factors for each of the streets were 

then identified. The number of traffic lanes, lane width, and 

area type were all considered. DTM was also used to 

determine the slopes of the streets. Furthermore, as 

previously stated, the initial saturation flow rate per lane 

was set at 1900 vehicles per hour. Field visits and GPS 

localization were used to determine the location and number 

of each traffic influence factor. 

Furthermore, to simplify this model, the streets chosen 

were not in commercial zones or in the city center. The 

volume and traffic time data were classified into two types of 

city streets: type one and type two. This allowed one to obtain 

the coefficients based on the type of street. The model  

was calibrated using data from 18 arterial-1 streets and 

11 arterial-2 streets. Arterial-1 streets refer to highway and 

freeways, while Arteiral-2 streets include other main urban 

streets. Figure 1 depicts all the streets used in this study. 

 
Figure 2. The one degree and two degree arterials in Tehran 

 

3.2. Results and Discussions    

3.2.1. Computing zones of influence 

The first step was to compute the zone of influence of each 

factor. Zones of influence are influenced by a variety of 

factors that differ from street to street, making statistical 

investigations time-consuming and difficult. In this study we 

did this using least squares, which took into account the 

minimum and maximum radios of factors' influence ranging 

from 5 to 100 meters radios at one-meter intervals. In other 

words, we set the influential zones to e.g., 5m. Then solved 

the model for the weights. Then the influential zone was 

increased to 10m, and the process repeated. This was done 

for all influential zones from 5m to 100m. In the end, we 

studied the effect how changing from one zone to another 

affects the travel time. Figure 2 shows the graphs for groups 

of streets based on zone and degree of influence. The zones 

having the largest effect on the travel time were chosen as 

the final value. Details of this can be found in Hosseininaveh 

Ahmadabadyan, 2007.  

As illustrated in Figure 2, as the distance between a 

factor's location and its effect increases, the effect of that 

factor decreases. When the factors are compared over a 

constant zone of 100 meters for arterials-2, it was discovered 

that speed bumps have the greatest effect and zebra lines 

have the least effect. 

 

3.2.2. Comparing the accuracy of the proposed model with 

that used by traffic experts 

Tehran traffic experts have designed models based on the 

BPR model to estimate the travel time in this city. As can be 

seen in table (1), the experts have obtained the capacity in 
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the form of a coefficient in the width of the road using the 

BPR function, which means integrating the impact of all 

factors affecting the capacity. 

 

Table (1). travel time models presented by traffic engineers 

in Tehran (TTTC, 1995) 

Type of 

road 

Free 

speed 

(km/h) 
Travel time models 

Arterial-

1 streets 
60 𝑡 = 1 × (1 + 0.15 × (

𝑣

310 × 𝑤
)
4

) 

Arterial-

2 Streets 
50 

𝑡 = 1.2 × (1 + 0.15

× (
𝑣

240 × 𝑤
)
4

) 

 

Now, the question that exists is which model provides a 

more accurate travel time. In response to this question, a 

comparison was made between the model presented by 

Tehran traffic experts and the BPR model with additional 

terms presented in this article in terms of accuracy in 

estimating travel time.  

For this purpose, by using the data related to the streets 

that were given in the census, the travel time of those streets 

was obtained according to each of the mentioned models 

(models provided by traffic experts and BPR model with 

additional terms). Then by obtaining the ratio of volume to 

capacity of these streets, the data related to them were sorted 

from small to large based on the ratio of volume to capacity. 

After that, graphs were drawn based on the ratio of volume 

to capacity, the travel time resulting from the methods and 

the actual travel time. These diagrams are shown in figure 

(3).  

In these diagrams, the horizontal axis represents the ratio 

of volume to capacity and the vertical axis represents the 

travel time. As can be seen in the diagram of first-class 

arterial streets, the travel time obtained from the presented 

model (BPR model with additional terms marked by 

continuous line) compared to the travel time obtained from 

the model presented by traffic experts (dotted line) ) is closer 

to the actual travel time (indicated by +) for almost every 

street segment. These results are repeated in the second 

grade arterial streets similarly. Therefore, it can be said that 

the travel time obtained from the presented model is more 

accurate than the travel time obtained from the model 

provided by traffic experts.  

 

Figure (3). The coefficients for the effect of the factors  

In order to determine how many percentages the presented 

model improves the accuracy in predicting the travel time 

compared to the models presented by the traffic experts, the 

standard deviation related to it in predicting the travel time 

and the standard deviation related to the models presented 

by the traffic experts. It was obtained according to equation 

(7) for the streets that participated in the survey. 

The standard deviation is calculated based on: 

𝑅𝑀𝑆𝐸 = √
∑ (𝑡𝑅−𝑡𝑀)2𝑛

𝑖=1

𝑛−1
                               (7) 

 Where tR denotes the actual travel time and tM denotes the 

predicted travel time generated by a model; and n denotes 

the total number of street segments. 

3.3. Comparing the performance of the proposed model 

against the model used by traffic experts 

This measure was calculated for both proposed and 

currently used models; the results are summarized in Table 

3.  

Table (3): RMSE for two kinds of model on arterials 

In Seconds Arterial-1 streets Arterial-2 streets 
RMSE for BPR 

models presented 

by experts  
7.8158 23.0999 
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RMSE for 

weighted BPR 

models 
2.9358 3.2688 

Ratio of RMSE for 

the models 2.6622 7.0668 

 
As shown in this table, the proposed model is 

approximately three and seven times more accurate than the 

existing model (BPR models presented by experts) for 

arterial- 1 and arterial- 2 streets, respectively. 

 

 

Figure 4. Comparing Travel time resulted from traffic engineer's model and presented model

4.1. Conclusion 

The paper proposes a weighted BPR model for estimating 

the effects of route factors on travel time. The model is an 

extension to the BPR model where in addition to volume and 

capacity, some on-the-road factors along with their zone of 

influence are used to estimate the travel time. In this paper, 

to reduce the complexity of the problem, we added street 

bumps, zebra lines and bus stops to the basic BPR model. In 

order to compute the parameters of the weighted model, we 

gathered a large set of data in train and test groups. The 

former was used to estimate the unknowns using the Least 

Squares method, while the latter was involved in evaluating 

the effectiveness of the presented model in many Tehran 

streets. The following are the outcomes of applying this 

model to the city of Tehran: 

a) The proposed model is three times more accurate than 

the models used by traffic experts to estimate traffic flow in 

arterial-1 streets. For arterial-2 streets, this difference in 

accuracy is sevenfold. 

b) The weighted BPR model incorporates on-road factors 

that are not included in currently used models; obviously, 

including these factors improves model accuracy, and thus 

should be included and expanded upon when developing 

more accurate models. 

One important note was that, even in countries like Iran 

where traffic rules are not observed properly, still including 

additional on-the-roads parameters can improve the 

accuracy of travel time estimation. Nevertheless, the 

computations would be more reliable and repeatable if the 

rules are followed more properly by cars and pedestrians. 

We suggest, studying the effect of other factors like car 

parks, taxi stations and the like in future studies. Also, as 

deep learning techniques have evolved greatly in recent 

years, we suggest exploring their ability in development of a 

travel estimation approach.  
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