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ABSTRACT 

The multipole structure of the Kerr spacetime is investigated. It is believed that there is no 

stationary exact solution of the Einstein field equations which successfully describes the spacetime 

of the Earth. The problem is related to the pole structure of the well-known exact solutions which 

can be shown that none of them meet the principal criteria for a suitable physical solution. We try 

to identify a probable multipole structure that is compatible with the Newtonian limit, i.e., having 

all mass multipole moments in the metric. This is crucially important in the pursuit of finding an 

exact metric to simulate the gravitational field of the Earth. The presence of all arbitrary mass 

multipole moments, along with at least one angular moment in the corresponding Ernst potential 

of the spacetime metric, will eventually be ended up with finding an exact solution to Einstein’s 

field equations that matches the current precise observational satellite data. 
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1. Introduction 

The recent trend in the application of the general theory of 

relativity in geodesy goes around the precise definition of 

some basic notions such as geoid, gravimetry, and 

gradiometry (Buchin et al., 2011; Denker et al., 2017). 

The ability to carry out precise measurements has been the 

main motivation for the community to formulate classical 

geodesy in the framework of a more reliable theory of 

gravitation, i.e. Einstein’s general relativity  (Buchin et 

al., 2011). To identify the best spacetime for modeling the 

Earth’s gravity, people have investigated the non-black 

hole solutions of Einstein’s field equations (EFEs) 

(Denker et al., 2018; Ehlers, 1993). One of the main 

problems with the modeling of the Earth’s gravitational  

field underlies with its multipole structure. As we know, 

the Newtonian potential possesses  

all the even and odd mass multipoles while there is no 

angular moment in its spectrum. However, in the 

relativistic side, almost all of the known vacuum solutions 

of the  

Einstein’s field equations which may be a probable 

candidate for modeling of the Earth’s gravitational field, 

do not have a full spectrum of multipoles in their 

Newtonian limit. In other words, the multipole structure 
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of the relativistic gravitational theory does not compatible 

with that of the Newtonian one (Ehlers, 1993). 

Thus, it seems there is no exact relativistic spacetime that 

is capable of describing all aspects of the Earth’s 

gravitational field. Alternatively, some studies have been 

devoted to the approximation methods which employ the 

linearized theory of gravity, say for instance the weak 

field limit of well-known spacetimes (Foster & 

Nightingale, 2006). Other studies use a post-Newtonian 

approach to analyze the multipole structure of some exact 

spacetimes including the Schwarzchild, the Erez-Rozen, 

and the Kerr spacetimes. None of the just mentioned 

spacetimes have conquered the difficulties with the 

multipole structure of the gravitational potential (Ehlers, 

1993; Kopejkin et al., 2018). Following recent research 

which enables us to find exact stationary axisymmetric 

solutions of EFEs with arbitrary multipole structure, we 

try to address the above-mentioned problem here and 

propose a probable solution. 

In the next two sections, we present the main results in the 

passage of the exact solutions of EFEs in prolate 

spheroidal coordinates. The main concern is on 

Quevedo’s solutions both in static and stationary 

axisymmetric spacetimes. In section IV, we summarize 

the derivations of Newtonian and relativistic moments of 

mass and spin and propose our model of relativistic 

potential. The last section is devoted to some discussions 

and conclusions. 

2. The General Static Axisymmetric Solution to EFEs 

in the Prolate Spheroidal Coordinates 

The general static axisymmetric spacetime in the prolate 

spheroidal coordinates which have a full spectrum of mass 

multipole moments was first discovered by Quevedo 

(Quevedo, 1989; Kopejkin et al., 2016). The metric is 

given by  

𝑑𝑠2 = 𝑒2𝜓𝑑𝑡2 − 𝜎2𝑒−2𝜓 × 
(1) 

{𝑒2𝛾(𝑋2 − 𝑌2) [
𝑑𝑋2

𝑋2 − 1
+

𝑑𝑌2

1 − 𝑌2] + (𝑋2 − 1)(1 − 𝑌2)𝑑𝜙2} z 

in which 𝜓 solves the Laplace equation  

[(𝑋2 − 1)𝜓,𝑋],𝑋 + [(1 − 𝑌2)𝜓,𝑌],𝑌 = 0, (2) 

and 𝛾 is obtained from  

𝛾,𝑋 =
1 − 𝑌2

𝑋2 − 𝑌2
[𝑋(𝑋2 − 1)𝜓,𝑋

2 − 𝑋(1 − 𝑌2)𝜓,𝑌
2 − 2𝑌(𝑋2 − 1)𝜓,𝑋𝜓,𝑌],

𝛾,𝑌 =
𝑋2 − 1

𝑋2 − 𝑦2
[𝑌(𝑋2 − 1)𝜓,𝑋

2 − 𝑌(1 − 𝑌2)𝜓,𝑌
2 + 2𝑋(1 − 𝑌2)𝜓,𝑋𝜓,𝑌].

 (3) 

This spacetime is asymptotically flat and 𝛾 vanishes at the 

symmetry axis. The general solution to the Laplace 

equation in (2) is  

𝜓 = ∑

∞

𝑛=0

(−1)𝑛+1𝑞𝑛𝑄𝑛(𝑋)𝑃𝑛(𝑌), (4) 

in which 𝑃𝑛 and 𝑄𝑛 are the Legendre functions of the first 

and second kind respectively. The solution to equation (2) 

is found to be  

𝛾 = ∑

∞

𝑚,𝑛=0

(−1)𝑚+𝑛𝑞𝑛𝑞𝑛Γ𝑚𝑛 , 
(5) 

 

where the Γ𝑚𝑛 functions are  

Γ(𝑚𝑛) =
1

2
ln (

𝑋2 − 1

𝑋2 − 𝑌2
) + (𝜖𝑛 + 𝜖𝑚 − 2𝜖𝑛𝜖𝑚) ln (

𝑋 + 𝑌

𝑋 − 1
)

+(𝑋2 − 1)[𝑋(𝐴𝑛,𝑚𝑄′
𝑛

𝑄𝑚 + 𝐴𝑚,𝑛𝑄′
𝑚

𝑄𝑛) + [(𝑛 + 1)𝐴𝑛,𝑚 − 𝐵𝑛+1,𝑚]𝑄𝑛𝑄𝑚] +

+(𝑋2 − 1) [(1 − 𝜖𝑛)𝑆𝑚 + 𝜖𝑛𝑆𝑚+1 −
𝜖𝑛

𝑚 + 1[𝑃𝑚 − (−1)𝑚]𝑄′
𝑚

]

+(𝑋2 − 1)2 [𝑄𝑚𝔹𝑚,𝑛 − 𝑄′
𝑚

𝔸𝑚,𝑛 +
1

𝑛 + 1
𝐴𝑚,𝑛𝑄′

𝑚
𝑄′

𝑛
]  

 (6) 

In the above equation 𝜖𝑛 =
1+(−1)𝑛

2
 and 

𝐴𝑛 = 𝑌𝑃𝑛𝑄′
𝑛 − 𝑋𝑃′

𝑛𝑄𝑛 , (7) 

𝐵𝑛 = 𝑌𝑃′
𝑛𝑄𝑛 − 𝑋𝑃𝑛𝑄′

𝑛, (8) 

𝑆𝑛 = ∑

[
𝑛
2]−1

𝑘=0

(
1

𝑛 − 2𝑘 − 1
+

1

𝑛 − 2𝑘
) (𝑃𝑚,𝑛−2𝑘−1

+ (−1)𝑛+1)𝑄′
𝑛−2𝑘−1. 

(9) 

𝔸𝑚,𝑛 = ∑

[𝑛−
1
2

]

𝑘=0

[
1

𝑛 − 2𝑘 + 1

1

𝑛 − 2𝑘
] 𝐴𝑚,𝑛−2𝑘𝑄′

𝑛−2𝑘 , (10) 

𝔹𝑚,𝑛 = ∑

[
𝑛
2]−1

𝑘=0

[
1

𝑛 − 2𝑘 − 1
+

1

𝑛 − 2𝑘
] 𝐵𝑚,𝑛−2𝑘−1𝑄′

𝑛−2𝑘−1, (11) 

  Using the coordinate-invariant definition of multipole 

moments (Geroch,1970), the Newtonian limit of the 

potential function 𝜓 has been found as  

𝜓 = 𝐺 ∑

∞

𝑛=0

(−1)𝑛+1
𝑛!

(2𝑛 + 1)‼
𝑞𝑛𝑚𝑛+1

𝑃𝑛(𝑐𝑜𝑠𝜃)

𝑟𝑛+1
, (12) 

in which we have introduced the polar coordinates 𝑋 =
𝑟−𝑚

𝑚
, 𝑌 = 𝑐𝑜𝑠𝜃 quation (12) shows that the Newtonian 

mass moments 𝑁𝑛 is related to 𝑞𝑛 moments by  
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𝑁𝑛 = (−1)𝑛+1 𝑛!

(2𝑛+1)‼
𝑞𝑛𝑚𝑛+1.                                       (13) 

 The relativistic moments 𝑀𝑛 are related to the Newtonian 

one by 𝑀𝑛 = 𝑁𝑛 + 𝑅𝑛  where 𝑅𝑛  is the corresponding 

relativistic correction (Quevedo,1989)  

𝑅0 = 𝑅1 = 𝑅2 = 0,  

𝑅3 = −
2

5
𝑁1,

𝑅4 = −
2

7
𝑁2 −

6

7
𝑁1

2,   

𝑅5 = −
2

9
𝑚2𝑁3 −

48

20
𝑚𝑁2𝑁1 −

2

7
𝑁1

3 −
4

105
𝑚4𝑁1,

 (14) 

Since 𝑁1 can be made to vanish by choosing the center of 

mass coordinates, the first relativistic correction appears 

at 𝑛 = 4. Note that Schwarzchild spacetime corresponds 

to 𝑞0 = 1, 𝑞𝑘>0 = 0 or equivalently to 

𝜓 = −𝑄0 = −
1

2
ln

𝑋 − 1

𝑋 + 1
,   

𝛾 =
1

2
ln(

𝑋2 − 1

𝑋2 − 𝑌2
)

 (15) 

3.  The General Stationary Axisymmetric Spacetime in 

the Prolate Spheroidal Coordinates 

Astrophysical objects may properly be described by 

stationary spacetime. Extraction of such a solution can be 

achieved by applying Hoenslaers-Kinnersley-

Xantopoulos transformation (HKZ) to the static spacetime 

(1) as a seed metric. Such transformation was first done 

for the metric in equation (1) by Quevedo (Quevedo, 

1989) and the result is as follows: 

𝑑𝑠2 = −𝜎2𝑓−1 {𝑒2𝜂(𝑋2 − 𝑌2) [
𝑑𝑋2

𝑋2 − 1
+

𝑑𝑌2

1 − 𝑌2]

+ (𝑋2 − 1)(1 − 𝑌2)𝑑𝜙2}

+ 𝑓(𝑑𝑡 − 𝜔𝑑𝜙)2 

(16) 

 

in which 𝜎 is an arbitrary constant and   

𝑓 = 2𝑅[(1 + 𝑐𝑜𝑠𝜏)𝐿+ [
𝑋 − 1

𝑋 + 1
]

1−𝛿

𝑒−2𝜎𝜓

+ (1

− 𝑐𝑜𝑠𝜏)𝐿− [
𝑋 − 1

𝑋 + 1
]

𝛿−1

𝑒2𝜎𝜓 

+ 4𝑠𝑖𝑛𝜏(𝑋𝑁− + 𝑌𝑁+)]
−1

 

(17) 

𝝎 = 𝐾1 + 𝜎𝑠𝑖𝑛𝜏[𝜎𝑝̂ + 2𝑌(1 − 𝛿)] −
𝜎

𝑅
[(1

+ 𝑐𝑜𝑠𝜏)𝑀+[
𝑋 − 1

𝑋 + 1
]1−𝛿𝑒−2𝜎𝜓 + (1

− 𝑐𝑜𝑠𝜏)𝑀−[
𝑋 − 1

𝑋 + 1
]𝛿−1𝑒2𝜎𝜓

+ 2𝑠𝑖𝑛𝜏[𝑋(𝜆2 − 𝜇2)(1 − 𝑌2) + 𝑌(1

− 𝜆2𝜇2)(𝑋2 − 1)]] 

(18) 

𝒆𝟐𝜼 = 𝐾2𝑒2𝜎2𝛾(1 − 𝜆𝜇)2 −
1 − 𝑌2

𝑋2 − 1
(𝜆 + 𝜇)2. (19) 

  Other parameters in the above equation are given by  

𝜆 = 𝛼1(𝑋2 − 1)1−𝛿(𝑋 + 𝑌)2𝛿−2 exp [2𝛿 ∑(−1)𝑛𝑞𝑛𝛽𝑛
−

∞

𝑛=1

]

𝜇 = 𝛼1(𝑋2 − 1)1−𝛿(𝑋 + 𝑌)2𝛿−2 exp [2𝛿 ∑(−1)𝑛𝑞𝑛𝛽𝑛
+

∞

𝑛=1

]

𝑅 = (𝑋2 − 1)(1 − 𝜆𝜇)2 − (1 − 𝑌2)(𝜆 + 𝜇)2

 (20) 

where 𝛽𝑛
± and the parameters 𝐿±, 𝑀±, 𝑁± are given by 

  

𝛽𝑛
± = (±1)𝑛

1

2
ln

(𝑋 ∓ 𝑌)2

𝑋2 − 1
− (±1)𝑛𝑄1(𝑋)

+ 𝑃𝑛(𝑋)𝑄𝑛−1(𝑋) 
(21) 

− ∑

𝑛−1

𝑘=1

(±1)𝑘𝑃𝑛−𝑘(𝑌)[𝑄𝑛−𝑘+1(𝑋) − 𝑄𝑛−𝑘−1(𝑋)],

𝑛 > 1, 

(22) 

 𝐿± = (1 − 𝜇𝜆)[(𝑋 ± 1)2 − 𝜆𝜇(𝑋 ∓ 1)2] + (𝜆

+ 𝜇)[𝜇(1 ± 𝑌)2 +   𝜆(1 ∓ 𝑌)2], 
(23) 

𝑀± = (𝑋2 − 1)(1 − 𝜆𝜇)[𝜆 + 𝜇 ∓ 𝑌(𝜆 − 𝜇)]

+ (1 − 𝑌2)(𝜆 + 𝜇)[1 − 𝜆𝜇

∓ 𝑋(1 + 𝜆𝜇)],     

(24) 

𝑁± = (𝜆 + 𝜇)(1 ± 𝜆𝜇). (25) 

 

  The parameters 𝐾1, 𝐾2  and 𝛼1, 𝛼2  are arbitrary and 

mostly chosen in a way that the metric is asymptotically 

flat. The last parameter 𝑝̂ is defined by  
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𝑝̂ = −2(1 − 𝑌2) ∑
(−1)𝑛

2𝑛 + 1

∞

𝑛=1

 𝑞𝑛[𝑃𝑛(𝑋)],𝑌[𝑄𝑛+1(𝑋)

− 𝑄𝑛−1(𝑋)] 

(26) 

Note that the transformation 

𝑋 =
𝑟 − 𝜎

𝜎
, 𝑌 = 𝑐𝑜𝑠𝜃 (27) 

will bring us to the traditional spherical coordinates. As a 

result, the Kerr spacetime with all mass multipole 

moments will be defined through the following parameter 

setting (Quevedo,1990): 

𝑞0 = 1, 𝑞1 = 0  𝛿 = 1, 𝛼1 = −
𝑎

𝜎
, 𝛼2 = 0 

𝐾1 = −2𝑎, 𝐾2 = 1  𝑠𝑖𝑛𝜏 = −
𝑎

𝑚
, 𝑐𝑜𝑠𝜏 =

𝜎

𝑚
, 𝜎2

= 𝑚2 − 𝑎2 

(28) 

Thus, for the Schwarchild spacetime the parameters are 

given by 

𝑞0 ≠ 0, 𝑞𝑛>0 = 0, 𝛿 = 1, 𝛼1 = 𝛼2 = 0 

𝐾1 = 0, 𝐾2 = 1, 𝑠𝑖𝑛𝜏 = 0, 𝑐𝑜𝑠𝜏 = 1,

𝜎 = 𝑚 
(29) 

 4. The multipole moments 

 The relativistic definition of moments was first given in 

(Geroch,1970). The Enrst potential was a real number for 

static spacetimes while now it is a complex number and 

the moments have two physically distinguished parts. The 

first part consists of the mass moments. For the Kerr 

parameters given by (28) the first four mass moments are  

𝑀0 = 𝑚, 

𝑀1 = 𝑚, 

𝑀2 =
2

15
𝑚3(1 −

𝑎2

𝑚2
)2𝑞2 − 𝑚𝑎2, 

𝑀3 =
2

15
𝑚2(1 −

𝑎2

𝑚2)
3
2[𝑞2𝑎3 −

3

7
𝑚2𝑞3(1 −

𝑎2

𝑚2)2] 

(30) 

The second part identifies the angular moments as follows 

(again for Kerr spacetime)  

𝐽0 = 0, 
𝐽1 = 𝑚𝑎, 
𝐽2 = −

2

15
𝑎(1 −

𝑎2

𝑚2
)

3
2𝑚3𝑞2, 

𝐽3 = −𝑚𝑎3 +
2

15
𝑚3𝑎(1 −

𝑎2

𝑚2
)[2𝑞2 +

3

7
𝑞3] 

(31) 

As is evident, the arbitrary moments q2, q3, . .. are free 

and can be set adhoc. The idea is that we can set this free 

parameter using GPS data to find an exact axisymmetric 

stationary solution to EFEs to model the Earth’s normal 

gravity. Recent studies (Backdahl & Herberthson,2005; 

Backdahl & Herberthson,2005; Backdahl,2007) are 

supporting this proposal according to which one can set 

adhoc any sequence of multipole moments qn and find a 

corresponding metric. The following theorem shows such 

an interesting issue (see theorem 8 in (Backdahl,2007)). 

Theorem: For every set of multipole moments qn, such 

that the power series  

∑

∞

𝑛=0

𝑞𝑛

𝑛!
𝑥𝑛 . (32) 

has positive radius of convergence, there is a unique 

solution f to the EFEs . 

5. Discussion 

 In this paper, we investigated the multipole structure of 

exact solutions of the EFEs. There is a common thought 

in the literature that the multipole structure of the famous 

solutions is not sufficiently reached to model the Earth’s 

gravitational field. In the well-understood case of the Kerr 

spacetime, there is only a mass monopole and an angular 

momentum in the spectrum of the Ernst potential. Since 

there exist stationary axisymmetric solutions to the EFEs 

with arbitrary multipoles, we proposed an adhoc 

justification of the free multipole moments with help of 

GPS data provided by satellites. To do so one must 

already found at least hundreds of mutipole moments 

analytically. As such computation will be enormously 

complicated, the first four moments were demonstrated in 

equations (21). Other numerical simulations were 

postponed to separate work. 
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