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ABSTRACT 

In recent years, deep learning methods based on the convolutional neural network (CNNs) have 

demonstrated good performance for hyperspectral image classification (HSI). Although, in order to obtain 

good results, we need a large number of training data in the CNNs to avoid the overfitting problem. This 

paper aims to establish a segmentation-based method to extend the training data for deep learning-based 

hyperspectral image classification. First, two unsupervised segmentation methods (K-Means and Multi-

resolution) are used for the segmentation of the hyperspectral images. Second, we obtained pseudo-

training data which depends on the overlay between segmented hyperspectral images and original training 

data sets. So, we extend the number of training samples for CNN to avoid the overfitting problem and 

achieve good results. Finally, a Hybrid-CNN model that is a combination of 2D-Convolution and 3D-

Convolution is applied to classify hyperspectral datasets with the training samples consisting of the 

original and pseudo training sets. The proposed method was tested on two Kennedy Space Center (KSC) 

and Botswana hyperspectral images and the results are compared with the two methods. The overall 

accuracy with the proposed method retrieves 100% and 96.11% for KSC and Botswana datasets, 

respectively. Also, we tested the proposed Hybrid-CNN network with Pavia University data, and the 

classification results show that the proposed Hybrid-CNN has good performance in the face of complex 

data. The overall accuracy retrieves 99.66% for the Pavia dataset. Keywords: Hyperspectral Image 

Classification (HSI), Convolutional Neural Network (CNN), Multiresolution segmentation, K-Means 

Clustering. 
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1. Introduction 

    Hyperspectral images can produce many bands for each 

image pixel. With the rich information captured in 

hyperspectral images, this image has been widely used in 

various fields, such as agriculture, monitoring, and industrial 

inspection. Hyperspectral image classification (HSI) is one 

                                                           
* Corresponding Author:  

E-mail addresses: Rshahosseini@ut.ac.ir (R.Shahhosseini) 
 

of the most promising techniques for understanding remote-

sensing images (Liang et al., 2015).  

   Over the past several years, many methods have been 

proposed to classify HSIs. Most methods have focused on 

exploring the role of the spectral signatures of HSIs for 

classification. Thus, numerous pixel-wise classification 

methods, such as neural networks (Zhong & Zhang, 2012), 

support vector machines (SVM) (Melgani & Bruzzone, 
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2004), and multinomial logistic regression (Li et al., 2010) 

have been proposed. However, there exist some challenges. 

For example, the large spatial variability of spectral 

signatures and the limited available training samples versus 

the high dimensionality of hyperspectral data are the main 

problems in the HSI classification (Ghamisi et al., 2017). 

   The classification results obtained by these pixel-wise 

classifiers are unsatisfactory since the spatial features are not 

considered. To improve the performance of classification, 

many researchers have focused on spectral-spatial 

classification which can incorporate spatial features into 

pixel-wise classifiers. For example, in (Benediktsson et al., 

2005), extended morphological profiles (EMPs) were used to 

exploit spatial information via multiple morphological 

operations. In (Kang et al., 2017), principal component 

analysis (PCA) based edge-preserving features (PCA-EPFs) 

is proposed to capture the multi-scale structural information 

of hyperspectral images. In (Kang et al., 2015), extended 

random walkers serving as a powerful optimization tool are 

used to refine the pixel-wise probability maps obtained by 

the SVM. 

     In this research, we attempted to mitigate the problems 

associated with the classification of hyperspectral images 

including the lack of training data and extracting spectral and 

spatial information. To solve the problem of the lack of 

training data, we took advantage of K-Means and Multi-

resolution methods for segmentation to increase training 

data. Also, we introduced a hybrid-CNN network to classify 

hyperspectral images by extracting both spectral and spatial 

data. This proposed network was a combination of 3D and 

2D Convolution. 

2. The Related Work 

    Deep learning methods which exploit the non-linear 

transformation of data via several layers have attracted a lot 

of attention in remote sensing areas in recent years. In the 

context of feature extraction, deep learning automatically 

extracts significant and discriminative features from a 

hierarchy of hidden layers. In the case of HSI, deep learning-

based methods, e.g. autoencoders (AEs) (Feng et al., 2018), 

stacked autoencoders (SAEs) (Zabalza et al., 2016), deep 

belief networks (DBNs) (Chen et al., 2015), recurrent neural 

networks (RNNs) (Mou et al.,  2017), and convolutional 

neural networks (CNNs) (Hu et al., 2015; Yu et al., 2017), 

have been demonstrated to be very efficient in extracting 

robust and invariant features. Notably, the classification 

accuracy of deeper networks tends to reduce with the limited 

training samples available for HSIs. This problem is more 

serious when fully connected models such as AEs and DBNs 

(Ghamisi et al., 2018) are used. In CNNs, the number of 

parameters is reduced by the properties of shared weights and 

local connections, which makes it feasible to obtain high 

classification accuracy for hyperspectral data even when 

limited training samples are available. CNNs usually require 

large amounts of training samples in order to avoid 

overfitting. Data augmentation is a technique that 

synthetically generates new samples by applying a set of 

domain-specific transformations over the original input 

dataset to improve the generalization capabilities of a 

classification model. Several data augmentation techniques 

applicable to HSIs have been proposed. Recently, (Zhang et 

al., 2018) described hyperspectral data augmentation 

techniques where pixels are grouped in blocks and different 

block pairs are used as the input to a CNN. In (Nalepa et al., 

2012), samples in the original dataset were shifted along with 

its first principal component or based on the average value in 

each band. Augmentation based on randomly erasing parts of 

the input patches has also been proven effective for HSI 

classification (Haut et al 2019). Finally, generative 

adversarial networks have been proposed recently as a data 

augmentation technique in order to generate new samples 

mimicking the distribution of the original data (Arefi et al., 

2019). In (Kang et al., 2019), a novel semi-supervised deep 

learning method is proposed for hyperspectral image 

classification. They extend the original training set with the 

principal component analysis-based edge-preserving 

features (PCA-EPFs) and extended morphological attribute 

profiles (EMAPs) methods and with the proposed decision 

fusion strategy, the accuracy of the existing deep learning-

based hyperspectral image classification method can be 

improved dramatically. (Wu and Prasad, 2018) proposed a 

semi-supervised method for hyperspectral image 

classification. First, they obtained pseudo-training samples 

by clustering methods and then train the network with pseudo 

and original training data.  Given this fact, we emphasize that 

CNNs are a promising and powerful method for the 

classification of HSIs. However, these methods often cause 

an over-fitting phenomenon when only a few numbers of 

training samples are available. Therefore, the lack of a large 

number of training samples is the main challenge of deep 

learning-based classification methods. 

    This paper is organized as follows. Part 2, describes the 

unsupervised segmentation methods and the Hybrid-CNN 

model and then the details of the proposed algorithm for HSI 

are presented. Part 3, reports the experimental results of the 

proposed method and in part 4, the conclusions are presented. 

3. The Proposed Method 

3.1. Segmentation Methods  

3.1.1 Multiresolution Segmentation 

    The multiresolution segmentation approach was used to 

partition the image layer into homogeneous objects in this 

paper (Baatz & Schäpe, 2000). This approach is one of the 

most widely used image segmentation methods in the remote 

sensing community (G. Mallinis et al., 2008). 

Multiresolution segmentation is a bottom-up region-growing 

algorithm, which starts by considering each pixel as a 
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separate object and subsequently. In this method, pixels or 

existing objects are merged into bigger ones based on three 

parameters: scale, color (spectral properties), and shape 

(smoothness and compactness). The scale is a crucial 

parameter that determines when the optimization process 

stops. The higher scale parameter leads to larger 

homogeneous objects. The segmentation process stops when 

the smallest growth exceeds a user-defined threshold (e.g., 

scale parameter), which determines the maximum increase 

of heterogeneity when objects are merged. The heterogeneity 

criterion f is a combination of the spectral heterogeneity (

colorh ) and the shape heterogeneity (
shapeh ), which can 

be formulated as follows: 

( ) ( )color color shape shapef w h w h                   (1)                           

1color shapew w  ; , [0,1]color shapew w   (2)                                             

Where 
colorw  and 

shapew  are the weights of spectral 

heterogeneity and shape heterogeneity, which allow us to 

adapt the definition of heterogeneity for a given application. 

3.1.1. K-Means Clustering 

    Clustering is a method to divide a set of data into a specific 

number of groups.  One of the popular methods is K-Means 

clustering. In K-Means clustering, it partitions a collection of 

data into a K number group of data (Shehroz et al., 2004). K-

Means clustering is a type of unsupervised method, which is 

used when you have unlabeled data (i.e., data without 

defined categories or groups). The goal of this algorithm is 

to find similar groups in the data, with the number of groups 

represented by the variable K. The algorithm works 

iteratively to assign each data to at least one of the K 

groups supported by the features that are provided. Data 

points are clustered and supported by feature similarity. The 

results of the K-Means clustering algorithm are: 

(1) The centroids of the K clusters, which 

may be accustomed label new data 

(2) Labels for the training data (each data is assigned 

to one cluster) 

    The Κ-Means clustering algorithm uses iterative 

refinement to produce a segmentation map. The algorithm 

inputs are the number of clusters Κ and the data set. The data 

set may be a collection of features for every data point. The 

algorithms start with initial estimates for the Κ centroids, 

which can either be randomly generated or randomly 

selected from the data set.  

    Although K-Means has the good advantage of being easy 

to implement, it has some drawbacks. The quality of the final 

clustering results depends on the arbitrary selection of the 

initial centroid. The initial centroid is randomly chosen; it 

will get different results for different initial centers. And also 

computational complexity is another term that we'd like to 

think about while designing the K-Means clustering. It relies 

on the number of data elements, the number of clusters, and 

the number of iterations (Dhanachandra et al., 2015). 

 

3.2. Convolutional Neural Network 

    Convolutional Neural Network (CNN) is a part of deep 

neural networks, which can be used in conjunction with a 

deep learning platform. A CNN is a network of processing 

layers accustomed reduce an image to its key features in 

order that it is often more easily classified. The advantage of 

CNNs over other uses of classification algorithms is the 

ability to learn key characteristics on their own, reducing the 

need for hyperparameters, and hand-engineered filters. 

These algorithms are increasingly getting used for tasks like 

face recognition, image classification, video analysis, and 

automatic caption generation. In this paper, we address the 

hyperspectral image classification problem using a CNN 

model. A CNN operates in three layers: 

(1) Convolution Layer: This layer is where images are 

transformed into processable data by kernels, a 

filter layer consisting of knowledgeable parameters. 

Each kernel filters for a special feature and multiple 

kernels are utilized in each analysis. In a 

convolution, small areas of an image are scanned 

and the probability that they belong to a filter class 

is assigned and translated to an activation map, a 

representation of the image layers. In a 3D CNN, 

the kernels move through three dimensions of 

knowledge (height, length, and depth) and produce 

3D activation maps. 

(2) Pooling Layer: Pooling, or downsampling, is done 

on the activation maps created during convolution. 

During pooling, a filter moves across an activation 

map evaluating a small section at a time, similar to 

the convolution process. This filter takes either the 

type of the scanned area, a weighted average 

supported by the central pixel, or the max value and 

abstracts that value to a replacement map. The max-

pooling method, where the highest value from the 

scanned area is taken, is the most commonly used. 

This abstraction is done to decrease the processing 

time and it evaluates each map by eliminating 

unimportant features and allows for spatial 

variance, the ability to detect features regardless of 

rotation or tilting. 

(3) Fully Connected (FC) Layer: After multiple 

iterations, sometimes thousands of convolutions 

and pooling of the output layers are flattened, the 

probabilities identified are analyzed, and the output 

is assigned a value. This analysis is completed by 
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the Fully Connected layer, during which each 

flattened output layer is processed by 

interconnected nodes, almost like a totally 

connected neural network (FCNN). The difference 

is that in a CNN the convolutional and pooling 

layers are independent of the FC layer. By isolating 

features of an image before feeding the output to the 

FC layer, CNN is in a position to limit the necessity 

for higher processing power to the final steps. 

    In this paper, we address the hyperspectral image 

classification problem using a CNN model. As you know 

there is three-way to HSI by CNNs: 

(1) 1-D CNN: this model Extract only spectral 

information and neglect the spatial components. 1-

D CNN architecture receives 1M  input vectors, 

where M is the number of spectral bands. (Ghamisi 

et al. 2017) 

(2) 2-D CNN: these models consider the neighboring 

pixels of a certain pixel in the original remote-

sensing image in order to extract only the spatial 

information. The input data of 2-D CNN 

architectures is a patch of P P neighboring and it 

cannot extract good discriminating features from 

spectral dimension. 

(3) 3-D CNN:  this model extracts spatial-spectral 

information from each patch and improves the 

classification accuracy. But 3-D CNN has a few 

problems such as computationally complex. 

    As you see, all CNN models have a few problems. 1-D 

CNN neglects the spatial information, 2-D CNN has a 

problem at extracting spectral information, and 3-D CNN has 

computationally complex and may cause to misclassify the 

pixels having similar textures over many spectral bands.  

This is the cause to propose a CNN model that hasn’t the 

 

 

above shortcomings. This model uses 2-D CNN and 3-D 

CNN to utilize both the spectral as well as spatial features to 

achieve high classification accuracy. The details of Hybrid-

CNN are presented in the proposed method section. 

3.3. Proposed Method  

    As mentioned in previous sections, there are some 

limitations to classifying hyperspectral images using CNNs, 

including the lack of training data and selecting an 

appropriate CNN model for extracting spectral and spatial 

information. In this section, we introduce a method that 

solves both the mentioned limitations and we can classify 

hyperspectral images with high accuracy. In the proposed 

method, shown in Figure 1, we first use Multi-resolution and 

K-Means Clustering algorithms to extend training data. In 

fact, these two algorithms are used for input image 

segmentation purposes. Then, the segmentation image is 

placed on the original ground truth image of the same data 

and it is observed that the original labeled samples fall into 

the segments. Based on this observation, we consider the 

whole segment as corresponding labeled samples. For 

example, if there are grass samples in a segment, the whole 

segment is considered as the labeled samples of grass and 

extended labeled data. It should be noted that the whole 

labeled samples should be fell into a single segment to select 

that segment as labeled data. In this research, the parameter 

number of clusters in the K-Means algorithm and the 

parameters scale, shape, and compactness are very effective 

in the accuracy of the classification results.  

 
Figure 1.  Schematic of the proposed method for HIC with extended labeled samples 



Earth Observation and Geomatics Engineering 6(1) (2022) 1-23 

 

6 
 

 

We have three kinds of labeled data in this study, the 

extended labeled data obtained by the Multi-resolution 

algorithm (
MT ), the extended labeled data obtained by the 

K-Means algorithm (
KMT ), and the original labeled data (

OT

). In fact, we employ all of the three kinds of labeled data to 

classify hyperspectral images using the proposed CNN 

model and compare their results. 

    To classify hyperspectral images using CNN, it is required 

to present a model without the limitations mentioned in the 

previous sections. As shown in Figure 2, the proposed model 

is a combination of the 2-D CNN and 3-D CNN models used 

for classification. The 2-D CNN models are not able to 

extract spectral information and only use spatial information. 

On the other hand, although 3-D CNN models can extract 

both spectral and spatial information, they have two defects; 

first, those models are complicated with various parameters; 

second, it is possible that they fail to distinguish the pixels 

with similar textural features in different bands. Therefore, 

our proposed method is a combination of both models. In the 

proposed method, first, three 3-D Convolutions are applied 

to input data, the lengths and heights of the three kernels of 

Convolution3D are the same as to classify hyperspectral 

mages using CNN,                        

   it is required to present a model without the limitations 

mentioned in the previous sections. As shown in Figure 2, 

the proposed model is a combination of the 2-D CNN and 3-

D CNN models used for classification. The 2-D CNN models 

are not able to extract spectral information and only use 

spatial information. On the other hand, although 3-D CNN 

models can extract both spectral and spatial information, they 

have two defects; first, those models are complicated with 

various parameters; second, it is possible that they fail to 

distinguish the pixels with similar textural features in 

different bands. Therefore, our proposed method is a 

combination of both models. 

In the proposed method, first, three 3-D Convolutions are 

applied to input data, the lengths and heights of the three 

kernels of Convolution3D are the same as 3 3  but their 

depths are 3, 5, and 7 respectively. In Convolution2D, 

different spatial data can be extracted by changing the size of 

the kernel. Now, we attempt to change the depths of the 

kernels instead of changing their lengths and heights to 

extract different spectral and spatial features from the input 

patch of the network and improve classification accuracy by 

concatenating these features.  

 

 
Figure 2. Proposed hybrid-CNN architecture 

 

 

    The size of a hyperspectral image is shown by M N D 

where M and N are the length and height of the image 

respectively and D is the number of the spectral bands of the 

image. For classification, the hyperspectral image is first 
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converted into patches with l l D   sizes to enter the 

proposed hybrid-CNN model. The proposed model has three 

Convolution3D layers, two Convolution2D layers, one 

Fully-Connected layer, and one Softmax layer at the end of 

the model. The three Convolution3D layers are used to 

maintain spectral information and the two Convolution2D 

layers are then employed to distinguish spatial information 

in different bands without losing spectral information. The 

input image enters the three Convolution3D layers 

simultaneously and the features obtained from these three 

layers are concatenated with each other to be used as the 

input of the Convolution2D layer. There is a batch 

normalization and activation function ReLU after each 

convolution layer. After the two Convolution2D layers, there 

are a flattened layer, a fully-connected layer, and a softmax 

layer to classify pixels. The details of the network are 

summarized in Table 1. In this network, weights are trained 

by a back-propagation algorithm using Adam optimizer and 

categorical-cross-entropy loss function. Also, a dropout = 0.5 

layer is placed after the fully-connected layer to prevent the 

overfitting problem. 

 

 

Table 1. Configuration of the CNN architecture for the KSC and Botswana datasets. (l = s and D is the number of channels) 

Layer Filter Size Output Size Padding Stride 

(1) Input - 

( 3 3 3  , 8) 

( 3 3 3  , 16) 

( 3 3 7  , 32) 

1l l D    

8l l D    

16l l D    

32l l D    

- 

Same 

Same 

Same 

- 

1 

1 

1 

(2) 

 

Conv3D+BN+Relu 

Conv3D+BN+Relu 

Conv3D+BN+Relu 

(3) 
Conv2D+BN+Relu 

Conv2D+BN+Relu 

( 3 3 , 32) 

( 3 3 , 16) 

32l l   

16l l   

Same 

Same 

1 

1 

(4) 

Flatten 

Dense 1 (128, Dropout=0.5) 

Dense 2 (number of classes, softmax) 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

- 

 

4. Experiments 

4.1. Datasets 

In this study, we used the Botswana and Kennedy Space 

Center (KSC) datasets2. Since both datasets have little 

training data, they can challenge our research. 

4.1.1. Botswana Dataset  

    The first dataset was collected by a Hyperion sensor on 

EO-1 over the Okavango Delta, Botswana in 2001. The 

acquired data originally consisted of 242 bands covering the 

400-2500 nm portion of the spectrum in 10 nm windows with 

30 m pixel resolution. Only 145 bands were used after 

uncalibrated and noisy bands that cover water absorption 

were removed. The data used in this paper consist of pixels 

with observations from 14 identified classified classes 

representing the land cover types (Table 2). These labeled 

samples were shown in Table 5. The RGB images and 

ground truths (GT) of the HS data are shown in Figure 3. 

 

4.1.2. KSC Dataset  

    It is a NASA AVIRIS data that has been acquired over the 

Kennedy Space Center, Florida on March 23, 1996. It has 

224 bands of 10 nm width in visible and near-infrared 

spectrum (400-2500 nm) with a spatial resolution of 18 m. 

for our experiment, low signal-to-noise and water absorption 

bands are removed. The data used this paper consist of pixels 

with 13 classes that representing the land cover types (Table 

2). The RGB images and ground truths (GT) of the HS data 

are shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

                                                           
2
http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Se

nsing_Scenes 
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Figure 3. Original RGB and ground truth image of the Botswana scene and name of samples from left 

to right, respectively 

 

 

Table 2. Original labeled samples (
OT ) for KSC and Botswana datasets 

Class 
KSC Botswana 

Class Name Samples Class Name Samples 

1 Scrub 761 Water 270 

2 Willow swamp 243 Hippo grass 101 

3 Cabbage palm hammock 256 Floodplain grasses 1 251 

4 Cabbage palm/oak hammock 252 Floodplain grasses 2 215 

5 Slash pine 161 Reeds 269 

6 Oak/broadleaf hammock 229 Riparian 269 

7 Hardwood swamp 105 Fires car 259 

8 Graminoid marsh 431 Island interior 203 

9 Spartina marsh 520 Acacia woodlands 314 

10 Cattail marsh 404 Acacia shrub lands 248 

11 Salt marsh 419 Acacia grasslands 305 

12 Mudflats 503 Short mopane 181 

13 Water 927 Mixed mopane 268 

14   Exposes soils 95 
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Figure 4. Original RGB and ground truth image of the KSC scene and name of samples from left to right, 

respectively 

4.2. Experimental Setup 

    In this research, the two methods of 2D-CNN (Makantasis 

et al., 2015) and 3D-CNN (Hamida et al., 2018) were used to 

evaluate the proposed method and compare our method with 

them. Also, a python programming language with Keras 

library was used to evaluate and train the proposed method 

and the related codes were run on the Google Colab 

environment, a public and free service provided by Google. 

The number of epochs for Botswana and KSC datasets was 

set to 100 and 200 respectively. In the end, the proposed 

method was also compared with two other methods in terms 

of classification accuracy and computational time. 

4.3. Experimental Results and Discussion 

    In this research, we increased the number of labeled 

samples using K-Means and Multi-resolution methods 

(Figure 5). For this purpose, we should find the appropriate 

parameters of the two mentioned algorithms to extract 

labeled samples with proper accuracy and very low error. 

The K-means method has the parameter of the number of 

clusters which was fixed to 20 for both datasets after testing 

with a different number of clusters. If the number of clusters 

are too large, the segmentation map will have very small 

pieces, and a barricade to increase the number of training 

data. On the other hand, if the number of clusters is 

considered too small, the pieces of the segmentation map will 

be very large so that it is possible a single piece includes two 

classes and erroneous extended labeled data will be obtained.  

    In the Multi-resolution method, three parameters of scale, 

shape, and compactness should be defined with proper 

accuracy to take advantage of that to create new labeled data. 

Different values of these three parameters were tested for 

Botswana and KSC datasets to obtain the best-segmented 

image. For KSC image segmentation, the parameters were 

set as Scale = 30, Shape = 0.3, and Compactness = 0.5 and 

for Botswana image segmentation, they were set to 50, 0.2, 

and 0.5 respectively. 

     In this way, we increased our labeled data using these two 

segmentation methods. The number of extended labeled data 

using K-Means and Multi-resolution methods is shown in 

Tables 3 and 4 respectively 

Images are (512 + 𝑠 − 1, 614 + 𝑠 − 1, 𝑛) and (1467 + 𝑠 −

1, 256 + 𝑠 − 1, 𝑛)  respectively.  

To implement the proposed method, we first considered 

60% of labeled samples as training data and 40% of them as 

test data (Table 5). In this research, the parameter 𝑠 was 

tested with four values of 5, 7, 11, and 13 for the Botswana 

dataset. It was also tested with four values of 5, 7, 9, 11 for 

the KSC dataset. By choosing a large s, the network can take 

advantage of more spatial features but it may reduce the 

effect of the central pixel and makes the final result 

erroneous. Also, if the value of the parameter s is too small, 

the possibility of using spatial features is minimized. To test 

the different values of s, 60% of labeled samples are 

considered as training data and 40% of them are considered 

as test data. 

. 
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Table 3. Extended labeled samples with Multi-resolution segmentation (
MT ) 

Class 
KSC Botswana 

Class Name Samples Class Name Sample 

1 Scrub 1079 Water 404 

2 Willow swamp 388 Hippo grass 169 

3 Cabbage palm hammock 390 Floodplain grasses 1 421 

4 Cabbage palm/oak hammock 350 Floodplain grasses 2 390 

5 Slash pine 288 Reeds 401 

6 Oak/broadleaf hammock 321 Riparian 388 

7 Hardwood swamp 192 Fires car 401 

8 Graminoid marsh 724 Island interior 340 

9 Spartina marsh 795 Acacia woodlands 520 

10 Cattail marsh 684 Acacia shrub lands 396 

11 Salt marsh 673 Acacia grasslands 475 

12 Mud flats 820 Short mopane 301 

13 Water 1564 Mixed mopane 383 

14   Exposes soils 134 

Table 4. Extended labeled samples with K-Means segmentation (
KMT ) 

Class 
KSC Botswana 

Class Name Samples Class Name Samples 

1 Scrub 1033 Water 420 

2 Willow swamp 398 Hippo grass 192 

3 Cabbage palm hammock 401 Floodplain grasses 1 456 

4 Cabbage palm/oak hammock 376 Floodplain grasses 2 395 

5 Slash pine 295 Reeds 416 

6 Oak/broadleaf hammock 310 Riparian 402 

7 Hardwood swamp 195 Fires car 397 

8 Graminoid marsh 750 Island interior 349 

9 Spartina marsh 801 Acacia woodlands 569 

10 Cattail marsh 702 Acacia shrub lands 411 

11 Salt marsh 710 Acacia grasslands 502 

12 Mud flats 846 Short mopane 310 

13 Water 1456 Mixed mopane 414 

14   Exposes soils 142 

Table 5. Train and test samples at original labeled samples (
OT ) 

Class 
KSC Botswana 

Class Name Train Test Class Name Train Test 

1 Scrub 457 304 Water 162 108 

2 Willow swamp 146 97 Hippo grass 61 40 

3 Cabbage palm hammock 154 102 Floodplain grasses 1 151 100 

4 Cabbage palm/oak hammock 151 102 Floodplain grasses 2 129 86 

5 Slash pine 97 64 Reeds 161 108 

6 Oak/broadleaf hammock 137 92 Riparian 161 108 

7 Hardwood swamp 63 42 Fires car 155 104 

8 Graminoid marsh 259 172 Island interior 122 81 

9 Spartina marsh 312 208 Acacia woodlands 188 126 

10 Cattail marsh 242 162 Acacia shrub lands 149 99 

11 Salt marsh 251 168 Acacia grasslands 183 122 

12 Mud flats 302 201 Short mopane 109 72 

13 Water 556 371 Mixed mopane 161 107 

14    Exposes soils 57 38 
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Figure 5. Segmentation results for KSC and Botswana image. The upper row displays an overlay 

between the original ground truth (red shapes) and Multi-resolution segmentation result of the 

Botswana image and the K-Means segmentation result from left to right, respectively, and the lower 

row displays the same results for the KSC image 

 

 

    The proposed hybrid-CNN was first tested with different 

values of s on the Botswana dataset (three times for each s). 

As shown in Table 6, it is obvious that the proposed method 

is appropriate to classify this dataset. For s = 13,11 and 7, it 

is observed that the proposed method has been able to 

classify the Botswana dataset with maximum accuracy so  

that the overall accuracy is 100% for 𝑠 = 7, 11. However,  
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the overall accuracy slightly decreased for s = 5. As shown 

in Figure 6 (for s = 13, 11) and Figure 7 (for s = 7, 5), we 

have classified the Botswana image with background and 

without background for different values of s. A zoomed area 

of classification images with different s is shown in Figure 8. 

 

Table 6. Classification accuracies obtained by our hybrid-CNN (with patch sizes of s = 5, s = 7, s = 11, and s = 13) for the 

Botswana hyperspectral dataset 

Patch Size 

Training Data 

s = 5 s = 7 s = 11 s = 13 

60% Samples 60% Samples 60% Samples 60% Samples 

Water 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Hippo grass 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Floodplain grasses 1 99.90 (0.24) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Floodplain grasses 2 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Reeds 99.00 (0.24) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Riparian 96.12 (1.35) 100.00 (0.00) 100.00 (0.00) 99.80 (0.24) 

Fires car 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Island interior 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Acacia woodlands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Acacia shrub lands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Acacia grasslands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Short mopane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Mixed mopane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Exposes soils 99.27 (0.16) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Overall accuracy 99.14 (0.17) 100.00 (0.00) 100.00 (0.00) 99.99 (0.01) 

Average accuracy 99.59 (0.11) 100.00 (0.00) 100.00 (0.00) 99.98 (0.01) 
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Figure 6. Classification results for the Botswana data set with s = 13 (upper row) and s = 11 (lower row), that 

each row displays original ground truth, classification result without background, and classification result with 

background from left to right, respectively 
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Figure 7. Classification results for the Botswana data set with s = 7 (upper row) and s = 5 (lower row), that each row 

displays original ground truth, classification result without background, and classification result with background from left 

to right, respectively 

 

 

 

 

 

 
 

Figure 8. ground truth image of Botswana data set with small yellow square (left side) and zoomed-in yellow square for original 

ground truth, Classification results with s = 5, s = 7, s = 11 and s = 13 from upper row to lower row, respectively in the right side 
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    The proposed method was also tested on the KSC dataset. 

Compared to the classification results of the Botswana 

dataset, the results of the KSC dataset were worse. In this 

case, the best result (overall accuracy = 96.11) was for s = 7. 

As shown in Table 7, the result for s = 5 was so bad that it 

highlights the importance of spatial features in classification. 

According to the results, the overall accuracy for the water 

class for all values of 𝑠 is 100%; the reason could be the 

existence of more training data compared to other classes. In 

this KSC also, the image was classified with and without a 

background for all values of s (Figure 9). 

.

 

 

 

 

Figure 9.  Classification results for the KSC data set, that each row displays original ground truth (left), 

classification result without background (center), and classification result with background (right) with s 

= 11, s = 9, s = 7, and s = 5 from upper row to lower row, respectively 
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Table 7. Classification accuracies obtained by our hybrid-CNN (with patch sizes of s = 5, s = 7, s = 9, and s = 11) for the KSC 

hyperspectral dataset 

Patch Size 

Training Data 

s = 5 s = 7 s = 9 s = 11 

60% Samples 60% Samples 60% Samples 60% Samples 

Scrub 07.34 (4.12) 94.56 (1.32) 88.43 (1.05) 76.14 (1.24) 

Willow swamp 100.00 (0.00) 97.21 (0.76) 83.38 (3.43) 100.00 (0.00) 

Cabbage palm hammock 69.12 (4.76) 95.75 (1.01) 96.00 (1.20) 97.22 (0.80) 

Cabbage palm/oak hammock 19.08 (5.67) 83.34 (3.98) 96.15 (1.09) 82.00 (2.10) 

Slash pine 12.43 (3.21) 90.95 (1.75) 100.00 (0.00) 96.68 (0.46) 

Oak/broadleaf hammock 22.83 (5.13) 99.44 (0.47) 74.98 (4.24) 91.16 (0.22) 

Hardwood swamp 88.21 (1.54) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Graminoid marsh 98.74 (0.59) 94.67 (2.06) 100.00 (0.00) 58.47 (8.60) 

Spartina marsh 91.48 (1.05) 100.00 (0.00) 98.00 (0.81) 100.00 (0.00) 

Cattail marsh 99.19 (0.23) 97.02 (2.14) 100.00 (0.00) 100.00 (0.00) 

Salt marsh 100.00 (0.00) 100.00 (0.00) 99.73 (0.29) 98.87 (0.18) 

Mudflats 92.12 (2.34) 99.00 (0.94) 100.00 (0.00) 99.60 (0.08) 

Water 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 100.00 (0.00) 

Overall accuracy 61.45 (2.13) 96.11 (0.12) 94.73 (0.33) 87.84 (1.14) 

Average accuracy 69.27 (4.76) 96.45 (0.42) 95.13 (0.65) 91.93 (0.93) 

 

4.3.1. Comparison Three Labeled Samples ( , ,O KM MT T T ) 

    Now, we used the labeled samples obtained by the two 

segmentation methods to classify KSC and Botswana images 

to show the effect of training data increase on classification 

accuracy. Here, there are three types of labeled samples for 

both the KSC and Botswana datasets to classify images: 
OT  

(original labeled samples), 
KMT  (originally labeled samples 

+ K-Means labeled samples), and 
MT  (original labeled 

samples + Multi-resolution labeled samples). As mentioned 

earlier, 60% of labeled samples were used as training data, 

and since the number of labeled samples in 
KMT  and 𝑇𝑀 is 

more than that in 
OT , the number of training data is also more 

in 
KMT  and 

MT . For the Botswana image, the size of the 

input patch for image classification with these three kinds of 

labeled samples is 5. The classification results are shown in 

Table 8. The overall accuracy of image classification with 

OT , 
MT , and 

KMT  data is 99.14, 99.45, and 99.97 

respectively.  

    So, the overall accuracy increases slightly by an increased 

number of training data. As shown in Figure 10, we have 

classified the Botswana image with the background using 

these three kinds of labeled data.              

 

 

Table 8. Classification accuracies obtained by our hybrid-CNN (with 
OT , 

KMT and 
MT training samples) for the Botswana 

hyperspectral dataset 

Patch size 

Training Data 

s = 5 s = 5 s = 5 

60%  
OT  60% 

KMT  60% 
MT  

Water 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Hippo grass 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Floodplain grasses 1 99.90 (0.24) 100.00 (0.00) 100.00 (0.00)  

Floodplain grasses 2 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Reeds 99.00 (0.24) 99.41 (0.14) 100.00 (0.00)  

Riparian 96.12 (1.35) 97.02 (0.55) 99.86  (0.13)  

Fires car 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Island interior 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Acacia woodlands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Acacia shrub lands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Acacia grasslands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Short mopane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Mixed mopane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Exposes soils 99.27 (0.16) 99.62 (0.05) 100.00 (0.00)  

Overall accuracy 99.14 (0.17) 99.45 (0.03) 99.97(0.07)  

Average accuracy 99.59 (0.11) 99.71 (0.06) 99.99 (0.02)  
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Figure 10. Classification results with background for Botswana data set using original training samples (left side of 

the upper row), extended training samples with K-Means segmentation (right side of the upper row), and extended 

training samples with Multi-resolution segmentation (left side of lower row) 
 

    The KSC dataset was also classified with these three kinds 

of labeled data and the classification results for each kind of 

labeled sample are shown in Table 9. In this case, the size of 

the input patch is 9. As shown in the table, the overall 

accuracy for classification with  
oT , 

MT , and 
KMT  is 94.73, 

96.02, and 97.25 respectively. Compared to Botswana 

dataset, the effect of increased training data is more tangible 

in the KSC dataset. Figure 11 shows the classification of the 

KSC image with background for three kinds of data. By 

visual comparison of raw KSC images with classified ones, 

it can be found that the maximum classification accuracy is 

obtained with 
MT  training data. Totally, it is observed that 

in the classifications of Botswana and KSC images with the 

three kinds of labeled data ( , ,O KM MT T T ), the classification 

accuracy with MT  is always better than that with 
KMT . This 

demonstrates that the segmentation accuracy of the Multi-

resolution method is higher than the K-Means method. 

Table 9. Classification accuracies obtained by our hybrid-CNN (with 
OT , 

KMT and 
MT training samples) for the KSC 

hyperspectral dataset 

Patch Size 

Training Data 

s = 9 s = 9 s = 9 

60%  
OT  60% 

KMT  60% 
MT  

Scrub 88.43 (1.05) 89.24 (0.91) 91.45 (0.34)  

Willow swamp 83.38 (3.43) 85.83 (2.11) 88.02 (1.73)  

Cabbage palm hammock 96.00 (1.20) 97.23 (1.03) 97.82 (1.11)  

Cabbage palm/oak hammock 96.15 (1.09) 96.93 (0.82) 98.02 (0.29)  

Slash pine 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Oak/broadleaf hammock 74.98 (4.24) 83.19 (1.45) 87.63 (0.81)  

Hardwood swamp 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Graminoid marsh 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Spartina marsh 98.00 (0.81) 98.63 (0.31) 99.07 (0.28)  

Cattail marsh 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Salt marsh 99.73 (0.29) 100.00 (0.00) 100.00 (0.00)  

Mud flats 100.00 (0.00) 98.67 (0.19) 100.00 (0.00)  

Water 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Overall accuracy 94.73 (0.33) 96.02 (0.03) 97.25(0.07)  

Average accuracy 95.13 (0.65) 96.13 (0.14) 97.07 (0.19)  
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Figure 11. Classification results with background for KSC data set using original training samples (left side of the 

upper row), extended training samples with K-Means segmentation (right side of the upper row), and extended training 

samples with Multi-resolution segmentation (left side of lower row) 

 

4.3.2. Comparative Study 

    In this section, we compared our proposed method with 

other existing methods. The two methods of 3D-CNN and 

2D-CNN were selected for comparison. In all three methods, 

the size of the input patch for the KSC dataset was set to 7, 

and 60% of 
OT  was considered as training data. The results 

of classification with the three methods can be found in Table 

10. As shown in the table, the classification accuracy of the 

proposed method outperforms that of 3D-CNN slightly and 

that of 2D-CNN by 5%. However, it should be noted that the  

the computational time of our proposed method is less than 

the time needed for the 3D- CNN method. 

   We also compared our proposed method with the two 

above-mentioned methods for the Botswana dataset. Here, 

the size of the input patch was set to 11, and 60% of 
OT were 

used as training data. According to the classification results 

provided in Table 11, our proposed hybrid-CNN has better 

accuracy compared to the two other methods. Also, the 

accuracy of the 3D-CNN method is better than the accuracy 

of 2D-CNN for both datasets of Botswana and KSC. 

However, the 3D-CNN method requires more computational 

time compared to our proposed method and the 2D-CNN 

method.  

Table 10. Classification accuracies were obtained by 2DCNN, 3DCNN and our hybrid-CNN methods (with original training 

samples) for the KSC hyperspectral dataset. 
Patch Size 

Method 

 s = 7 s = 7 s = 7 

2DCNN 3DCNN Ours 

Scrub 98.05 (0.15) 97.37 (0.41) 94.56 (1.32)  

Willow swamp 86.40 (0.33) 98.60 (0.78) 97.21 (0.76)  

Cabbage palm hammock 97.44 (0.37) 98.32 (1.11) 95.75 (1.01)  

Cabbage palm/oak hammock 77.52 (0.25) 84.51 (0.13) 83.34 (3.98)  

Slash pine 83.13 (0.42) 81.42 (0.20) 90.95 (1.75)  

Oak/broadleaf hammock 97.61 (1.34) 90.12 (1.18) 99.44 (0.47)  

Hardwood swamp 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Graminoid marsh 92.90 (0.87) 98.45 (0.39) 94.67 (2.06)  

Spartina marsh 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Cattail marsh 69.51 (1.52) 98.19 (0.31) 97.02 (2.14)  

Salt marsh 99.12 (0.41) 100.00 (0.00) 100.00 (0.00)  

Mudflats 95.90 (0.17) 95.36 (0.17) 99.00 (0.94)  

Water 87.66 (0.47) 100.00 (0.00) 100.00 (0.00)  

Overall accuracy 91.01 (0.22) 95.92 (0.03) 96.11 (0.12)  

Average accuracy 91.17 (0.42) 96.56 (0.14) 96.45 (0.42)  
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4.3.3. Comparative Study 

    The computational times needed for the training and test 

of both Botswana and KSC datasets are presented in Table 

12. These results were obtained in the case that the size of 

the input patch is 7 and the number of epochs in the KSC and 

Botswana datasets is 200 and 100 respectively. According to 

the table, it can be said that the 2D-CNN method has the least 

computational time in training. As mentioned earlier, 

although the accuracy difference between our proposed 

method and the 3D-CNN method is slight, our proposed 

hybrid-CNN outperforms the 3D-CNN method in terms of 

computational time.  

Table 11. Classification accuracies obtained by 2DCNN, 3DCNN and our hybrid-CNN methods (with original training samples) 

for the Botswana hyperspectral dataset 

Patch size 

Training data 

S=11 S=11 S=11 

2DCNN 3DCNN Ours 

Water 91.08 (1.65) 100.00 (0.00) 100.00 (0.00)  

Hippo grass 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Floodplain grasses 1 94.21 (0.64) 100.00 (0.00) 100.00 (0.00)  

Floodplain grasses 2 97.34 (0.94) 97.34 (0.65) 100.00 (0.00)  

Reeds 89.43 (1.23) 92.70 (0.18) 100.00 (0.00)  

Riparian 97.54 (0.54) 91.96 (0.45) 100.00 (0.00)  

Fires car 91.57 (0.73) 96.01 (0.08) 100.00 (0.00)  

Island interior 85.82 (1.97) 91.54 (1.01) 100.00 (0.00)  

Acacia woodlands 90.67 (0.39) 98.05 (0.32) 100.00 (0.00)  

Acacia shrub lands 93.32 (1.04) 98.15 (0.51) 100.00 (0.00)  

Acacia grasslands 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Short mopane 97.29 (0.48) 96.51 (0.09) 100.00 (0.00)  

Mixed mopane 100.00 (0.00) 100.00 (0.00) 100.00 (0.00)  

Exposes soils 90.13 (0.42) 99.62 (0.05) 100.00 (0.00)  

Overall accuracy 93.26 (0.30) 96.75 (0.13) 100.00 (0.00)  

Average accuracy 94.17 (0.15) 97.27 (0.21) 100.00 (0.00)  

 

Table 12. The training time in minutes (m) and test time in seconds (s) for KSC and Botswana datasets using 2DCNN, 3DCNN 

and hybrid-CNN methods 

 

Data 

2DCNN 3DCNN Ours 

Train (m) Test (s) Train (m)   Test (s) Train (m) Test (s) 

KSC 2.9 1.3 18.3          10.4 3.5 3.1 

 Botswana  1.7 1.1 14.7            8.1 2.6 2.7 

 

4.3.4. Impact of the Training Sample Size 

    We ran the proposed hybrid-CNN algorithm with the 

different sizes of training data to test the accuracy of the 

proposed network in different training sample sizes. The 

results are presented in Figure 12. After increasing the 

number of training data, the accuracy of the proposed method 

does not change significantly for the Botswana dataset but it 

increases in the case of the KSC dataset. 
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Figure 12. Influence of sample proportion on overall accuracy for KSC (left) and Botswana (right) data set. 

 4.3.5. Evaluation of the Proposed Hybrid-CNN with 

Pavia University Dataset 

    Today, there are many hyperspectral images that allow 

comparing and evaluating the algorithms. At the end of the 

research, we want to analyze the proposed hybrid-CNN with 

complex data. For this reason, we used the Pavia University 

dataset.  

    The Pavia University dataset was collected by Rosis 

sensor. The acquired data originally consisted of 103 bands 

covering the 430-810 nm portion of the spectrum with 1.3 m 

pixel resolution. Only 103 bands were used after uncalibrated 

and noisy bands that cover water absorption were removed. 

The data used in this paper consists of 610 340  pixels 

with observations from 9 identified classified classes 

representing the land cover types. These labeled samples are 

shown in Table 13. The RGB images and ground truths (GT) 

of the HS data are shown in Figure 13. 

 

Table 13. Original labeled samples for Pavia University dataset. 

Class 
Pavia University 

Class Name Samples 

1 Asphalt 6631 

2 Meadows 18649 

3 Gravel 2099 

4 Trees 3064 

5 Painted metal sheets 1345 

6 Bare soil 5029 

7 Bitumen 1330 

8 Self-Blocking Bricks 3682 

9 Shadows 947 
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Figure 13. Original RGB and ground truth image of the Pavia University scene and name of samples 

from left to right, respectively 

    We also performed classification on the Pavia University 

dataset with the proposed Hybrid-CNN network. In this 

classification, we used 10% of the labeled samples as 

training data, 5% as evaluation data, and 85% as test data.  

The purpose of selecting little training data is to evaluate the 

compatibility of the hybrid-CNN network against the lack of 

training data. The number of epochs in this part was set to 

100. And finally, the classification results were obtained in 

the four values of s (patch size) for the Pavia University data, 

as shown in Table 14. 

    In this research, the parameters s were tested with four 

values of 5, 7, 9, and 11 for the Pavia University dataset. By 

choosing a large s, the network can take advantage of more 

spatial features but it may reduce the effect of the central 

pixel and makes the final result erroneous. Also, if the value 

of the parameter s is too small, the possibility of using spatial 

features is minimized. 

    As the results show in Table 14, the proposed hybrid-CNN 

network has performed well on Pavia University data. In this 

dataset, the best result (overall accuracy = 99.66, 99.20) was 

for s = 11 and s = 9 respectively. As shown in Table 14, the 

result for s = 5 was so bad that it highlights the importance 

of spatial features in classification. According to the results, 

the classification accuracy is high in most classes of this 

image, and only the Gravel class does not have the proper 

accuracy, which is also corrected by resizing s. Therefore, 

the extraction accuracy of this class also depends on the 

spatial and neighborhood properties of the pixel. The image 

was classified with and without a background as shown in 

Figure 14. 

Table 14. Classification accuracies were obtained by our hybrid-CNN (with patch sizes of s = 5, s = 7, s = 9, and s = 11) for the 

Pavia hyperspectral dataset. 

Patch Size 

Training Data 

s = 5 s = 7 s = 9 s = 11 

10% Samples 10% Samples 10% Samples 10% Samples 

Asphalt 98.15 100.00 100.00 100.00 

Meadows 99.21 100.00 100.00 100.00 

Gravel 76.06 94.67 95.34 97.03 

Trees 95.46 99.45 99.10 99.34 

Painted metal sheets 100 99.87 100.00 100.00 

Bare soil 99.00 100.00 100.00 100.00 

Bitumen 98.17 100.00 100.00 100.00 

Self-Blocking Bricks 98.19 98.65 98.95 99.91 

Shadows 99.04 100.00 98.18 99.21 

Overall accuracy 97.95 98.28 99.20 99.66 

Average accuracy 95.92 99.18 99.06 99.50 
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Figure 14. Classification results for Pavia University data set, that each row displays original ground 

truth (left), classification result without background (center), and classification result with background 

(right) with s = 5, s =7, s = 9, and s = 11 from upper row to lower row, respectively 



Akbari Dotappeh Sofla & Shah-Hosseini, 2022 
 

23 
 

5. Conclusion 

    In this research, we attempted to mitigate the problems 

associated with the classification of hyperspectral images 

including the lack of training data and extracting spectral and 

spatial information. To solve the problem of the lack of 

training data, we took advantage of K-Means and Multi-

resolution methods for segmentation to increase training 

data. The classification results showed that our results are 

improved with an increased number of training data. Also, 

we introduced a hybrid-CNN network to classify 

hyperspectral images by extracting both spectral and spatial 

data. This proposed network was a combination of 

Convolution3D and Convolution2D. Using Convolution3D, 

the spectral and spatial features were extracted in different 

depths and passed to the next layers in which Convolution2D 

was used to prevent computational complexity and to 

distinguish the pixels with similar textural features in 

different bands. Also, we compared our proposed method 

with different methods. The results demonstrated that the 

hybrid-CNN outperforms other methods in terms of 

classification accuracy and computational time. Finally, we 

used the Pavia University dataset to analyze the proposed 

hybrid-CNN. The results show the proposed hybrid-CNN 

network has performed well on Pavia University data. In this 

dataset, overall accuracy was 99.66 for s = 11. 
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