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ABSTRACT 

Evaluation of the cluster analysis results in spatio-temporal trajectories is more sophisticated than the same 

procedure in other data. Measuring clusters’ compactness and separateness requires defining an 

appropriate similarity function. Similarity definitions in trajectories are diverse and application-based. 

Positional similarity and the similarities of speed and direction, as elemental features of moving objects, 

are fundamental concepts in the trajectory similarity definition. In this paper, we present a new framework 

for evaluating trajectory clustering results based on the expert’s opinion on the definition of similarity. 

Specifically, the meaning of similarity is defined by the experts using the AHP method and based on the 

application context. Moreover, we propose a new index, which is utilized in estimating the optimal cluster 

number. Based on the obtained results, taking the application and the data structure into consideration is 

very influential in the evaluation process. To verify that they are not random, the one-way ANOVA test 

is carried out at the confidence interval of 95% to provide the significance test of the results. 
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1. Introduction 

The increasing availability of positioning devices 

equipped by GPS receivers, such as smartphones, which can 

be used to track moving objects, results in a significant rise 

in capturing and storing spatio-temporal data. The moving 

objects under study can be taxis (Kan et al., 2019; Yu et al., 

2019; Zhao & Stefanakis, 2018), animals (Ardakani et al., 

2019; De Cáceres et al., 2019), or aircraft (Hurter et al., 2014; 

Olive & Morio, 2019). Therefore, it is important to pay 

attention to effective methods for extracting useful and 

relevant knowledge from this large volume of data.  

Cluster analysis is an efficient technique commonly used 

to explore and extract interesting patterns in huge datasets. 

Since trajectories are traces of moving objects in space and 

time, we can gain knowledge of their typical behavior if we 

cluster them properly, which benefits modelling, simulation, 

and prediction of movement. Trajectory clustering aims to 

identify clusters in which the trajectories have the highest 

level of similarity while having the most substantial 

difference from those in other clusters. In order to detect 

similar trajectories and evaluate the similarity between two 

trajectories, a similarity function, i.e., the inverse of distance, 

is required. In contrast to regular point data, similarity 

measurement between trajectories is challenging and calls 

for an exact definition of the similarity concept (Magdy et 

al., 2017). Trajectories hold both spatial and temporal 

characteristics, which must be considered in the similarity 

measurement process. The definition of similarity can vary 

depending on the application domain and the user’s needs 

(Dodge et al., 2008). In other words, the similarity is defined 

in a way that fulfils the user’s perspective on the meaning of 

similarity. 

Extensive including internal andindices,reviews of

external indices, can be found in the previous works. 

(Deborah et al., 2010) is among studies on the evaluation of 
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trajectory clustering results that review research on the 

validation of clustering results. Besides, in (Arbelaitz et al., 

2013), 30 different indices were examined in varied 

environments and characteristics. In (Mao et al., 2017), a 

new distance named SDTW and external validity indices 

were utilized for the evaluation purpose. In (Niu et al., 2019), 

a new method is presented for trajectory clustering of road 

networks in which trajectories are modelled using the dual 

graph. They used internal indices such as Davies-Bouldin 

Index (DB), Akaike Information Criterion (AIC), and 

Bayesian Information Criterion (BIC) to evaluate the 

clustering results. 

Over the past few years, some studies devoted 

considerable efforts to the clustering evaluation issue, e.g. 

(Zhu & Ma, 2018) in which a new variance based clustering 

validity index (VCVI) was proposed. Moreover, in (Cheng 

et al., 2018), a new local core-based index was suggested, 

which assesses the clustering results for data of the arbitrary 

shape. Lee et al. (Lee et al., 2018) presented an index 

grounded on a support vector data description that computes 

the compactness of clusters in the kernel space and is 

independent of the cluster’s shape and noise. Some research 

has also been conducted on the evaluation of time-series 

clustering. In (Košmelj & Batagelj, 1990), a method for time-

series clustering evaluation was suggested, and a method was 

presented to estimate the optimal number of clusters 

(Baragona, 2001). An Overview of the most important 

literature is presented in Table 1. 

 

Table 1. Overview of the reviewed sources 

Authors Employed Method(s) Limitations 

Mao et al., 2017 external validity indices Not applicable for real life applications 

Niu et al., 2019 DB, AIC, and BIC 

Not considering the specific characteristics of 

trajectory data and cannot be used to for clusters with 

arbitrary shapes. 

Lee et al., 2018 
A support vector data description 

(SVDD)-based index Not considering the specific characteristics of 

trajectory data Zhu & Ma, 2018 VCVI 

Košmelj & Batagelj, 1990 A cross-sectional approach 

 

The conventional techniques of clustering evaluation are 

unable to consider the unique characteristics of spatio-

temporal data. These traditional methods simply use a 

distance function to measure the similarity between the point 

data. Spatio-temporal data, however, are multi-dimensional, 

complicated, and difficult to be visually displayed. Unlike 

time-series data that have a single, homogeneous space, this 

type of data owns a multiple heterogeneous space and might 

contain local shifts, noise, and outliers; hence, the analysis 

methods of time-series data should be cautiously used for 

spatio-temporal data. As far as we know, an appropriate 

framework for evaluating the trajectory clustering results 

seems to be missing. 

As we discussed above and regarding the importance of 

considering the user’s need to evaluate the clustering results, 

this study proposes a new framework for trajectory cluster ing 

evaluation based on the definition of similarity by taking 

users’ judgment on the meaning of similarity into 

consideration. Moreover, an index for trajectory clustering 

validation is presented, which is novel with respect to 

considering the special characteristics of trajectory data. Our 

study examines the proposed framework on massive volume 

datasets of taxis, vessels, animals, aircraft, and synthetic data 

to investigate the impact of data characteristics on the final 

results. 

 
 

2. Basic Concepts 

2.1.   Trajectory 

A trajectory is defined as a path of a moving object in 

spatial and temporal dimensions . The trajectory Tr can be 

formulated as Equation (1). Each sampling point on the path 

represents the captured position (x, y) at a specific time 

instance (t).  

(1) Tr  = {(x1, y1, t1), (x2, y2, t2), …, (xn, yn, tn)} 

2.2.   Clustering and Similarity Functions 

 Numerous clustering algorithms have been employed for 

trajectory clustering purposes. Among them, K-means and 

Agglomerative Hierarchical Clustering (AHC) are the most 

well-known and widely used ones. K-means is used to 

partition a dataset into K groups automatically, and it starts 

by selecting K initial clusters and then iteratively refining 

them to reach final cluster centers. On the other hand, AHC, 

the most common type of hierarchical clustering, groups 

objects into clusters based on their similarities. Each data 

point is initially treated as a separate cluster, and in the next 

step, combined with other clusters in each iteration until K 

clusters are formed. 

 Similarity must be calculated before the clustering of 

trajectories. In this regard, various functions have been 

proposed, each with its unique features. The most cited ones, 

which are well-established and highly popular for trajectory 
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clustering, are Euclidean (Priestley, 1980), DTW (Myers et 

al., 1980), Hausdorff (Huttenlocher et al., 1993 ), EDR (Chen 

et al., 2005), and ERP (Chen & Ng, 2004). We employed 

these similarity functions in our work, although their 

complete descriptions and equations are missed for the sake 

of space. 

2.3.   The AHP  

The AHP is a multi-criteria decision-making technique 

that simplifies complex decisions through a series of 

pairwise comparisons between criteria. Those criteria are 

determined by experts who are trying to achieve a specific 

goal. In our case, with the goa l of defining the meaning of 

similarity for trajectory clustering, the term “experts” refers 

to a group of people who set the desired application of the 

clustering and aim to extract relevant information regarding 

this application. For  the sake of space and length, this 

document does not include a thorough description of AHP, 

and the readers are referred to (Teknomo, 2006) for more 

details.   

3. The Proposed Method 

3.1. Motivations 

Internal validity indices assess the quality of clustering by 

means of properties intrinsic to the data without relying on 

any external information or ground truth. Compactness and 

separation are the two main criteria used in internal indices 

of quality assessment. From the spatial point of view, well-

defined clusters have higher within-cluster similarity and 

lower between -cluster similarity. However, the way the 

concept of similarity is defined remains a vague question that 

should be addressed. Definition of similarity must be set by 

experts based on the purpose of the clustering.  

Figure 1 demonstrates how considering the meaning of 

similarity is crucial in the clustering process. If the position 

is the most important parameter in defining similarity, we 

will have two clusters (C1 = [Tr1, Tr2, Tr3], C2 = [Tr4, Tr 5]). 

On the other hand, if the similarity of trajectories implies 

specifically the similarity of their directions, we will have 

three clusters (C1 = [Tr1], C2 = [Tr2, Tr4]), C3 = [Tr3, Tr5]). 

Consequently, we decided to propose a framework to 

evaluate the credibility of clustering results by employing 

experts’ opinions on the meaning of the similarity. In this 

regard, a credible clustering yields suitable results for a 

certain application context and satisfies the user’s 

perspective on the clustering purpose. 

  
Figure 1. Influence of the meaning of similarity in the 

clustering process 

3.2.   The Employed Criteria 

The movement has temporal, spatial, and spatio-temporal 

dimensions. Due to the existing time parameter in the 

definition of trajectory, enriching trajectory with movement 

characteristics such as speed and direction is essential to 

obtain a more meaningful similarity (Dodge et al., 2009). 

Adding such parameters, which are critical to the definition 

of movement, modifies the meaning of similarity.  

 In this study, in order to define similarity, we employ three 

main components of movement, including position, speed, 

and direction. This categorization enables the user to 

consider different aspects of similarity separately or 

simultaneously. In numerous applications, positional 

information is of higher importance than movement 

parameters such as speed and direction. Moreover, in some 

applications, clustering trajectories based on the spatio-

temporal similarity are quite restricting and might lead to 

either extraction of irrelevant patterns or missing some 

interesting ones. On the other hand, in many other 

applications, such as traffic monitoring, leaving parameters 

like speed and direction leads to unsatisfactory outcomes. 

Besides, in some contexts, other parameters might be 

important. For instance, flight directors might be interested 

in ROT (rate of turn). However, in the following, we 

explored the most common criteria for computing and 

defining the similarity in more detail, which are crucial for 

all applications. 

3.2.1.   The Positional Similarity 

  In many applications, the similarity of trajectories implies 

specifically the closeness of their physical location, and the 

information such as the speed and direction are of less 

importance. The Euclidean distance between trajectories is a 

simple yet efficient method for positional similarity 

measurement regardless of the temporal dimension. As a 

result, the Positional Distance (PD), the inverse of positional 

similarity, between trajectories Tr 1 and Tr2 is calculated by 

Equation (2). 

PD(Tr1 ,Tr2)=
1

m
∑Euclidean (Tri

1 , Tri
2)

m

i=1

 
 

(2) 
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where Tri
1 denotes the ith point on the trajectory Tr1. Two 

trajectories must be of the same lengths; otherwise, both are 

resampled at the same space interval by the interpolation 

method, and m is their length after this interpolation. 

3.2.2.   The Speed Similarity 

 Two trajectories are called similar regarding their speed 

when they move at the same speed, even if they are not close 

or in the same direction.  Along with the positional similarity, 

speed similarity between two trajectories is important in 

some applications like the detection of different transit 

modes. In clustering pedestrians, in order to distinguish those 

who run from those who walk, considering the speed 

similarity is more pivotal than the positional and direction 

similarities. In this similarity, first, the trajectory Tr is 

represented as a vector in an F-dimensional space:  

𝑉𝑇𝑟 = {𝑣1, 𝑣2, … , 𝑣𝑖 , … , 𝑣𝑛−1} ⊆ 𝑅
𝐹  (3) 

where n is the number of points in the trajectory and vi refers 

to the movement speed between two consecutive points i and 

i+1 and is obtained by the equation below: 

vi

=

√(xTr(i + 1) − xTr(i))
2
+ (yTr(i + 1) − yTr(i))

2

tTr(i + 1) − tTr(i)
 

(4) 

Thus, the Speed Distance (SD), the inverse of the speed 

similarity, between two trajectories Tr1 and Tr2 can be 

computed by Equation (5).  

SD =
1

m
∑|Vi

Tr1 − Vi
Tr2|

m

i=1

 (5) 

 

In this equation, m is the number of extracted speeds between 

two consecutive sampling points after equalization of the 

lengths of two trajectories. 

3.2.3.   The Direction Similarity 

In some applications, e.g., animals’ path clustering, in 

order to extract food search patterns, utilizing the positional 

similarity is not sufficient, but assigning trajectories with a 

similar direction to the same cluster is a more suitable 

approach. Direction illustrates how moving objects turn and 

twist through their paths in a spatial reference system. A 

trajectory can be shown as a sequence of directions between 

each two consecutive sampling points (Equation (6)). 

Expressing trajectories in this way made it independent from 

the starting point, i.e., from the trajectories’ spatial closeness. 

DT = [(dir1), …, (diri), …, (dirn-1)] (6) 

In this equation, n refers to the number of points in the 

trajectory, and diri can be obtained by exploiting Equation 

(7). In this equation, we employ the notion of azimuth, which 

is a simple way to demonstrate the orientation of a line and 

is measured clockwise from North. In case it is located in the 

first quadrant, dir is shown in Figure 2 

 
Figure 2. The visual demonstration of dir in the first 

quadrant 

 

dirTr,i =

{
 
 
 
 

 
 
 
    arctan (

xTr(i + 1) − xTr(i)

yTr(i + 1) − yTr(i)
) ; xTr(i + 1) ≥ xTr(i)  and yTr(i + 1) ≥ yTr(i)

π − arctan (
xTr(i + 1) − xTr(i)

yTr(i + 1) − yTr(i)
) ; xTr(i + 1) ≥ xTr(i)  and  yTr(i) ≥ yTr(i + 1)

π + arctan (
xTr(i + 1) − xTr(i)

yTr(i + 1) − yTr(i)
) ; xTr(i) ≥ xTr(i + 1)  and yTr(i) ≥ yTr(i + 1)

2π − arctan (
xTr(i + 1) − xTr(i)

yTr(i + 1) − yTr(i)
) ; xTr(i) ≥ xTr(i + 1)  and yTr(i + 1) ≥ yTr(i)

 (7) 

 

 

 

To achieve a more precise direction similarity, trajectories 

must be smoothed employing the moving average filter. We 

denote the Direction Distance, the inverse of the direction 

similarity, between two smoothed trajectories STr1  and 

STr2 as DD(STr1 , STr2), which can be calculated as: 

DD(STr1, STr2) =
1

m
∑|diri

STr1 − diri
STr2|

m

i=1

 (8) 

where  diri
STr1 is the movement direction between two 

consecutive points i and i+1 in the smoothed trajectory STr1, 

and m is the number of components of the movement 

direction in DT. 

 



Earth Observation and Geomatics Engineering 5(2) (2021) 132-144 
 

136 

3.3.   The MDBT index 

 Firstly, experts’ opinions on the relative pairwise 

comparison of positional, speed, and direction similarities 

are taken and then aggregated by the AHP so that the weights 

for each of the aforementioned similarities are adjusted. 

After calculating these coefficients and normalizing PD, VD, 

and DD distances between 0 and 1, the similarity between 

two trajectories is defined by Equation (9). 

(9) TD = Wp × PD + Wv × VD + Wd × DD + Wo × OD 

In this equation, the Wp, Wv, Wd coefficients are constant 

values related to the weights of positional, direction, and 

speed criteria, respectively. The term PD refers to the 

positional distance, VD shows the speed distance, and DD 

indicates the direction distance of trajectories obtained by 

Equations (2), (5), and (8), respectively. Moreover, experts 

are allowed to consider other important criteria, such as rate 

of turn and acceleration, based on their desired application 

using Wα and OD, in which OD is Other Distance functions 

and Wo is its weight. 

After defining the similarity, Modified Davies-Boulding 

for Trajectories (MDBT) is established, inspired by the idea 

of the classical Davies-Boulding index (Davies & Bouldin, 

1979), and is obtained as follows: 

𝑀𝐷𝐵𝑇 =
1

𝑘
∑ 𝑚𝑎𝑥

𝑗=1,…,𝑘,𝑖≠𝑗
{
𝑑𝑖𝑎𝑚(𝑐𝑖) + 𝑑𝑖𝑎𝑚(𝑐𝑗)

𝑇𝐷(𝑧𝑖 , 𝑧𝑗)
}

𝑘

𝑖=1

 (10) 

 

where k is the number of clusters, ci refers to the ith cluster, 

and zi is the representative trajectory of the cluster ci.  

Representative trajectories are trajectories that have the least 

TD distance with from other group members. If ni exhibits 

the size of the ith cluster, the diam(.) is computed using 

Equation (11). Figure 3 briefly describes the proposed 

framework.  

𝑑𝑖𝑎𝑚(𝑐𝑖) =  
1

𝑛𝑖
∑𝑇𝐷(𝑥, 𝑧𝑖)

𝑥∈𝑐𝑖

 (11) 

 

This index facilitates the comparison between different 

clustering methods by offering an intuitive numerical 

criterion that can also be implemented for all similarity 

functions and clustering algorithms. It is defined as the ratio 

of the within-cluster scatter to the between-cluster 

separation; consequently, the lower the index value, the 

better the clustering result. Since credibility measures how 

well clustering results match the user’s need, this index is an 

efficient one that assesses the credibility of the clustering 

result. That is because it is established based on the definition 

of the similarity between trajectories according to the user’s 

perspective. 

 

 
Figure 3. The general overview of the calculation of the MDBT index.
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4.   Implementation and Results 

4.1.   Datasets 

 Because small datasets could not reveal the actual 

clustering performance, five high-volume datasets are 

employed in this research. Due to the distinct navigation  

environments and geographic contexts, different types of 

trajectories differ in dynamic behavior, e.g., speeds, 

directions, sampling rates, and lengths. Therefore, 

trajectories of animals, ships, taxis, and aircraft together with 

synthetic trajectories are explored with each having unique 

characteristics. The data are introduced in Table 2 and 

displayed in Figure 4. 

 

Table 2. Data Introduction 

Title 
Number of 

Trajectories 

Number of Points 

on Each Trajectory 
Data Type Reference 

Antarctic 75 64 Animal (Tarroux et al., 2016) 

AIS 1200 1450 Ship 
https://sites.google.com/site/moving

objectsatsea/data-challenge 

CROSS 1900 13 synthetic (Morris, 2011) 

MIT 3500 115 Taxi (Wang et al., 2011) 

Flight tracks 4700 148 Aircraft http://www.flyquietsfo.com 

 

   

  

Figure 4. Visualization of Dataset: (a) Antarctic, (b), AIS (c) CROSS, (d) MIT, and (e) Flight. 

 
4.2.   Scenario Definition 

To enlighten the influence of the dataset on the 

performance of clustering algorithms, two major potential 

scenarios in trajectory clustering are assumed: first, with the 

main focus on the positional similarity of trajectories, and 

second, with the main focus on the speed and direction. It 

should be noted that we define Scenario A and Scenario B 

just for testing results, and the values in the pairwise 

comparison are hypostatical. 

    Scenario A:  Clustering the movement paths of workers in 

a workshop with the main focus on the closeness of the 

movement paths from the spatial aspect. The assumption is 

that the hypothetical experts believe that the importance of 

positional similarity is five times more than the speed 

similarity and three times more than the direction similarity, 

while the importance of direction similarity is two times 

higher than the speed similarity.  

(a) (b) (c) 

(d) (e) 

https://sites.google.com/site/movingobjectsatsea/data-challenge
https://sites.google.com/site/movingobjectsatsea/data-challenge
http://www.flyquietsfo.com/
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    Scenario B: Clustering birds’ flying paths with the focus 

on speed and direction similarities. Here the assumption is 

that the hypothetical experts think that speed and direction 

similarities are of equal importance, and their significances 

are five times more than the positional similarity. 

The pairwise comparison matrices for scenarios A and B 

are shown in Tables 3 and 4, respectively. Both of the tables 

were compatible according to the ratio 
CI

RI
<0.1. These tables 

represent weights for each criterion of similarity. 

 

 

 

 

Table 4. The pairwise comparison of criteria 

for Scenario B 

 PD SD DD W 

PD 1 0.33 0.33 0.14 

SD 3 1 1 0.43 

DD 3 1 1 0.43 

Sum 7 2.33 2.33 1 

Furthermore, in the following, to examine the effect of 

varying definitions of similarity concept on the evaluation of 

clustering results, seven major scenarios with their respective 

coefficients are introduced in Table 5. It should be noted 

these scenarios are hypostatical and we define them to 

analyze the performance of our framework. As an example, 

for scenario 6, in which the key parameters for similarity are 

speed and direction, WS and WD are adjusted to 0.5, whereas 

0 is assigned to WP. 

 

 

 

 

 

 

4.3.   Evaluating the Clustering Results Using the Proposed 

Framework 

4.3.1.   Clustering 

 In the first step, raw data (from Table 2) were prepared 

and pre- processed. The outliers are removed by applying the 

3-Sigma rule while the noise is eliminated from the data 

using a moving average filter (Figure 5). Then, datasets were 

clustered using the K-means and AHC algorithms and five 

highly ranked similarity functions, namely Euclidean, DTW, 

Hausdorff, EDR, and ERP. Datasets are clustered in different 

numbers of clusters (4, 7, 10, 13, and 16) in order to remove 

the effect of cluster numbers on the evaluation process.   

4.3.2.   Evaluation 

This section describes an investigation of the proposed 

framework and demonstrates how it can be effective and 

beneficial in two separate cases. The evaluation results of the 

first case, in which the aim is to clarify the influence of the 

dataset on choosing the appropriate clustering algorithms, 

are illustrated in Tables 6 and 7. It is clear from these tables 

that changing the datasets will lead to a change in the optimal 

similarity function.   

 

  
Figure 5. (a) The initial trajectory (red) and the trajectory after the outlier removal (blue) and (b) the 

initial trajectory (red) and the trajectory after the noise removal (blue).  

 

Table 3. The pairwise comparison of criteria 

for Scenario A. 

W DD SD PD  

0.65 3 5 1 PD 

0.12 0.5 1 0.2 SD 

0.23 1 2 0.33 DD 

1 4.5 8 1.53 Sum 

Table 5.  Different similarity concepts based on the scenario 

DW SW PW key parameters Scenarios 

0 0 1 only location Scenario 1 

0 1 0 only speed Scenario 2 

1 0 0 only direction Scenario 3 

0 0.5 0.5 location and speed Scenario 4 

0.5 0 0.5 location and direction Scenario 5 

0.5 0.5 0 speed and direction Scenario 6 

0.33 0.33 0.33 location, speed, and direction Scenario 7 

(b) (a) 

138 
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For instance, in Table 6, in the case of AHC clustering, for 

the Antarctic, AIS, CROSS, MIT, and Flight datasets, the 

best results are achieved from DTW, Euclidean, EDR, DTW, 

and EDR, respectively. However, in the case of K-means 

clustering, the proper similarity function is less influenced 

by the dataset. According to this table, for the Antarctic 

dataset, DTW, and for the other datasets, Euclidean distance 

has accomplished the best results. 

 When we change the scenario from A to B, although the 

superior distance functions for Antarctic and Flight datasets 

remain unchanged, the best distance functions for AIS, 

CROSS, and MIT datasets are altered. The other interesting 

idea here is that K-means demonstrates its best performance 

when it uses Euclidean as a distance function, and AHC gains 

its superior results if EDR is employed. 

In the second case, which intends to investigate the role of 

the application domain in the performance of clustering 

algorithms, all datasets are clustered using K-means and 

AHC algorithms and with the consideration of scenarios 

defined in Table 5. The corresponding evaluation results are 

illustrated in Table 8.  

The results of Table 8 are summarized in Figure 7. The 

horizontal axis shows scenarios 1 to 7, and the vertical axis 

demonstrates the number of scenarios in which a similarity 

function had been superior. For example, in scenario 1, the 

Euclidean function had performed better than others, and 

among all datasets and two clustering algorithms was six 

times the superior one. According to this figure, for scenarios 

two to seven, the optimum similarity functions are as 

follows: EDR, EDR, Euclidean, Euclidean, EDR, and DTW, 

respectively. These results highlight the impact of different 

definitions of similarity concept on the selection of the 

suitable similarity function. 

4.4.    Statistical Analyses 

Although the acquired results in Tables 6, 7 and 8 indicate 

varied efficiency of similarity functions in different datasets 

and applications, it is of key importance to determine the 

significance of superiority of a specific distance function 

compared to others and to verify that they are not random. 

To address this issue and to provide the significance test of 

results, the one-way ANOVA test is carried out at a 

confidence interval of 95%.  

The one-way ANOVA compares the means between the 

groups and determines whether any of those means are 

statistically significantly different from each other. Its null 

hypothesis is as follows: 

𝐻0 =𝜇1 = 𝜇2 =⋯ = 𝜇𝐾  (12) 

 

Table 6. The average values of the MDBT index for Scenario A. 

 

Antarctic     AIS  CROSS     MIT         Flight  

K
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A
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Euclidean 33.785 1.006 0.674 0.485 0.985 2.404 1.201 1.325 1.471 1.461 

DTW 1.354 0.913 0.774 0.624 1.018 2.633 1.255 1.102 1.595 1.566 

Hausdorff 2.974 1.791 1.487 0.638 2.5014 3.061 1.972 1.859 2.536 1.556 

EDR 1.442 1.165 0.990 1.035 1.8784 2.259 1.861 1.197 2.264 1.349 

ERP 1.425 1.338 1.325 1.308 1.344 2.756 1.519 1.483 1.805 1.789 

Table 7. The average values of the MDBT index for Scenario B. 

 

 Antarctic                AIS        CROSS MIT   Flight 
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Euclidean 32.857 1.569 1.674 1.554 1.561 1.651 1.497 1.625 2.230 2.291 

DTW 1.719 1.548 1.767 1.516 1.532 1.906 1.527 1.411 2.294 2.439 

Hausdorff 2.619 1.617 2.742 1.950 2.196 2.200 1.975 2.219 2.791 2.106 

EDR 1.753 1.565 1.761 1.272 1.995 1.448 1.715 1.244 2.640 1.350 

ERP 1.772 1.729 2.640 1.802 1.628 2.099 1.510 1.582 2.253 2.507 
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Figure 7. A summary of Table 8 on comparing the performance of different similarity functions 

Table 8. Comparison of the clustering results using the MDBT index for Scenarios 1-7. 

 Antarctic AIS CROSS MIT Flight 

 K-means AHC K-means AHC K-means AHC K-means AHC K-means AHC 

Euclidean 

1 40.847 0.717 0.496 0.267 0.859 2.757 1.238 1.256 1.380 1.451 

2 6.662 5.668 58.278 39.028 3.389 96.19 3.455 3.637 3.356 3.757 

3 2.590 1.972 4.240 3.850 1.6734 1.322 1.598 1.679 4.752 5.127 

4 39.623 0.894 0.863 0.409 1.3936 3.121 1.698 1.767 1.754 1.875 

5 23.735 1.310 0.874 0.722 1.0712 1.806 1.194 1.247 1.760 1.963 

6 2.796 1.978 4.571 4.133 1.6735 1.511 1.758 1.932 2.847 3.197 

7 23.056 1.303 1.024 1.043 1.338 1.942 1.357 1.431 1.793 1.931 

DTW 

1 1.398 0.898 0.655 0.396 0.845 3.331 1.373 0.996 1.570 1.411 

2 6.305 4.492 33.843 29.246 3.452 136.775 3.217 2.826 3.339 2.990 

3 2.389 2.048 3.940 2.655 1.511 1.172 1.495 1.409 4.689 4.157 

4 1.449 1.069 0.801 0.706 1.404 3.670 1.732 1.449 1.788 1.821 

5 1.494 1.080 1.043 0.823 1.123 2.038 1.232 1.050 2.8.2 1.756 

6 2.484 2.308 4.039 3.681 1.725 1.499 1.742 1.573 2.839 2.799 

7 1.547 1.200 1.178 0.856 1.338 2.173 1.358 0.974 1.898 2.044 

Hausdorff 

1 3.137 2.532 1.174 0.275 2.544 3.894 2.803 2.420 2.571 1.754 

2 7.974 5.042 80.405 56.267 4.805 62.921 3.212 2.872 3.253 2.732 

3 3.094 2.250 7.163 12.504 3.581 1.631 1.934 1.969 6.635 4.615 

4 3.320 1.984 1.702 0.290 2.578 4.113 2.443 2.369 2.318 1.821 

5 3.302 1.776 1.762 0.759 2.452 2.532 1.727 1.743 3.165 1.715 

6 3.343 2.300 6.445 11.844 2.644 1.755 2.042 2.332 3.235 2.714 

7 2.777 1.741 1.922 0.896 2.276 2.729 1.976 2.092 2.608 1.859 

EDR 

1 1.377 1.267 1.024 1.012 2.592 3.376 2.501 1.846 2.476 2.151 

2 4.984 2.916 26.278 14.897 3.603 19.175 3.430 2.064 3.076 1.975 

3 2.465 1.984 4.166 1.678 5.215 0.864 1.606 1.188 4.905 2.496 

4 1.454 1.166 1.261 1.134 2.049 3.327 2.538 1.734 2.177 1.098 

5 1.558 1.247 1.277 1.109 2.125 1.633 1.578 1.168 2.722 1.600 

6 2.492 1.826 4.350 1.739 2.238 1.131 1.771 1.397 3.024 1.741 

7 1.534 1.278 1.204 1.127 1.820 1.796 1.735 1.247 2.311 1.255 

ERP 

1 1.586 1.433 0.621 1.159 1.655 3.430 2.107 2.198 1.763 1.856 

2 5.323 6.644 51.956 44.851 3.520 136.938 3.185 2.940 2.988 3.954 

3 2.248 2.351 5.893 3.279 2.362 1.426 1.374 1.567 4.181 4.196 

4 1.628 1.514 1.314 0.847 1.969 3.596 2.265 2.006 1.751 2.197 

5 1.435 1.442 1.453 0.925 1.459 2.158 1.291 1.282 2.067 2.202 

6 2.363 2.423 6.546 3.130 1.793 1.553 1.594 1.740 2.573 2.959 

7 1.532 1.440 1.562 3.341 1.498 2.185 1.483 1.440 2.047 2.153 
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The results of the statistical test for Tables 6 and 7 can be 

seen in Table 9. According to these results, in scenario B, the 

superiority of DTW and EDR in AHC clustering of Antarctic 

and AIS datasets, respectively, are not statistically 

significant, implying that there are no significant differences 

in the MDBT index of superior distances than that of other 

distances. Nevertheless, the results of this table emphasize 

the statistically significant difference between other 

similarity functions in Tables 6 and 7, which highlight the 

substantial effect on the outcomes in case of inappropriate 

selection of the similarity function. For the sake of space 

limitation, the ANOVA test results for Table 8 are not 

indicated here. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.5.   Estimating the Number of Clusters 

This section aims to study the dependence of the optimal 

number of clusters on the intended application context. In 

some clustering algorithms, such as K-means, it is required 

that the number of clusters (K) is known in advance. The 

chosen value for K can vary depending on the intended data 

and application. In case the user is formerly ignorant about 

the value of K, the number of clusters must be determined in 

a way that suits the desired application.  

Clearly, the quality of the results is highly affected by the 

proper choice of K. One of the solutions for estimating the 

optimal number of clusters is calculating a validity index for 

different numbers of clusters and comparing the results. The 

user can simply use the visual display of index values to 

select the appropriate value for K. 

Take the case of scenarios (A) and (B), the optimal number 

of clusters is estimated using the MDBT index in Figures 8 

and 9. In this regard, AIS2009 is clustered (using K-means 

and DTW) with different numbers of K, and then, the MDBT 

index value is calculated for each k. As it can be seen from 

Figure 8, if the experts have the same intention of clustering 

as the scenario (A), K=8 and K=18 are more appropriate than 

their surrounding ks.  

 

 

 
Figure 8. Determination of the numbers of clusters based on the MDBT index for Scenario A. 

 

 

Table 9. Analysis of the one-way ANOVA for the results of Tables 6 and 7 

Data 
Scenario A Scenario B 

K-means          AHC K-means   AHC 

Antarctic 0.000 0.000 0.000 0.707 

AIS 0.007 0.002 0.006 0.368 

CROSS 0.008 0.000 0.006 0.001 

MIT 0.000 0.000 0.000 0.000 

Flight 0.000 0.006 0.000 0.005 
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Figure 9. Determination of the numbers of clusters based on the MDBT index for Scenario B. 

 

4.6.   Discussion   

 The results obtained in this study confirm that employing 

the evaluation framework that considers the application 

domain for assessing the trajectory clustering results is 

crucial. In other words, relying on similarity functions that 

defined the meaning of similarity based on their assumption 

without considering the user’s perspective on similarity will 

bring about a misleading evaluation.  

Moreover, according to the results in Tables 6 and 7, the 

performance of clustering algorithms is highly related to the 

data type. For instance, in scenario A on the Antarctic data, 

DTW with the MDBT index of 1.354 surpasses the other 

similarity functions when using K-means clustering. On the 

other hand, by shifting the data to MIT, the Euclidean 

distance with the MDBT index of 1.201 exhibits superiority 

over the rest. According to our results, some datasets behave 

similarly, and their superior similarity function and 

clustering algorithm are almost identical. Among our 

datasets, Flight and MIT act in the same way, suggesting they 

might have similar movement characteristics.  

 Overall, in scenario A, with the primary emphasis on the 

positional similarity, the performance of the Euclidean 

distance is higher for most of the datasets, indicating that if 

clustering aims at partitioning data based on their spatial 

closeness, the Euclidean distance yields the best result. On 

the contrary, in scenario B, in which the focus is not on 

positional similarity, the superior similarity function varies 

by different datasets. The other interesting fact here is that 

AHC exhibits its best performance when we use EDR 

distance. 

 A salient point in these results is the superiority of EDR 

in application contexts with an exclusive focus on direction 

similarity and speed similarity. Moreover, when users intend 

to have clusters in which trajectories are similar with regard 

to both speed and direction similarity, and regardless of their 

positional similarity, EDR distance surpasses all similarity 

functions. Nevertheless, when positional similarity is of high 

importance, like in scenarios 1, 4, and 5, Euclidean distance 

is the best option. DTW was the superior similarity function 

when all aforementioned similarities have equal importance. 

5.   Conclusion 

 The diversity of similarity functions and clustering 

algorithms, with each claiming dominance over the other, led 

this study to launch an inquiry into the evaluation of these 

similarity functions and algorithms. This research 

established a new framework for evaluating the performance 

of trajectory clustering algorithms which examined if 

outcomes correctly meet users’ needs and their application 

contexts. Due to the complexity in the definition of the 

similarity concept in trajectory data, evaluation is a 

challenging undertaking. The meaning of similarity can be 

highly diverse depending on the users’ perspective and the 

intended application, and thus assuming it as a constant 

concept will be fallacious. However, if we want to clarify the 

results of this research in a simple way and for practical 

applications, employing Euclidean distance is suggested 

whenever positional similarity is of high importance. On the 

other hand, in applications where direction and speed 

similarities are more important, using EDR is recommended. 

In this paper, we presented a new framework for evaluating 

trajectory clustering results by introducing the MDBT index, 

which uses the expert’s opinion in defining the concept of 

similarity between members of clusters. This new similarity 

employs three main types of similarity, including positional, 

speed, and direction similarities as its criteria whose weights 

are adjusted by the expert’s viewpoint and the AHP 



Moayedi et al., 2021 
 

143 

 

technique. Another contribution of this study is proposing a 

method for estimating the appropriate cluster number 

concerning the clustering application. This can be really 

helpful in real-world applications, in which determining the 

number of clusters has been always challenging. Moreover, 

in this research, the impact of data diversity on clustering 

performance is examined by using different datasets with 

huge volumes. 

It should be noted that, along with determining the optimal 

cluster number, the MDBT index can also be used to detect 

anomalies, compress, and segment trajectories based on the 

user’s perspective. In addition to the employed criteria of 

similarity, for future research, it is suggested that other 

similarities, such as semantic, rate of turn, and acceleration 

be considered in the evaluation of trajectory clustering 

results. Moreover, using fuzzy AHP might lead to more 

accurate results. 

High computational time was one of the most important 

limitations of this research. Although the sample size of the 

data used in this study was higher than many similar studies, 

access to more powerful and faster processing systems will 

lead to more reliable results. Another major limitation of this 

research is the precise definition of an expert. In this study, 

we tied clustering to expert opinion. However, determining 

the exact meaning of this phrase in different applications can 

be challenging. 

Overall, based on the acquired results of this research, it is 

highly recommended that the application context be taken 

into attention during the clustering evaluation process. 
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