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ABSTRACT 

Nowadays, the very large volumes of trajectory datasets generated by many users and applications offer 

many opportunities for deriving trends and patterns. Extracting patterns and outliers from people’s 

movements in urban networks is one of the directions worth being explored. For instance, detecting spatial 

and temporal similarities between trajectory data at different scales and levels of granularity is an 

important issue. The research developed in this paper introduces a framework based on PCA and K-means 

methods, and whose objective is to extract similar trajectories from raw trajectory datasets. The approach 

is first based on a prior characterization of a trajectory with a series of geometric and semantic descriptors. 

Next, an application of several measures of entropy favors the statistical evaluation of the internal 

distribution of the main trajectory primitives. Last, and this is the main contribution of this paper, a PCA 

method is applied to reduce the dimension of the generated primitive data, and finally a K-means 

clustering technique is used for deriving similarity measures between different trajectories. The whole 

framework is experimented on top of the Geolife public domain dataset that includes several hundreds of 

human trajectories in the city of Beijing. The results that emerge show that the whole approach allows for 

the detection of trajectory similarity patterns using either physical or geometric criteria. Also, similarity 

detection could be applied for various direction and scales. 
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1. Introduction 

Nowadays, trajectory data often available with emerging 

sensor- promisingshould providebased technologies

opportunities for a better understanding of people’s 

movement in urban environments. While such perspectives 

open several opportunities for many applications such as 

traffic management and planning, there is still a need for the 

development of appropriate data integration, manipulation, 

and mining techniques. In particular, and in order to 

develop successful data analysis mechanisms, there is first a 

need to characterize what is a trajectory and how to model 

it. The challenge is not so complex at hand and this leads us 

to informally represent a trajectory by starting and ending 

 

points, and the main semantic and geometric primitives that

should represent the main internal behavior and dynamic of 
a  trajectory.  Another  required  objective  is  to  reduce  as 
much  as  possible  the data  volume  embedded  by  a  given

trajectory, and this  favors  further processing  steps. Indeed, 
the  objective  is  to  provide  a  semantic  and  geometric 
representation  of  a  given  and  then  a  set  of  trajectories, 
providing  the  analytic  tools  to  understand  the  patterns  and 
trends  behind,  this  possibly  providing  valuable  assets  for

urban  planners  and  decision-makers (LIN  et  al.,  2014).  In 
fact,  such  urban  patterns,  as  derived  from  large  trajectory 
datasets,  should  reveal  urban  patterns,  the  way  these 
trajectories generate  trends in space and time, the  volumes
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of traffic generated and how those differ in space and time. 

For instance, detection of high or uncommon traffic patterns 

will be a valuable contribution for urban infrastructure 

planning and development as well as for resolving some 

traffic issues (Aung & Naing, 2014).  

The development of appropriate algorithms and data 

mining processes should consider the spatial, temporal, and 

semantic dimensions within integrated approaches. The 

peculiarities that are considered in this paper are similarities 

and differences that can be exhibited from a large data 

trajectory repository in order to find similar trajectories 

according to origin-destination, scale, and direction 

patterns. This leads us to explore and study the notion of 

similarity, and this according to the spatial and temporal 

dimensions considered (Cao et al., 2005). In our previous 

work, the main intrinsic trajectory characteristics have been 

identified. Direction, start and end points, sinuosity, 

curvature, and relative distances have been considered and 

identified as key spatial primitives (Buchin et al., 2011). 

Similarly, start and end time, stop points, as well as 

temporal distances between representative and key internal 

points of a given trajectory, have been also considered, as 

well as some derived properties such as velocity and 

acceleration (Demšar et al., 2015).  

Most current methods oriented to the analysis of 

trajectory similarities can be divided into two groups. A 

first category applies a systematic evaluation of the distance 

between the respective characteristic points of two given 

trajectories (Buchin et al., 2011). A second category 

decomposes some given trajectories in a series of primitive 

segments according to some geometric and dynamic 

parameters and compares them accordingly (Buchin et al., 

2012). A trend that also emerges in many studies is the 

generation of some median trajectories that highlight the 

main trajectory patterns. A limitation of these approaches is 

that most of them apply a systematic comparison of the 

trajectory points, this being expensive from a computational 

point of view as well as not very efficient as no difference 

is made between basic primitive points and the ones that 

embed some noticeable semantic. Moreover, most existing 

approaches focus on trajectory length, origin, and 

destination when searching for clusters but not additional 

trajectory properties. This issue is the main subject of this 

paper and leads us to introduce a semantic-based approach 

where first so- critical points of a trajectory are identified 

according to some geometric and dynamic properties. The 

distribution of these critical points is quantitatively 

evaluated by a series of entropy-based measures. In order to 

reduce the resulting computational complexity of these 

measures, as well as their legibility, we applied a Principal 

Component Analysis (PCA) whose objective is to transform 

the components of a given trajectory towards the most 

principal components representing the maximum 

eigenvalues. We postulate that this favors trajectory 

clustering that will be executed using a K-means method. In 

abstract, the main goal of the proposed method is to 

evaluate if the entropy measures of physical and geometric 

criteria are suitable for similarity measuring of trajectories. 

Some advantages of the proposed framework are 

described as following. First, the proposed method is 

representing a spatial-temporal distribution-based measure 

considering physical and geometric descriptors. So, it 

makes possible the similarity comparison of trajectories 

from one or some descriptors separately or combinatory. As 

a result, comparison of too sophisticated trajectories 

becomes possible without regarding the functions that are 

used in previous studies. Furthermore, a positive point of 

proposed method is detection of similar geometric 

trajectories in scattered direction, start and end points and 

distances. So, their results can be used in detection of 

geometric patterns in different scales and directions  

The rest of the paper is organized as follows. First section 

2 reviews related work while section 3 introduces the main 

principles of our framework. The approach is evaluated by 

a report on the implementation developed so far in section 

4. Last Section 5 concludes the paper and draws some 

perspectives for further work. 

2. The Related Work 

Over the past few years, the analysis and search for 

trajectory similarities based on physical and geometric 

descriptors have been the object of several research works. 

According to (Parent et al., 2013), stop points provide for 

instance valuable inputs for studying and differencing 

trajectory data. In fact, a key issue relies on the 

identification of effective descriptors. Events and activities 

associated with either stop points or movements can give 

useful insights for studying trajectory differences and 

similarities (Asakura & Hato, 2004; Hofmann et al., 2009; 

Hornsby & Cole, 2007; Lee et al., 2011; Lee et al., 2008; 

Pelekis et al., 2009; Perttunen et al., 2015; Robinson et al., 

2017; Zheng et al., 2010; Zhou et al., 2015). When 

considering geometric properties, structuring a trajectory by 

segments based on curvature points has been suggested as a 

valuable method for identifying the main characteristics and 

then facilitating the search for trajectory patterns (Bashir et 

al., 2007; Harguess & Aggarwal, 2009 ; Himberg et al., 

2001; Kafkafi & Elmer, 2005; Kafkafi et al., 2009; 

Soleymani et al., 2014). Additional parameters such as 

velocity (Asakura & Hato, 2004; Dodge et al., 2009; Fang 

et al., 2009; Lu et al., 2015; Soleymani et al., 2014; Zheng 

et al., 2010), direction (Asakura & Hato, 2004; Aung & 

Naing, 2014; Gao et al., 2013; Lee et al., 2008; Lu et al., 

2015; Monreale et al., 2009; Pelekis et al., 2009; Perttunen 

et al., 2015; Zheng et al., 2010), turning points and angle 

(Dodge et al., 2009; LIN et al., 2014; Monreale et al., 2009; 

Soleymani et al., 2014), acceleration (Dodge et al., 2009; 

Dodge et al., 2011; Zheng et al., 2010), sinuosity (Aung & 
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Naing, 2014; Dodge et al., 2011; LIN et al., 2014; 

Soleymani et al., 2014), distance (Asakura & Hato, 2004; 

Cao et al., 2005; Dodge et al., 2009; El Mahrsi & Rossi, 

2012; Fang et al., 2009; Gonzalez et al., 2008; Lee et al., 

2011; LIN et al., 2014; Morzy, 2007; Pelekis et al., 2009), 

travel time surely provide additional insights (Dodge et al., 

2008; Giannotti & Pedreschi, 2008). When considering 

large trajectory datasets, searching for outliers that deviate 

from median trajectories in both space and time has been 

studied in related work (Dodge et al., 2009; Laube & 

Purves, 2011). One common difficulty of all these methods 

appears at the computational level, especially when dealing 

with large trajectory datasets. 

In order to improve processing times, a given trajectory 

should be filtered by keeping the most relevant points 

according to the most relevant geometric descriptors. 

Several algorithms have been already explored to do so 

using spatial and temporal descriptors such as turning 

points, directions, sinuosity, and speed (Buchin et al., 2011; 

Dodge et al., 2009; Lin & Hsu, 2014). A key issue when 

applying a filtering algorithm to a given trajectory is the 

identification of the most relevant geometric descriptors, 

the ones that make sense with respect to the application 

domain considered, as well as avoiding dependent 

parameters. For instance, curvature and direction, speed and 

acceleration, are dependent descriptors that should not be 

considered together. Most of the studies we are aware of 

and mentioned in this section show that almost all of these 

methods are oriented to the detection and extraction of 

movement pattern process all trajectory points or applied 

some geometrical filters that do not take into account the 

whole semantics of the considered trajectories. This leads 

us to propose an approach that first decrease the number of 

trajectory points during the analysis process to a meaningful 

level of critical points. The objective is to decrease 

processing time by reducing trajectory data volumes. The 

second peculiarity of our method is that it combines a series 

of geometric and physical descriptors that also considers 

both the spatial and temporal dimensions. 

3. The Proposed Method 

Overall, two important issues are hereafter considered as 

fundamental assumptions for the development of our 

approach. The first one is the identification of the minimum 

and most relevant geometric descriptors to characterize a 

given trajectory. The second one is to apply a statistical 

evaluation of the internal distribution of the main trajectory 

primitives using spatio-temporal entropy measures 

introduced in our previous work (Hosseinpoor Milaghardan 

et al., 2018b). Next, we introduce a PCA method to reduce 

the dimension of the generated primitive data as the number 

of included physical and geometric criteria will increased. 

Moreover, there is a significant demand to detect and find 

the most affecting criteria on separating the trajectories. and 

finally, a K-means clustering technique for deriving 

similarity measures between different trajectories. It is an 

unsupervised clustering method that can effectively find the 

most number and distribution of trajectory divisions. Figure 

1 summarizes the different components of the whole 

methodological approach. 

3.1. Critical Points Detection  

The first objective is to derive a minimum number of 

critical points while considering the physical and geometric 

characteristics of trajectory data. Geometric descriptors 

include curvature, turning, and self-intersection points. The 

first two parameters show the shape and geometry of 

trajectory while the self-intersection parameter is applied 

for detection and separation of self-intersecting points. 

Physical descriptors include stop status or user movement 

and velocity. We apply a convex hull structure on 

trajectories that for any curvature on that trajectory a 

Convex Hull (CH) structure is formed. In the example 

presented in figure 2 Convex Hull are formed such as 

CH1={P1,P2,P3,P4,P5,P6,P7} ,CH2={P7,P8,P9,P10,P11,P12}, 

CH3={P12,P13,P14,P15,P16,P17,P18}, and 

CH4={P18,P19,P20,P21,P22,P23,P24,P25,P26,P27,P28}.  

Turning Points: Differences between a straight 

trajectory and a complex one can be revealed by differences 

in curves. Keeping the main geometric properties of such 

trajectories requires a series of parameters that can show the 

position, number, and form of these curves.                       

Curvature Points: Each curve identified in a given 

trajectory encapsulates primitive features and forms that can 

be studied using the distance between turning points and 

sinuosity. 

Self-intersected trajectories: Self-intersections 

generally arise in many trajectories, but one should make a 

difference between noisy self-intersections that should be 

eliminated, and larger self-intersections that are common in 

many contexts such as maritime lines or animal migrations 

to mention some basic examples. This is why appropriate 

filtering mechanisms should be designed to detect them 

(Hosseinpoor Milaghardan et al., 2018a). 

Stop points: When considering time as an additional 

dimension stop points are mandatory primitives to take into 

account as these often denote some specific activities. 

Detection of these stop points is based on an application of 

Dempster-Shafer's theory and belief and non-belief 

functions (Milaghardan et al., 2018).  

Speed and acceleration: Velocity is derived for all 

relevant trajectory points as well as accelerations, these 

providing additional parameters of interest to take into 

account. 

All the above properties are detected and saved 

accordingly as additional parameters of a given trajectory, 

and this is at the trajectory point levels. A comprehensive 
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graph is derived from the starting to the ending points and 

along the trajectory respective primitive points associated 

with the primitive attributes mentioned above. The nodes of 

this graph include geo-referenced critical points while edges 

keep spatial and temporal distances between them.  

 

 
Figure 1. Method flowchart 

 
Figure 2. Trajectory convex hull 

3.2. Spatial-temporal Entropy calculation 

Let us develop the principles of the entropy method and 

how it can be used to detect trajectory similarities according 

to the critical points and associated parameters considered 

as introduced in our previous work (Hosseinpoor 

Milaghardan et al., 2018b). First the measures of spatial 

(HS
i ) and temporal (HT

i ) entropies are defined as follows 

(Hosseinpoor Milaghardan et al., 2018b). 

HS
i = − ∑

di
int

di
ext

n
i=1 pilog2(pi)                                                  (1)    

  HT
i = − ∑

tdi
int

tdi
ext

n
i=1 pilog2(pi)                                                  (2) 

The inner distance of class i denoted di
int represents the 

average of distances between entities of class j. Similarly, 

the external distance di
ext and represents the average of 

distances between entities of class i and entities from other 

classes. 

When applying the spatio-temporal entropy to the cross-

analysis of the properties of two given trajectories, every 

physical and geometrical parameter, previously introduced 

in section 3.1, is first associated with spatial and temporal 

entropy measures. Therefore, trajectory clusters are derived 

according to similar entropy values. The next goal is to 

introduce a spatial-temporal entropy matrix for all trajectory 

data. In order to give a relatively complete view of the 

problem, the temporal and spatial entropy values of each of 

the trajectories for the different classes are schematically 

presented in this matrix. The dimension of this matrix is 
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(2m + 2) × n) where n denotes the number of trajectories 

considered, while m denotes the total number of semantic 

and geometrical parameters, and T1, T2, …, Tn represent the 

id of trajectory 1, trajectory 2, and trajectory n, respectively 

(Table 1). Let us introduce an example of derived entropy 

values of entropies for the two trajectories 47 and 56 

extracted from the sample dataset (Figure 3). 

The results presented in table 2 can be used to describe 

the semantics aspects of the trajectories 47 and 56, and for 

further comparison based on the predefined parameters. For 

example, the results show a close similarity when 

considering the temporal dimension (i.e., a small difference 

in temporal entropies 0.335 and 0.359 as well as for 

curvature values 0.32 and 0.27 trajectories for trajectories 

47 and 56, respectively), while not when considering the 

spatial dimension (i.e., the higher difference in spatial 

entropies 0.376 and 0.287; curvature values 0.53 and 0.18 

for trajectories 47 and 56 respectively).  

 
Figure 3. Example trajectories 47 and 56  

 

Table 1. Spatial-Temporal entropy matrix 

 T1 T2 T3 . . . Tn 

Spatial 

Spatial Entropy V1,1 V1,2 V1,3 . . . V1,n 

Physical 

measure 

speed .    . 

stop .    . 

Geometric 

measure 

Curvature .    . 

Turning      

Intersection      

Temporal 

Temporal Entropy      

Physical 

measure 

speed      

stop      

Geometric 

measure 

Curvature      

Turning      

Intersection V12,1 V12,2 V12,3 . . . V12,n 
 

Table 2. Matrix example for trajectories 47 and 56 

 Trajectories 

47 56 

Spatial 

Spatial Entropy 0.376 0.287 

Physical measure 
speed 0.34 0.51 

stop 0.11 0.14 

Geometric 

measure 

Curvature 0.53 0.18 

Turning 0.38 0.46 

Intersection 0 0 

Temporal 

Temporal Entropy 0.335 0.359 

Physical measure 
speed 0.29 0.53 

stop 0.36 0.28 

Geometric 

measure 

Curvature 0.32 0.27 

Turning 0.41 0.49 

Intersection 0 0 
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3.3. Dimension Reduction 

Due to the large number of features embedded in a 

spatial-temporal entropy matrix, ineffective features should 

be identified in order to reduce the features space 

dimension. We applied a PCA in which each of the 

considered parameters, along with their critical points, is 

considered as a vector. The purpose is to find alignments in 

space in which these parameter vectors have the most 

relative variance. For this purpose, the eigenvalues of this 

matrix are extracted from a covariance matrix and the main 

components are prioritized according to the highest 

obtained eigenvalues. The objective is to search for a linear 

function a1
′ X of the elements of X having a maximum 

variance, where a1 is a vector of p constants a11, a12, … , a1p 

and ‘ denotes transpose, so that (Jolliffe, 2011) 

a1
′ X = a11x1 + a12x2 + ⋯ + a1pxp = ∑ a1jxj

p
j            (3) 

where the respective a1 parameters denote the respective 

values of the geometric and physical parameters introduced 

in the previous section.  

One important goal is to find the correlation between the 

parameter vectors for each considered class. A squared 

score matrix is used to determine the coefficient of 

influence of each of the parameters in the main 

components. In fact, one of the goals is to find the number 

of main components that represent the most variance 

between the considered classes. The eigenvalues of the 

principal components can be used as an enhancement 

parameter to select the most detective components. The 

components with the largest values of eigenvalues are 

selected as principal components. The eigenvalue can be 

described as follows: 

a1
′ ∑ a1 = a1

′ λa1 = λa1
′ a1 = λ                                        (4) 

where λ is an eigenvalue of ∑ and a1 is the corresponding 

eigenvector. A component can be considered as a principal 

component when the related eigenvector is as large as 

possible (Jolliffe, 2011). 

The higher the number of these components, the lower 

the class dependencies will be. A square cosine coefficient 

denotes differences between the derived coefficients of the 

aforementioned classes for each component. The next step 

is to select the number of sufficient numbers for 

components. The cut off condition is described as follows: 

v >  
vmax

10
                                                                         (5) 

where v denotes the variability of the considered 

component and vmax the maximum variability. A small cut 

off value as related to vmax is selected as the first 

component exhibits around 90% variability, so small 

variability values will not help to discriminate the 

considered objects. 

3.4. Similarity Detection 

The final part of this approach is the extraction of similar 

patterns among trajectory data. Two important issues and 

initial conditions are considered. First, the number of 

hidden patterns in the trajectories should be unclear, and the 

search for patterns must be non-supervised. The proposed 

STE-SD structure applies a K-means clustering method to 

detect trajectory similarities. The K-means algorithm takes 

an input parameter, k, and partitions a set of n objects into k 

clusters so that the resulting intra-cluster similarity is high, 

but the inter-cluster similarity is low. Cluster similarity is 

measured with respect to the mean value of the objects in a 

cluster, which can be viewed as the cluster’s centroid or the 

center of gravity (Miller & Han, 2009). The K-means 

algorithm proceeds as follows. First, it randomly selects k 

objects, each of which initially represents a cluster mean or 

center. For each of the remaining objects, an object is 

assigned to the cluster to which it is the most similar, based 

on the distance between the object and the cluster mean. It 

then computes the new mean for each cluster. This process 

iterates until the criterion function converges. Typically, a 

square-error criterion is used, and defined as follows: 

E = ∑ ∑ ⃓p − mi⃓
2

p∈ci

k
i=1                                              (6) 

where E is the sum of the square-error for all objects in 

the data set; p is the point representing a given object; and  

mi is the mean of a cluster  ci (both  p and  miare 

multidimensional).  

The objective is to achieve the best clustering, in order to 

reduce the variance of the distance within the clusters and 

to increase the variance of the distance between the clusters 

that can be derived using Eq.6. The number of clusters has 

been specified using the clustering parameters including in-

class and between-class variance in order to select the 

optimum value. The clustering is performed in the reduced 

dimension space (i.e., that results from the PCA) derived 

from a spatial-temporal entropy matrix. One of the 

properties of the proposed method is the ability to extract 

some patterns based on different parameters. In other 

words, the K-means method, as derived from the spatial-

temporal entropy matrix, can extract some patterns using 

parts of all of the spatial and temporal properties. Therefore, 

by identifying the main components, clustering is done 

separately and with arbitrary variables. Accordingly, it is 

possible to study and extract some temporal and/or spatial 

patterns, as well as their relations to each. This allows for 

the analysis of similarities between different patterns. For 

example, this feature can be used to extract temporal-

geometric patterns or spatial-physical locations. Each of 

these patterns can be used according to the application and 

needs of studies with less computational volume and higher 

accuracy. 

4. Experiments 

Let us introduce the implementation experimented so far. 

We first describe the dataset used and then the results of the 

implementation. The principles of our approach are applied 
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to a large urban trajectory dataset available in the city of 

Beijing. The Geolife project collected a large repository of 

urban trajectories recorded by taxis, buses, or even human 

beings equipped with GPS receivers from 2007 to 2012 

(Zheng et al., 2009). The main advantage of this reference 

dataset is that is fully available, and it has been largely used 

as a benchmark database for further research and studies. 

For the objective of our experiments, we selected a sample 

of this database made of 326 trajectories that reflect a 

relatively large variety of human displacements made either 

by taxis, buses, or even walking as presented in Figure 4. 

These trajectories overall represent 83412 trajectory points 

and a total distance of 672195 m. The shortest trajectory 

covers a distance of 8.54 m while the longest one is 14408.2 

m, the mean length of these trajectories is 2417.97 m. 

Likewise, the mean sampling distance covered between two 

trajectory points is 10.21 m and the mean sampling time is 

5.11 seconds. 

 

Figure 4. 326 trajectories selected for the implementation

4.1. Implementation 

According to the explanations provided in the 

methodology section, the proposed STE-SD method 

involves four main steps and is hereafter presented in four 

separate sections. In the first step, critical points are 

identified for each physical and geometric descriptor, and 

their results are used as input data for the second step. 

Further, taking into account the equations presented in the 

second section, spatial and temporal entropies and 

information criteria are calculated and a spatial-temporal 

entropy matrix is derived. In the third step, the space of the 

matrix variables is reduced to the core component space. At 

the final step, similar spatio-temporal patterns are 

identified. The evaluation of the results is presented at the 

end of this section. 

4.1.1 Critical Points Detection 

A convex hull geometric structure has been implemented 

for 326 trajectories and gave 7498 convex hulls. In fact, the 

generation of convex hull structures implies specific 

primitive values that differ from other trajectory properties. 

For example, trajectories 64 and 68 are geometrically 

similar but have 76 and 92 convex hull structures, 

respectively (Figure 5) while the start and end points of 

these two trajectories are similar. However, convex hulls 

with either a distance lower than 0.02D (D denoting the 

trajectory length) and convex hulls with less than four 

points are removed from the resulting convex hulls. 

Accordingly, 2317 structures were removed from the 

generated convex hulls. Table 3 shows the number of 

deleted convex hulls per trajectory category together with 

their critical points. The results highlight the number of 

deleted convex hulls per category of trajectories, with the 

largest numbers for trajectories with lengths between 800 

and 1200 meters.   

Next, critical points
 
for speed that denote speed changes 
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apart from stop points were further considered. This overall 

gives 5720 points. The distribution of these points 

according to different trajectory categories is presented in 

Figure 6. 

 

Figure 5. Similar trajectories 64 and 68 but with different convex hulls 

Table 3. Filtering of trajectory convex hulls. 

Properties 
Category 

1 2 3 4 

Length of trajectory 0-1000 1000-4000 4000-8000 8000-15000 

Number. of Trajectories 56 82 127 61 

Number. of Primary CH 510 1245 3910 1833 

Number. removed CH 63 235 1376 639 

The variance of Distance to CH line 3.41 7.33 14.57 17.20 

Number. of Curvature points 447 1010 2534 1194 

Number. of Turning points 449 1012 2536 1196 

Number. of Intersection points 5 26 58 31 

 

 

Figure 6. Box Plot graph of the temporal distribution of speed critical points per category 

 

Figure 6 shows that there are substantial differences 

between speed behaviors over time when considering 

trajectory lengths. The minimum temporal difference is 

exhibited in group 1 with values from 18 to 37 seconds 

while the maximum time interval is obtained in group 4 

with values of 76 to 236 seconds. The next physical 

parameter considered is the status of the movement of the 

trajectory points, in other words, the identification of the 

stop points. The detection of stop points is far from being a 

straightforward task when especially considering the notion 

of uncertainty. In related work, we introduced an approach 

based on the Dempster-Shafer theory of evidence, and 
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whose objective is to detect trajectory stop points and 

associated degrees of uncertainty (Milaghardan et al., 

2018). The minimum, maximum, and average values of the 

Belief, disbelief, and uncertainty of all trajectory points 

including the identified stop points are given in Table 4. 

The maximum values of belief denote a high probability of 

stop points, while maximum values of disbelief show 

probable movement points. Note that high uncertainty 

values denote unknown situations for the considered points. 

 

Table 4. Belief, non-belief, and uncertainty values for identifying stop points 

For Stop points For all points  

Average Maximum Value Minimum Value Average Maximum Value Minimum Value 

0.834 0.945 0.723 0.864 0.945 0.09 Belief 

0.145 0.27 0.12 0.448 0.894 0.02 Disbelief 

0.125 0.19 0.06 0.135 0.23 0.04 Uncertainty 

 

 

4.1.2 Spatial and Temporal Entropies 

The first step for deriving spatial and temporal entropy 

values is to obtain the spatial and temporal distances 

between critical points, as well as the five intended physical 

and geometrical parameters. Therefore, spatial distances of 

326 studied trajectories were calculated as the Euclidian 

distance between consecutive critical points of each 

parameter, as well as temporal distances (Figure 7).  This 

figure shows the direct relationship between temporal and 

spatial values for all parameters except for the stop 

parameter, which includes the maximum spatial distance of 

1073.6 meters and the lowest temporal distance of 68 

seconds. 

Calculation of the information criterion for each of the 

parameters requires obtaining their internal and external 

spatial and temporal distances. Therefore, using the spatial 

and temporal distances of the critical points of the 

parameters, as well as the internal and external distances 

were calculated. The average results of these calculations 

for the parameters of 326 studied trajectories are presented 

separately by the time and spatial values in Table 5. 

One of the important trends that appears from the spatial 

values in Table 5 is the difference between the average 

internal distance, and the average distance of consecutive 

critical points presented in Tables 6 and 7. The values of 

Table 4 show the spatial distance between two consecutive 

critical points of each class, while the internal values of 

Table 5 show the average distance between any point of the 

class and other points of that same class. The external 

spatial values show the average distance between the points 

of each class and the other points. Table 5 shows that there 

is a mean of 1099.7 meters between every two considered 

stop points while the temporal distance mean is 672.0 

seconds. This overall shows a 10min average per km this 

being a relatively slow value for buses and taxis while 

acceptable for walking patterns. The figures that appear 

from the critical points show the respective complexity 

numbers of the different physical and geometrical 

parameters according to their spatial and temporal 

dimensions as well as the fact that the two are not 

completely correlated. After calculating the values of the 

internal and external distances for the different parameters, 

the spatial and temporal information criterion of each of 

them is obtained. Spatial and temporal entropies are 

calculated independently for each trajectory. After 

calculating entropy and information criteria for the desired 

data, the spatial-temporal entropy matrix is formed, which 

is then used as input for the next step. 
 

 

Figure 7. Relationship between spatial and temporal distances of the physical and geometrical descriptors 
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Table 5. Average of internal and external spatial and temporal distances 

Geometric Parameters Physical Parameters  

Intersection Curvature Turning Speed Stop 

744.5 1351.8 1669.5 1425.2 1099.7 Internal Distance Spatial 

2185.3 1922.8 1905.2 1886.5 1733.9 External Distance 

406.3 983.2 1297.1 844.7 672.0 Internal Distance Temporal 

8341.6 5447.0 6621.3 4521.6 2184.9 External Distance 
 

 

 

4.1.3. Dimension Reduction 

The third part of the proposed method consists of the 

dimension reduction of the spatial-temporal features of the 

spatial-temporal entropy matrix which was described in the 

previous section. The proposed method applied is the PCA 

method. Therefore, 96 trajectories of the sample data with 

various lengths were used to identify the coefficient of 

variable influence. The chosen variables for the desired 

matrix include 6 spatial and entropy criteria, 6 temporal and 

entropy criteria, and the number of trajectories CHs, 

making overall thirteen variables. Due to the variable 

distributions, the Pearson coefficient was used for the PCA 

method implementation. Table 6 shows the results of the 

calculation of eigenvalues for the obtained components. 

The results that appear in Table 6 show that by using the 

first two components, 85.67%, and by using the first three 

components, 95.95% of data variability can be shown. The 

first component has the largest share of 67.29% in data 

variability. In order to illustrate the cumulative variability, 

the components of the screen plot graph of eigenvalues and 

cumulative variability of them are shown in Figure 8. 

Given that 95.95% of the variability of the considered 

data can be identified using the first three components, they 

are considered main components. Also, in order to evaluate 

the relationship between these components, their correlation 

circle diagrams are shown in Figure 9. This Figure includes 

three diagrams, which show the relationship between the 

components pairwise. 
 

 

Table 6. Eigen Values and Variability calculated for main components 

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Eigenvalue 9.421 2.570 1.442 0.365 0.112 0.044 0.014 0.013 0.007 0.005 0.004 0.002 

Variability (%) 67.295 18.354 10.300 2.607 0.799 0.317 0.102 0.091 0.051 0.037 0.030 0.013 

Cumulative % 67.295 85.649 95.950 98.556 99.355 99.672 99.774 99.865 99.916 99.953 99.983 99.996 

 

 
Figure 8. Screen plot graph for showing cumulative variability of the main components 
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a.  

b.  

c.  

Figure 9. Correlation circle diagram for (a) first and second components; (b) second and third components; (c) 

first and third components. 
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As seen in the correlation circle diagrams presented in 

Figure 9, the highest non-correlation was calculated 

between F1 and F2 components with a value of 85.65%, 

and the lowest was calculated between F2 and F3 

components with a value of 28.65%. It can be said that the 

first two components are more capable of displaying 

variabilities, but in order to increase the precision and more 

accurate identification of the variable relationships, the 

third component is also used. In order to more accurately 

examine the ability of these three components, Figure 10 

presents the number and volume of the trajectories and their 

displayable changes in two axes of F1, F2, and F3, per-

wisely. As it is seen in this figure, the best distribution of 

data is in the direction of the axis of the F1 and F2 

components with the dense point distribution of the points 

with the least connection between the axes F2 and F3. 

In order to identify the representation quality of each 

variable, squared cosines values are calculated for each of 

them, which are presented in Table 7. In fact, this table 

shows the weight and coefficient of participation of each of 

the variables in the obtained components. The values of this 

table are between zero and one, and the closer the number is 

to one, the greater the impact of the corresponding variable.  

In order to detect valuable variables, the values of 

squared cosines higher than 0.5 are shown in dark colors. It 

appears that some variables have values less than 0.5 in 

Table 7. These variables include the spatial information of 

the stop criterion and temporal information of speed, 

curvature, and turning information criteria, respectively. 

Temporal and spatial intersection parameters have lower 

than 0.1 values as shown in Table 7, and this provides 

insufficient impact as principal components. Another 

parameter that has relatively high values of square cosine in 

F1 and F2 components is the number of convex hull 

structures as declaring a meaningful relationship when 

discriminating the trajectories geometry. As a whole, this 

reveals that spatial parameters have a greater effect than the 

time parameters when categorizing trajectory data since the 

considered Geolife data set includes different modes of 

movement. It appears that the temporal parameter could be 

used for trajectory categorization while using a unique 

mode of transportation. 

 

 
Figure 10. Distribution of trajectories in the first three components 

Table 7. Square cosines coefficients calculated for main components 

Variable F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 

Spatial Speed 0.604 0.383 0.000 0.000 0.007 0.002 0.000 0.001 0.000 0.000 0.001 0.000 

Stop 0.365 0.589 0.002 0.017 0.022 0.000 0.001 0.002 0.000 0.000 0.001 0.000 

Curvature 0.682 0.251 0.002 0.007 0.057 0.000 0.000 0.000 0.000 0.000 0.001 0.000 

Turning 0.810 0.155 0.004 0.026 0.001 0.000 0.001 0.001 0.000 0.001 0.000 0.001 

Intersection 0.044 0.110 0.010 0.034 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

Entropy 0.827 0.091 0.008 0.068 0.000 0.001 0.001 0.000 0.002 0.001 0.000 0.000 

Temporal Speed 0.844 0.110 0.010 0.034 0.001 0.000 0.000 0.000 0.001 0.000 0.000 0.000 

Stop 0.231 0.104 0.655 0.003 0.000 0.000 0.004 0.002 0.000 0.000 0.000 0.000 

Curvature 0.359 0.002 0.630 0.002 0.000 0.000 0.004 0.002 0.000 0.000 0.000 0.000 

Turning 0.385 0.577 0.009 0.014 0.010 0.000 0.002 0.003 0.000 0.000 0.000 0.000 

intersection 0.026 0.019 0.004 0.031 0.000 0.018 0.001 0.000 0.000 0.001 0.000 0.000 

Entropy 0.607 0.009 0.036 0.042 0.003 0.001 0.000 0.000 0.000 0.000 0.000 0.000 

Convex Hulls 0.738 0.255 0.035 0.045 0.006 0.020 0.000 0.000 0.001 0.000 0.000 0.000 

 



Earth Observation and Geomatics Engineering 5(1) (2021) 46-62 
 

58 

 

 

4.1.4. Similarity Detection 

Similarities between data in the dimension reduced space 

are explored using the PCA method. By applying the K -

Means technique, each trajectory is depicted in the space of 

the previously mentioned three main components with the 

values obtained from the PCA method, and then similar 

trajectories are identified using the K-Means technique. In 

Figure 11 all intended 95 trajectories are shown in the 3-D 

space of the three main components extracted from the PCA 

method. Figure 11 shows a 3D presentation of the three 

diagrams presented in figure 10 and where the maximum 

variability is derived for components F1 and F2. 

The K-Means method is implemented on the values 

depicted on the three main components’ space, considering 

4 to 8 clusters. The determinant of the within-class variance 

is used as the main parameter for clustering. The results of 

within-class variance for each number of classes are shown 

in Figure 12 as we are searching for the class number with 

minimum within-class and maximum between-class 

variances. 

Similarly, the obtained results of within-class and inter-

class variances are shown in Table 8. Among these, 8 

classes are grouped according to less within-class variance 

and higher inter-class variance. In other words, these 8 

clusters group trajectories with minimum differences 

regarding their respective spatio-temporal entropy values. 

The distances between cluster centers in 8 class cases 

have the highest obtained values. Table 9 presents the 

matrix of distances, and also trajectories selected as class 

centers. 

Table 9 shows the value of between 8 classes distance as 

the mean value is higher than 3.4, this shows better 

clustering results. The results of trajectory clustering in 

each of the 8 intended classes are shown in Table 10. 

 
Figure 11. Distributions of observations in the three-dimensional space of the main components 

 

 
Figure 12. The results of the within-class variance for different clusters 
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Table 8. Within-class and inter-class variance for different clusters 

Variance\Classes 4 5 6 7 8 

Within-class 1.682 1.433 1.218 1.095 1.066 

Between-classes 5.252 5.501 5.716 5.839 5.868 

Total 6.934 6.934 6.934 6.934 6.934 

 

Table 9. The distance between cluster centers 

 
1 (Obs8) 2 (Obs26) 3 (Obs39) 4 (Obs59) 5 (Obs74) 6 (Obs78) 7 (Obs91) 8 (Obs92) 

1 (Obs8) 0 2.783 4.216 3.128 6.036 5.313 6.888 7.946 

2 (Obs26) 2.783 0 1.695 1.737 4.187 4.209 5.983 7.131 

3 (Obs39) 4.216 1.695 0 1.642 2.738 3.277 4.993 6.100 

4 (Obs59) 3.128 1.737 1.642 0 2.923 2.551 4.323 5.457 

5 (Obs74) 6.036 4.187 2.738 2.923 0 1.619 2.680 3.644 

6 (Obs78) 5.313 4.209 3.277 2.551 1.619 0 1.790 2.923 

7 (Obs91) 6.888 5.983 4.993 4.323 2.680 1.790 0 1.163 

8 (Obs92) 7.946 7.131 6.100 5.457 3.644 2.923 1.163 0 

 

Table 10. Clustering results for the 8 classes 

Class 1 2 3 4 5 6 7 8 

Objects 19 24 17 13 6 8 5 2 

Sum of weights 19 24 17 13 6 8 5 2 

Within-class variance 2.897 0.764 0.418 0.612 0.374 0.464 0.517 0.738 

Minimum distance to centroid 0.475 0.366 0.047 0.469 0.306 0.127 0.472 0.607 

Average distance to centroid 1.450 0.815 0.569 0.731 0.507 0.579 0.618 0.607 

Maximum distance to centroid 4.430 1.363 1.036 1.035 0.921 0.928 0.943 0.607 

 

 

Table 10 shows that the highest numbers of trajectories 

are located in the first three classes. Examining these 

trajectories shows that most of them are trajectories with a 

medium-length or shorter than 4000 m. The reason for this 

is the use of the entropy and temporal data criteria of the 

used parameters, because trajectories with similar lengths 

are generally temporally similar, although they can vary 

geometrically.  

The results of the clustering for the considered 95 

trajectories are shown in Figure 13.  Outputs for cluster 2 

are illustrated with 24 trajectories presented by red, black, 

green, and blue colors. Moreover, Figure 12 shows how the 

mentioned trajectories are similar when considering 

geometry parameters such as shape and complexity while 

they could reveal different directions, lengths, and origin-

destinations as trajectories presented in Figure 13. Some of 

these trajectories also share similar paths or distances. 

Finally, the clustering method might also consider 

additional parameters, for example, trajectory clusters could 

be derived by considering origins and destinations.  

Overall, the results of the proposed method show 88.66% 

of general similarity for the trajectories clustered in 8 

classes. This precision in similarity is lower for classes 1 to 

4 in comparison to other classes, because of the trajectory 

diversity in these classes. Class 3 has the least similarity 

between trajectories with a 69.37% value. One solution for 

improvement in the precision of the aforementioned classes 

is increasing the number of classes when implementing the 

K-Means technique while considering all Geolife trajectory 

data sets. Overall, the proposed approach, by considering 

critical points and spatio-temporal entropies, provides 

relatively complete support for clustering and identifying 

trajectory similarities and movement patterns. As for the 

Geolife data set (including variety scales and length 

trajectories), the proposed method reveals similar geometric 

patterns at different scales and directions. This can be 

applied to other large trajectory datasets in urban 
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environments. One peculiarity of the approach is that it 

integrates geometrical, spatial, and temporal criteria, thus 

providing a large set of primitives that can be further 

considered when searching for some specific trajectory 

patterns. This might provide a relatively large set of options 

for analyzing trajectory and movement patterns in the city 

of other contexts.  

 

 
Figure 13. Trajectories of cluster 2  

 

5. Conclusion 

Nowadays, with rapid advances in geo-positioning 

technologies and location-based services, large trajectory 

datasets are emerging in urban environments. Among the 

different data widely available, trajectory data provide 

many opportunities for understanding movement patterns in 

space and time. Over the past few years, many researchers 

have paid special attention to identifying geometrically and 

temporally similar trajectories and obtaining user 

movement patterns in urban environments. The research 

presented in this paper develops a computational method to 

extract similar trajectories. The approach is based on the 

prior application of the STE-SD method, and that considers 

both the location and time parameters when studying the 

similarities of some given trajectories. The main advantages 

of the proposed method are summarized below:  

 One of the main goals is to extract similar 

trajectories as moving patterns. Several physical 

and geometric parameters are first considered, and 

this is according to the spatial and temporal 

dimensions.  

 As the number of potential classes to consider is to 

identify some clusters, we applied a PCA 

framework to find the most sufficient components 
by considering the variance between the different 

components. This improves the results of the 

clustering process by decreasing the computational 
complexity. 

 The proposed framework is able to examine the 
studied trajectories by considering physical or 

geometrical parameters or their combinations. 
Also, only temporal and/or spatial or their 
combination can be considered to compare 
trajectories. 

The proposed method has the potential of identifying 

geometrically similar trajectories with various directions 

and durations. Likewise, identifying similar trajectories in 

the proposed method is regardless of the route’s beginning 

and end point. While the current method is mainly based on 

geometric and physical parameters, additional spatial, mode 

of movement, user's specifications, temporal properties 

should be considered in further work. This is indeed a 

direction to explore in relation to the semantics (as user's 

activities) that can be identified from the application 

domain considered. Finally, while the proposed method is 

primarily designed and experimented with within the 

context of urban trajectories, it can be also applied to the 
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study of migration patterns and animal behaviors at local 

and regional scales.   
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