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ABSTRACT 

Mobile Laser Scanning (MLS) systems have been used for power line inspection in a fast and precise 

fashion. However, manually processing of huge LiDAR point clouds is tedious and time-consuming. Thus, 

an automated method is needed. This study proposes a machine learning-based method for automated 

detection of power lines from MLS point clouds.  The proposed method consists of three main steps: pre-

processing, line extraction using Support Vector Machine (SVM), and post-extraction. In the pre-

processing step, noisy and low-height points are eliminated after sectioning the collected point clouds. 

This step considerably reduces the volume of point clouds by 90%. Then, the point features including 

linearity, planarity, verticality, and the largest component of Principal Component Analysis (PCA) are 

used as the best-fitted descriptors for power line detection. After training the SVM by a small section of 

points, SVM properly classified the point clouds with about 97% and 98% accuracies regarding precision 

and recall, respectively. In the final step, a post-extraction is required to eliminate false points in the power 

line class. This step improved the recall from 98% to 99.4% and decreased slightly the precision accuracy 

from 97% to 95.5%. The results demonstrated that the proposed method works rapidly, about 14 seconds 

per section with an average of 5 million points in each section. 
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1. Introduction 

The Light Detection and Ranging (LiDAR) point cloud has 

become popular in numerous studies, ranging from 

autonomous driving to urban planning (Grubesic & Nelson, 

2020; Li et al., 2019; Shi et al., 2020; Wu et al., 2019). This 

comes from the fact that LiDAR provides densely 3D 

information from the surrounding, and more importantly, it 

can be recorded properly in various illumination conditions 

(Che et al., 2019; Khodaverdi et al., 2019). Among the three 

most commonly available LiDAR platforms such as 

Airborne Laser Scanner (ALS), Mobile Laser Scanner 

(MLS), or Terrestrial Laser Scanner (TLS), the MLS system 

has been used vastly in the monitoring of roadside objects 

including power lines (Biasotto & Kindel, 2018). As shown 

in Figure 1, a typical MLS system consists of the Global 

Navigation Satellite System (GNSS), Inertial Measurement 

Unit (IMU), laser scanners, optical cameras, and Distance 

Measuring Instruments (DMI), which are integrated and 

 

 

 

mounted  on  a  vehicle (Nguyen  et  al.,  2018).   One  main 
advantage of the MLS compared to the other groups of ALS

and TLS is recording the vehicle positioning using the DMI

device (trajectory data) (Shokri et al., 2019). This data would 
play a vital role in the reduction of computational time since 
it  is  capable  of  slicing  the  large-volume  point  cloud  into 
smaller sections with the same length (Jung et al., 2019). In

terms of collecting datasets, the output of this system is both 
densely  3D  point  clouds  and  high-resolution  images  of  a 
roadway.

  In  recent  years,  both  point  clouds  and  color  images 
acquired by an MLS system have been used widely for many

purposes  such  as  traffic  sign  detection,  lane  marking 
extraction, pole-like object and car detection, etc. (Liu et al., 
2019; R. Liu et al., 2020; Rastiveis et al., 2020; Wu et al.,

2020). The  main  advantage  of  the  MLS  system  over  other 
systems is that it has a side-view look, and notably near to

objects, hence it can record more details related to the objects
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(Matikainen et al., 2016; Shokri et al., 2021). For instance, 

traffic sign elements like signboards and pipe signs are 

detectable in whether the images or the point cloud, whereas 

they are hardly detectable from an airborne laser scanning 

(ALS) system (Z. Liu et al., 2020). It should be noted that 

road accessibility in mountainous areas is a big problem in 

using vehicle-based MLS systems for powerline monitoring 

that can be handled by using backpack LiDAR. 

 

 
Figure 1. Devices mounted on the MLS system (Che et 

al., 2019) 

 

Powerline agencies have a deep desire to use the MLS 

datasets, particularly the point cloud, to monitor power lines. 

This comes from the fact that they cannot only obtain the true 

location of the utility lines but also analyze the safety 

situation of the power lines. For this purpose, even though 

captured images have a lower volume than the point cloud, 

they have a less applicable in power line monitoring since 

they are sensitive to the illumination changes, time of the 

collecting data, viewpoint, and distance of the power lines 

from the MLS system (Guan et al., 2020). Notably, for 

getting 3d information from the images, a land surveying 

process is required, however, this is tedious and time-

consuming (Matikainen et al., 2016). On the other hand, the 

point cloud not only excludes such image drawbacks but also 

provides more precise information about the cables or the 

poles. As can be seen from Table 1, which shows a 

comparison between the LiDAR and Image systems, the 

LiDAR systems provide dense 3D points from a side view 

look with high precision, but it is comparably more 

expensive than the image platforms. 

This study aims to propose a fast and automated process 

for extracting distribution power lines from the MLS point 

cloud based on the Support Vector Machine (SVM) 

algorithm which is the key contribution of this paper. In 

addition, this method suggests a robust pre-processing step 

for eliminating unneeded points which enhances the time of 

implementation criteria and overcomes the immense volume 

of the MLS point cloud. Noticeably, the algorithm not only 

shows insensitivity to the size, position, and illumination 

changes of the cables but also non-cable objects such as 

densely trees and cars have no negative influence on the 

results. This means that the algorithm works in complex 

environments.  

Table 1. Comparison of image and LiDAR systems. 
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2. Literature Review 

Methods of power line monitoring from the LiDAR point 

cloud can be categorized into two classes: mathematical 

estimation and machine learning-based methods. Regarding 

the mathematical estimation approaches, researchers 

generally used the line extraction algorithms such as the 

Hough Transform (HT) algorithm for power line detection 

(Matikainen et al., 2016; Zhu & Hyyppä, 2014a). This may 

be because cables follow a linearity state from the top view 

that with help of these line extraction methods their vicinity 

can be estimated. For example, Guan et al. (2016) extracted 

both elements of poles and cables belonging to the power 

lines. They firstly filtered the collected point cloud by both 

the trajectory data and the elevation of the vehicle. Then, the 

cables were extracted by the HT, and afterward, modeled by 

a 3D fitting process. Similarly, Yadav and Chousalkar (2017) 

detected only the cables located in the urban, peri-urban, and 

rural sites. They applied elevation filters for eliminating 

unneeded points and reduction in the volume of the datasets. 

Then, a density-based approach was proposed to remove 

trees and building objects.  Finally, they detected and 

modeled available cables using the HT and a second-order 

polynomial equation respectively with more than 90.84% 

completeness accuracy. Regarding utility poles, many 

studies have been done on the pole-like objects extraction 

including utility poles (Kang et al., 2018; Li et al., 2016; R. 

Liu et al., 2020). The most common algorithms used in these 

kinds of studies are Principle Component Analysis (PCA) 

and 3D voxels. 
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These mathematical-based algorithms work rarely in a 

small section where the linearity of the cables is not a 

distinguished parameter (Ma, 2020). Notably, if the objects 

like trees and buildings are not eliminated, they are unable to 

extract the cables properly (Wang et al., 2019). Thus, 

machine-learning procedures were introduced for power line 

investigation because they are capable of using the linearity 

and other attributes of the cables such as elevation and 

verticality simultaneously. For example, Wang et al. (2017) 

proposed a Radial Basis Function (RBF)-SVM method for 

power line extraction. Different methods of neighborhood 

selection points such as multi-scale slant cylindrical were 

used for calculating the descriptors of linearity and 

scattering. They acquired 97% accuracy in the quality rate of 

the power line classification. Likewise, urban objects 

including power lines were classified by the SVM method in 

the study of Zhang et al. (2013). Geometry, radiometry, 

topology and echo characteristics were the considered 

features during the classification. They gained 86% kappa 

coefficient for converting the collected point cloud to labels 

of ground, building, vegetation, power lines and trees. 

In the last decade, voxel-based procedures have gained 

popularity in power line cables extraction because of having 

fixed size and discrete coordinates. Jung et al. (2020) 

proposed a hierarchical approach for power line detection 

with help of voxels and machine learning descriptors such as 

linearity and planarity. This algorithm acquired an accuracy 

range between 88.87% and 95.47% in the MLS point cloud. 

Likewise, Shokri et al. (2021) suggested a voxel and 

mathematical-based approach for detecting both cables and 

poles. They initially estimated the location of power line 

poles by HT algorithm, where cables were segmented by 

considering voxel processing between every two adjacent 

poles. This method was tested on three MLS data in urban 

and non-urban environments which gained an accuracy of 

about 95%. In a novelty way, an Entropy-Weighting Method 

(EWM) was proposed by Tan et al. (2021) study to classify 

transmission power lines and a 98% accuracy was reported. 

Even though the previous works have detected power lines 

with various algorithms ranging from mathematical-based 

ones to deep neural network structures, there are some gaps 

in power line monitoring. For example, a few studies have 

focused on the distribution lines, as the most common power 

lines which carry low voltage of electricity. For analyzing the 

performance of previous works, four criteria play a key role 

in discussing; (i) time of implementation, (ii) used 

parameters and thresholds, (iii) accuracy, and (iv) type of 

extracted power lines – distribution or transmission lines 

which carry respectively low and high voltages of electricity. 

Studies like Shi et al. (2020); Shokri et al. (2021); Tan et al. 

(2021)  represented mathematical approaches such as HT, 

and Random Sample Consensus (RANSAC) for power line 

extraction acquired acceptable results for both distribution 

and transmission lines. However, these methods have used 

numerous parameters with fixed thresholds that need to be 

tuned for a new dataset. Also, converting the 3D point cloud 

into a two-dimensional feature space was another drawback 

of these works. Additionally, using massive training data and 

time consuming were two considerable disadvantages of 

deep learning-based frameworks. 

3. Method 

As shown in Figure 2, the proposed algorithm is composed 

of three consecutive steps including pre-processing, cables 

classification, and post extraction. 

 

 
Figure 2.  Flowchart of the proposed algorithm. 

3.1. Pre-processing  

This step aims to divide the collected point cloud into 

many equal-length sections in addition to removing noisy 

and unneeded points which includes three main tasks. 
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3.1.1. Sectioning  

As shown in Figure 3, the trajectory data gives information 

about the vehicle position. This information can be used for 

partitioning the collected point cloud into several equal-

length tiles to speed up the computation time. In terms of the 

sectioning length, researchers generally select it based on 

their computing systems and focused area (Lehtomäki et al., 

2019). But in this study, we choose the length of each section 

based on the average velocity of the vehicle per second. This 

means that if we consider the time as one second, the 

sectioning length (𝐿), would be equal to the average velocity 

(𝑉) based on the Equation (1):  

𝐿 =
∑ 𝑉𝑖

𝑛
𝑖=1

𝑛
                                                              (1)  

where n is the number of recorded velocities for the MLS 

system. If the final time of power line detection is less than 

one second, the proposed algorithm can be used in real-time 

situations. Since power lines follow a lengthy shape 

structure, locating a cable between two adjacent sections 

would not affect the results. Therefore, there is no need to 

consider overlaps between adjacent sections. 

 

 

(a) 

 

(b) 
 

Figure 3. Sectioning the collected point cloud to small 

same-length tiles; (a) Displaying the trajectory data on a 

sample collected point cloud; (b) Schematically drawing the 

process of sectioning (Shokri et al., 2019) 

3.1.2. Noise Removal  

Since the MLS system consists of several integrated pieces 

of equipment such as GPS and IMU, errors related to the 

sensors and system integration can be occurred during 

collecting the point cloud (Xu et al., 2015). Therefore, the 

error is categorized into two classes: (i) elevation-based and 

(ii) distance-based errors. 

 The elevation-based error means there are some available 

types of points, which have abnormal elevation. The main 

cause of these errors is the high-height objects like trees and 

buildings because they cause the multipath effect on the 

GPS. To correct these blunders, we use the mean (𝜇) and 

standard deviation (𝜎) to detect these errors proposed in 

Shokri et al. (2019) (Equations 2 and 3).  

 

𝜇 =
∑ 𝑍𝑖

𝑘
𝑖=1

𝑘
                                                    (2)    

𝜎 =
∑ (𝑍𝑖−𝜇)2𝑘

𝑖=1

𝑘
                                                (3)    

Where 𝑍 is the elevation of neighborhood points and 𝑘 is 

the number of points in the neighborhood region. 

Here, to accelerate the process, the search area is reduced 

by limiting it to higher elevation points. the only needed 

parameter is the spherical radius which extracts the points 

located in a specific neighborhood radius of each point 

(Wang et al., 2019). The optimized value of it was acquired 

based on a trial-and-test procedure, and the sensitivity 

analysis of this parameter is further discussed in chapter 5.  

Regarding the distance-based errors, it can be mentioned 

that as long as the distance of objects increases from the MLS 

vehicle, the errors are increased (see Figure 4). This exists 

for any MLS platform because of the system integration, and 

notably is about 3 cm (Di Stefano et al., 2021). Since 

onbasedSVM aresuch asmachine learning methods

features and neighborhood points, the noisy points are 

removed before the classification step. Consequently, thanks 

to the trajectory data, we apply a width threshold on each 

section to limit the data range.  For applying the width 

parameter on each point cloud section, the distance of each 

point is perpendicularly calculated from the trajectory data 

on XY coordinate system. If it is more than the width 

threshold, it would be considered a noisy point and is 

eliminated. The optimized value of the width threshold is 

discussed in the Discussion section in terms of computation 

time and acquired accuracies. 

 

Figure 4. Displaying the distance- and elevation-based 

errors.
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3.1.3. Low-height Filtering  

Based on Guan et al. (2016) study, the minimum elevation 

of power line cables from the ground is about 5m in the USA. 

This intrinsic feature of power lines can play a key role in 

removing unneeded points because the elevation of the 

cables is much higher than the altitude of the MLS vehicle 

over the world. Therefore, points whose elevation is lower 

than the MLS vehicle altitude from the ground surface are 

considered unneeded points and are eliminated from the data. 

This would considerably enhance the computation time due 

to removing a significant number of non-power line points. 

3.2. Point cloud classification   

Descriptor twoextraction and semantic labeling are

wewhichclassificationcloudpointcommon steps for

discuss as follows; 

3.2.1. Descriptor Extraction  

The point cloud is irregular and cannot be used solely in 

the process of classification. Therefore, researchers use 

features such as geometry and radiometric features for 

information extraction from point cloud data (Xia et al., 

2020). Then, these extracted features are fed to the 

classification methods. In this research, among numerous 

features, we used linearity, planarity, verticality and lastly 

the largest normalized eigenvalue of Principal Component 

Analysis (PCA), as the best-fitted descriptors for MLS point 

cloud classification which are suggested in Zaboli et al. 

(2019). One common attribute of these selected features is 

that all of them are calculated from the PCA. The process of 

calculating these features consists of three steps. Firstly, for 

each point, their neighborhood points located in a sphere are 

selected. Afterward, the normalized eigenvalues of PCA 

(𝑒1, 𝑒2, 𝑒3) and also eigenvectors (𝐸1, 𝐸2, 𝐸3) are measured 

which 𝑒1 > 𝑒2 > 𝑒3 (Equation 4) (Levada, 2020). The normal 

vector of a plane (𝑛𝑧) is another acquired parameter by PCA 

which needed in the verticality descriptor. Then, based on 

these PCA components, considered features are acquired as 

follow: 

𝐴 = [𝐸1 𝐸2 𝐸3] [

𝑒1 0 0
0 𝑒2 0
0 0 𝑒3

] [𝐸1 𝐸2 𝐸2]                (4)  

𝐿𝑖𝑛𝑒𝑎𝑟𝑖𝑡𝑦 =
𝑒1−𝑒2

𝑒1
                                       (5)  

𝑃𝑙𝑎𝑛𝑎𝑟𝑖𝑡𝑦 =
𝑒2−𝑒3

𝑒1
                                                              (6)  

𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙𝑖𝑡𝑦 = 1 − 𝑛𝑧                                                     (7)  

3.2.2. Support Vector Machine (SVM) Classification   

To detect cables using the selected features, two 

approaches can be used; (i) supervised and (ii) un-supervised 

methods. The algorithms based on the trained features 

(supervised) are mainly accurate and reliable (Papa et al., 

2012). This is because of well-known and labeled training 

input data. SVM is a sample of a supervised algorithm that 

works based on fitting a hyperplane in the n-dimensional 

space of the features (Vishwanathan & Narasimha Murty, 

2002). It separates the labeled cable and non-cable points 

using kernel functions. Here the Radial Basis Function 

(RBF), which is a popular kernel due to its simplicity, was 

used (Barakat & Bradley, 2010). It should be noted that in 

this paper the basic theory of the SVM is not discussed and 

readers are referred to (Vishwanathan & Narasimha Murty, 

2002) and (Barakat and Bradley, 2010) for further 

information.  

3.3. Post-processing 

To enhance the final output of the proposed algorithm, a 

Euclidean-distance-based clustering procedure is suggested 

to eliminate points that are falsely extracted as the cable 

class. Therefore, this clustering is implemented on the cable 

class points which is the final output of the SVM method 

(Guan et al., 2016). Afterward, the density condition is 

applied to each cluster, meaning that those segments that 

have a density of more than 35 points are selected as the true 

cables; otherwise, non-cable points would be removed. 

Based on trial-and-error analysis on several point cloud 

sections, it was observed that several tree points would be 

wrongly extracted. The main attribute of these points was 

their low-density value lower than 35 points, while the cables 

followed a higher density. This is discussed in detail in the 

Discussion section. 

4. Experiment and Results 

4.1 Study area 

The proposed algorithm was assessed in the MLS point 

cloud collected along with a non-urban environment in 

Anderson, South Carolina, USA (Shokri et al., 2021). The 

selected area consists of various challenging objects, ranging 

from dense trees to numerous cars on the roads. The MLS 

system records 55 million points for the region with a length 

of about 650 m (Figure 5). 

Due to the huge volume of the collected point cloud (i.e. 

1.46 GB), the sectioning step was generated to create low-

volume sections. The length of each section was considered 

based on the moving vehicle distance in each second. As the 

average velocity of the MLS system was 60 km/h (or 17m/s), 

the section length obtained was equal to 17 m. It should be 

noted that we use the trajectory of one side of the road; 

however, the collected points during the return route are also 

extracted and processed in each section. Figure 6 displays the 

created sections with multicolor with an average of 5 million 

points in each section.  
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Figure 5. Collecting the point cloud by the MLS system from the non-urban environment. 

 

Figure 6. Sectioning the collected point cloud. 

  
(a) (b) 

Figure 7. Eliminating noisy points; (a) a sample noisy section; (b) a non-noise section

4.2. Results 

Regarding noisy points, we firstly eliminated the 

elevation-based errors like our previous study by Shokri et 

al. (2019), in which the neighborhood points were considered 

20. As shown in Figure 7, the maximum elevation reduced 

significantly from 270 m to about 260 m. Similarly, those 

objects that had a perpendicular distance of more than 30 m 

from the trajectory data were removed (distance-based 

errors). 

As shown in Figure 7(b), an extensive amount of collected 

points belong to the low-height objects, particularly the 

ground surface. So, if they are eliminated, the volume of each 

section would be considerably reduced. For this purpose, 

those points had an altitude lower than the elevation of both 

the MLS vehicle (1.8m), and corresponding trajectory data 

on the road surface were selected as the low
-

height objects 
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and removed. As shown in Figure 8, sharply the number of 

point clouds fall from about 1.2 million to 120 thousand 

points showing around 90% reduction in the volume. 

 
Figure 8. Eliminating the low-height points. 

After removing unneeded points, selected features of 

linearity, planarity, verticality, and the largest component of 

PCA were extracted. A 0.6 m spherical radius for choosing 

each neighborhood point was considered based on the Zaboli 

et al. (2019) study, where the same MLS system was used. 

As shown in Figure 9, the acquired amount of the linearity 

and the largest PCA component are near 1, whereas the other 

two features are close to zero. Also, the histogram of each 

feature can be seen beside the corresponding descriptor from 

the Figure 9. 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 9. Descriptor extraction; (a) Linearity; (b) The  (d)
 

largest component of PCA; (c) Verticality; (d) Planarity.  

Since the SVM classification needs training data, here we 

selected a few parts of the region as the training section. 

Figure 10-a gives information about the trained cables with 

a length of about 32 m and 2300 points. Also, some parts of 

the poles (see Figure 10(b)), trees (Figure 10(c)), and notably 

the adjacent part of trees (see Figure 10(d)) were selected for 

the non-cable labels. The amount of these non-cable points 

was about 12,000 points. 

 

 
(a) 

 
 (b)    (c) 

 
(d) 

Figure 10. Training points for the SVM; (a) Cable label; 

(b) Poles, (c) trees, and (d) adjacent tree points as the non-

cable label. 

 

As shown in Figure 11(a), our method can successfully 

classify the MLS point cloud into the power line and non-

power line after training the SVM. Figure 11(a) also shows 

that a considerable number of tree points were extracted 

falsely as power lines. Therefore, the power line points were 

clustered based on the Region Growing algorithm with a 3 m 

distance threshold. By applying a density limitation (35) on 

each cluster, significant amounts of false points were 

removed, see Figure 11(b). 
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(a) 

 
(b) 

Figure 11. Cables detection; (a) Output of the cable class 

by the SVM; (b) Post-processing for the removing false 

points; 

4.3. Accuracy assessment 

The algorithm truly detected 36,701 points among 37,837 

points belonging to power lines (True Positive and False 

Positive). Regarding the false detective, 901 points are 

considered falsely as the cable points that mainly belonged 

to the dense trees (False Negative). Based on Equations (8) 

and (9) (Zaboli et al., 2019), the precision and recall obtained 

are 97%  and 98%, respectively. 

 

Precision =
True Positive

True Postive+False Psotive
                                   (8)  

Recall =
True Positive

True Postive+False Negative
                                       (9)  

 

For enhancing the recall accuracy, after segmenting the 

cable class, those segments that had a density lower than 35 

were removed. This improved the recall accuracy by 1.4 %, 

increasing from 98.0% to 99.4% because the points belong 

to trees extracted as the cable, easily removed by applying 

this density condition. But the precision accuracy decreased 

slightly from 97.0% to 95.5% because some parts of the 

wires were eliminated. 

5. Discussion 

The proposed algorithm is going to be assessed from three 

aspects; (i) time of implementation, (ii) comparison with 

other related algorithms, and lastly (iii) parameter 

optimization.  

The programming environment of MATLAB 2015-a was 

selected for running the proposed algorithm. Also, the 

computer was a laptop with Intel (R) Core (TM) i5-3210M 

CPU @2.50GHz, 12GB RAM, DDR 3, NVidia GeForce 

2.630 GB. Note, there is no need for any cloud computing 

system for running the proposed algorithm, unlike other 

studies (Yadav & Chousalkar, 2017; Yadav et al., 2016). 

Averagely, each section took about 14 seconds of processing 

for extracting the power line cables.  

In terms of the used parameters, Table 2 indicates the 

sensitivity analysis of the used parameters with their 

optimized values. Three criteria of time, precision and recall 

accuracies have been chosen to evaluate different values. For 

example, as long as the sectioning length is increased, the 

processing time is also increased which may be problematic 

for real-time monitoring. Although the spherical radius was 

selected based on Zaboli et al. (2019), our sensitivity analysis 

proved it as the optimized value. 

 

Table 2. Sensitivity analysis of the proposed algorithm 

parameters. 
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st
 P

ro
ce

ss
in

g
 

D
is

ta
n

ce
 

T
h

re
sh

o
ld

 1 13.3 97.3 95.5 

2 13.6 98.7 95.5 

3 14.0 99.4 95.5 

4 14.1 99.4 94.1 

D
en

si
ty

 

L
im

it
at

i

o
n
 

30 13.5 99.4 94.3 

35 14.0 99.4 95.5 

40 14.3 96.8 96.3 

45 14.6 93.3 98.7 

 

In comparison with the other state-of-the-art studies, the 

algorithm is going to be evaluated concerning the time of 

running, acquired accuracy, supplemental data, used 

thresholds, and lastly the tested environment. Our algorithm 

directly consumes the recorded MLS data needless of 

requiring any conversion between two separate spaces, while 
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methods of (Guan et al., 2016; Jung et al., 2020; Zhu & 

Hyyppä, 2014b) need a transformation from the 3D LiDAR 

point cloud space to a 2D binary image generation. More 

importantly, the algorithm would not need supplementary 

data, unlike Husain and Chandra Vaishya (2018) study that 

used the return number data as an input. Another positive 

side of our work was extracting power lines in various 

challengeable objects like densely trees, numerous cars, 

pole-like objects in various shapes, and so on, while studies 

(Ortega et al., 2019; Tan et al., 2021) recognized the power 

line cables just in low challengeable regions including power 

lines and bushes. Using fewer thresholds was another 

advantage of our algorithm than previous ones such as 

(Awrangjeb, 2019; Munir et al., 2021; Yadav & Chousalkar, 

2017) which mostly have considered several parameters, in 

some cases more than 10 parameters. In terms of the acquired 

accuracies regardless of other parameters, in some cases, our 

algorithm gained higher accuracies than previous studies. 

For example, our algorithm gained a recall accuracy near 

99% while studies by Tan et al. (2021) at about 98%, Shokri 

et al. (2021) at 95%, and Awrangjeb (2019), at around 95%. 

6. Conclusion 

This study proposed a machine learning-based algorithm 

for extracting power lines from the MLS point cloud. For this 

purpose, three consecutive steps of pre-processing, power 

line extraction by SVM, and lastly post extraction were 

considered. Looking firstly at the pre-processing, more than 

90% of unneeded points like noisy and ground points were 

removed properly. Then, linearity, planarity, verticality, and 

the largest component of PCA were selected as the best 

fitting descriptors for cable detection. In the next step, each 

of which descriptors are extracted for high-height points by 

considering the neighborhood radios of 0.6 m. Afterward, 

SVM was trained by a small section that successfully 

classified the point cloud at about 97% and 98% in both 

precision and recall respectively. Also, the recall was 

improved to 99.4% by introducing a segmentation stage for 

removing non-cable points.  

The main advantages of this algorithm can be summarized 

as; (i) robust in complex environments; (ii) fast and easy 

implementation and (iii) proposing the best-fitted 

descriptors. This algorithm can be suggested for extracting 

different elements of power lines such as utility poles and 

cross arms. One can use a 2nd order curve as a shape 

constraint during the cable extraction step to get a higher 

accuracy that is suggested to be considered in future studies. 

The only object that harmed the final results was the trees. 

detecting andinitiallythatsuggestedTherefore, it is

eliminating trees from the point cloud using different 

methods would be tested and analyzed in future studies.  
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