
Earth Observation and Geomatics Engineering 5(1) (2021) 28–35 

 

 
webs i t e :  h t t ps : / / eoge .u t . ac . i r  

 

 

 

  

* Corresponding author

E-mail addresses: arash_nazari96@ms.tabrizu.ac.ir (A. Nazari); moghtased@tabrizu.ac.ir (K. Moghtased-Azar)

DOI: 10.22059/eoge.2021.325586.1097

 

 

Feasibility study of GPS time series analysis with time-dependent 

periodic coefficients model (TDPC) 

Arash Nazari1*, Khosro Moghtased-Azar2 

1 Geodesy Department, Faculty of Civil Engineering, Tabriz University, Tabriz, Iran 
2 Assistant Professor at Department of Geomatics Engineering, Faculty of Civil Engineering, Tabriz University, 29 Bahman Boulevard, 

Tabriz, Iran 

Article history: 
Received: 18 May 2020, Received in revised form: 28 January 2021, Accepted: 15 February 2021 

ABSTRACT 

A time-dependent periodic coefficients (TDPC) model was proposed to analyze the Global Positioning 

System (GPS) time series. Due to the variations of the amplitude and phase-lag of the GPS signals over 

time, we propose a TDPC to analyze the daily time series. A new solution approach, where the serial 

correlations of the disturbances are eliminated by sequentially differencing the measurements, was used 

to estimate the model parameters using weighted least squares. As a numerical performance of the 

proposed method, the time series of 19 permanent stations in the United States via the Website of 

Scripps Orbit and Permanent Array Center (SOPAC) between the 2000 and 2010 year was selected. 

The results show a decrease in the RMS values of the residuals, especially for the height components. 

Moreover, using the 90 simulated GPS data analysis, in which their noises were different combinations 

of white noise and flicker noise, we demonstrate that the proposed model can extract amplitude varying 

periodic variabilities from GPS coordinate time series.  
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1. Introduction 

The study of GPS time series in the past few years has 

demonstrated its support in monitoring the crustal 

movement. In addition, GPS position time series are used to 

study geophysical phenomena, including plate tectonics 

(e.g., Tobita., 2016), post-glacial rebound (e.g., Larson and 

van Dam., 2000), and vertical motions (e.g., Teferle et al., 

2009). In all these cases, one normally estimates a secular 

motion or velocity with seasonal signals (Klos et al., 2018).            
Conventionally these signals are derived by least-squares 

fitting of harmonic terms with a constant amplitude and 

phase. In reality, their values might vary slightly from year 

to year because their geophysical causes are not constant 
(Klos et al., 2018).  

Accordingly, noise or so-called residuals are created 

when the deterministic model was removed. For the GPS 

position time series, the power spectrum of the noise follows 

a power-law behavior at the low frequencies with spectral 

indices varying between -2 and 0. This noise significantly 

impacts the uncertainty of velocity (e.g., Zhang et al., 1997; 

and Kontny.,Bogusz2004;Williams et al.,  2011). 
Moreover, suppose any seasonal signal or residual or 

periodicity is not property modeled and removed. In that 

case, it will be moved to a stochastic part to much more 
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correlated noise, causing the uncertainties to be artificially 

overestimated (e.g., Tehranchi et al., 2020). 

 Several studies have suggested determining the time-

varying periodic signals by relying, for instance, on non-

parametric annual signals (e.g., Freymuller., 2009; Tesmer 

et al., 2009), on Kalman filter based technics (e.g., Murray 

and Segall., 2005, Davis et al., 2012), singular spectrum 

analysis (SSA) to model time-varying signals in weekly 

GPS position time series (e.g., Chen., 2013), piecewise 

continues linear polynomials (e.g., Davis et al., 2006). 

In this paper, we introduce a TDPC model and assess the 

ability of this model to obtain variations of time-varying 

seasonal signals. In the proposed model, the periodic terms 

of the functional model change linearly over time. Unlike 

the conventional method, the seasonal effects do not have a 

fixed amplitude and are time-dependent. After modeling and 

eliminating the systematic impact of the functional model 

(seasonal signals and trends as well as identifying and 

detecting outliers and offsets), we assess the statistical 

characteristics of the residuals. The statistical model based 

on the first-order autoregressive process is introduced, and a 

differencing algorithm is used to reduce the correlation of 

disturbances. Based on this, the noise properties of the time 

series are investigated. 

In the following, we briefly describe the conventional 

method (constant amplitude model) of GPS time series 

analysis and estimate model parameters using the weighted 

least squares. Afterward, we introduce the statistical model 

and noise characteristics in the GPS time series. In Section 

3, the TDPC model and its features are introduced in detail. 

As the numerical results, the time series of nineteen stations 

spanning ten years of SOPAC daily coordinate positions 

between 2000 and 2010 are analyzed by both methods. The 

ability of the proposed model in modeling the GPS signals, 

compared to the conventional method (least squares) using 

root mean squares (RMS). The last section drafts several 

conclusions. 

2. Conventional functional model in GPS time series 

analysis 

The functional model of GPS time series generally is 
defined as follows: 

𝑦t = 𝑦0 +  𝜈t + ∑(𝑎𝑘 sin (ωt) + 𝑏𝑘 cos ( ω𝑡)) + 𝑒𝑡     

𝑞

𝑘=1

(1) 

where 𝑦𝑡 is the observation vector,  𝑦0   is the intercept, 𝑣  is 

a constant velocity, 𝑎𝑘  and 𝑏𝑘  are the coefficients of 

periodic terms, and 𝑒𝑡  is the noise term. In the case of a 

linear trend together with annual and semi-annual signals 

(𝑞=2), the ith row of design matrix becomes:
 

 

𝐴 = [1    𝑡𝑖    sin(2𝜋𝑡𝑖)     cos(2𝜋𝑡𝑖)     sin(4𝜋𝑡𝑖)    cos (4 𝜋𝑡𝑖)] (2) 

and the unknowns vector 𝑥 is: 
  
    𝑥 = [𝑦0      𝜈       𝑎1      𝑏1      𝑎2      𝑏2  ]

𝑇                                (3) 

so that: 

         𝑦 = 𝐴𝑥 + 𝑒                                                       (4) 

If the covariance matrix of the observation 𝑄𝑦 is known, the 

least-squares solution for unknown parameters is: 

      �̂� = (𝐴𝑇𝑊𝐴)−1𝐴𝑇𝑊𝑦                                                  (5) 

where W is the weighted matrix and is defined as  𝑊 = 𝑄𝑦
−1, 

and finally the estimated residuals: 

                       �̂� = 𝑦 − 𝐴�̂�                                                           (6) 

For the case of uncorrelated white noise, the observation 

covariance matrix is defined by the individual measurement 

variances, 𝜎𝑖
2 : 

   𝑄𝑦 =

[
 
 
 
 
𝜎1

2 0 0 ⋯ 0

0 𝜎2
2 0 ⋯ 0

0 0   𝜎3
2 ⋯ 0    

⋮ ⋮  ⋮   ⋱    ⋮     
0 0   0 ⋯ 𝜎𝑁

2 ]
 
 
 
 

                   (7)   

2.1 Spectrum analysis 

The power spectrum 𝑝𝑦 of many geophysical 

phenomena, including the noise in GPS position time series, 

is well approximated by a power-law process (Mandelbort, 

1983, Mao et al., 1999; Williams, 2003; Williams et al., 

2004). The one-dimensional time behavior of the stochastic 

process is such that its power spectrum has the form: 

 

                𝑝𝑦(𝑓) = 𝑝0 (
𝑓

𝑓0
)

𝑘

                                                          (8) 

 

where 𝑓  is the temporal frequency, 𝑝0  and 𝑓0  are the 

normalizing constants, and 𝑘 is the spectral index (see, e.g., 

Mandelbrot and van Nes., 1968). Typical spectral index 

values lie within [-3,1]; for stationary process −1 <  𝑘 < 1 

and for non-stationary process −3 <  𝑘 <  −1. Classical 

white noise has a spectral index of 0, flicker noise has a -1, 

and random walk noise has a spectral index of -2. The power 

spectral method can be employed to assess the noise 

characteristic of GPS time series. 

2.2 Stochastic model 

     To describe the characteristic of colored noise, several 

models are adopted, for instance, the power-law noise model 

(Zhang et al., 1997; Williams et al., 2004) and the first-order 

Gauss-Markov (FOGM) model (Langbein, 2004). If the 

time series of GPS coordinates is composed of white noise 

and flicker noise, with variance 𝜎𝑤
2  and 𝜎𝑓

2 respectively, the 

covariance matrix of the time series can then be written as: 

     
   𝑄𝑦 = 𝜎𝑤

2   𝐼 + 𝜎𝑓
2 𝑄𝑓                                                    (9)   

where 𝐼 is the 𝑚 × 𝑚 identity matrix and 𝑄𝑓 is the cofactor 

matrix of flicker noise. The structure of 𝑄𝑦  is known 
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through 𝐼 and  𝑄𝑓, but the contributions through 𝜎𝑤  and, 𝜎𝑓, 

are unknown (Amiri-Simkooei et al., 2007). The elements 

of the flicker noise cofactor matrix 𝑄𝑓  can be approximated 

by (Zhang et al., 1997): 

                 𝑞𝑖𝑗
(𝑓)

= {

9

8
                                                  𝑖𝑓  𝜏 = 0

9

8
(1 −

log 𝜏/ 𝑙𝑜𝑔2+2

24
 )                 𝑖𝑓  𝜏 ≠ 0     

            (10) 

where, 𝜏 = |𝑡𝑗 − 𝑡𝑖|. For evenly spaced data, the matrix 𝑄𝑓 

is a symmetric Toeplitz matrix that contains values along 

negative-sloping diagonals. It is important to note that the 

Hosking flicker noise covariance matrix, which was 

introduced and used by Williams [2003], can also be used. 

The variance components 𝜎𝑤
2   and, 𝜎𝑓

2 can now be estimated 

using the Least Squares Variance Component Estimation 

(LS-VCE) method. The main advantage of the least-squares 

is its ease of implementation and the straightforward 

interpretation of the estimates of a linear trend and seasonal 

signal amplitudes. Nevertheless, only constant amplitude 

and phases are obtained. One disadvantage of the technique 

is that long-periodic variations can be mistakenly identified 

as a linear trend (Rangelova et al., 2012). However, this 

problem not be an issue here as we will be estimating annual 

and semi-annual signals from multi-year time series 

(Bellewit and Lavell., 2002). 

3. Time-dependent periodic coefficient model (TDPC) 

In this section, we introduce the TDPC and assess the ability 

of this model to obtain changes in these signals. 

3.1 Functional model 

The functional model of GPS positions time series, with 

a TDPC (state of time-dependent amplitude model), is as 

follow: 

𝑦𝑡 = 𝑎 + 𝑏(𝑡 − 𝑡̅ ) + ∑𝛼(𝑡)𝑖sin (

𝑚

𝑖=1

2𝜋 

𝑝𝑖

(𝑡 − 𝑡̅))

+ ∑𝛽(𝑡)𝑖cos (

𝑚

𝑖=1

2𝜋 

𝑝𝑖

(𝑡 − 𝑡̅)) + 𝑒𝑡           

        𝒕 = 𝟏, . . . , 𝑻              (11) 

where in this expression, 𝑦𝑡  is the observation at a given 

epoch  𝑡 , and 𝑡̅  refers to the middle of the series. The 

parameter 𝑎  is the intercept of a trend with slop 𝑏  that 

represents the secular variations in the GPS components to 

be estimated, p represents the periods of seasonal signals 

(annual and semi-annual signals), T is also the total length 

of the time series. The disturbances, 𝑒𝑡 , (measurements 

errors) are assumed to be uncorrelated, stationary, and either 

homogeneous or heterogeneous for both representations. 

𝛼(𝑡)  and 𝛽 (t) are the time-varying coefficients that vary 

linearly in time. The linear rates of changes in the harmonic 

coefficients, denoted by �̇� and �̇� , are introduced together 

with their corresponding intercepts as an additional 

unknown parameter to be estimated as follow:  

    
        𝛼(𝑡)𝑖 = 𝛼𝑖

0 + 𝛼𝑖̇ (𝑡 − 𝑡̅)                                            (12)                                                     

               
 𝛽(𝑡)𝑖 = 𝛽𝑖

0 + 𝛽�̇�(𝑡 − 𝑡̅)   
                                         (13)                                                         

where, 𝛼𝑖
0 and 𝛽𝑖

0  are the nominal values of the harmonic 

coefficients (intercepts of the trends). Total amplitude is 

defined as follow: 

    𝑨 =  √𝜶(𝒕)𝒊
𝟐
+ 𝜷(𝒕)𝒊

𝟐
                                            (14)  

3.2 Statistical model 

     The daily positions of permanent GPS stations are 

usually considered randomly independent of each other. 

Meanwhile, errors such as modeling satellite orbits, 

determining rotational parameters, atmospheric modeling 

parameters, etc., cause correlations between daily positions 

or color noise between daily positions of stations. A 

differencing algorithm (Iz and Chen., 2001) is used to reduce 

this serial correlation, which will be described below, which 

leads to the absorption of part of the colored noise in the 

estimation of seasonal signals. The statistical model for the 

model disturbances is considered to be an autoregressive 

process, which is represented as a first-order process in this 

study as follow:     

                   

          𝑒𝑡 = 𝜌𝑒𝑡−1 + 𝑣𝑡                                                               (15) 

where this expression, 𝜌  is the first-order autocorrelation 

coefficient, {𝑣𝑡} is the stochastic process with the following 

assumed properties (Iz, 2008): 

𝐸(𝑣𝑡) = 0, 𝐸(𝑣𝑡
2) = 𝜎𝑡

2 , 𝐸(𝑣𝑡𝑣𝑡
′) = 0,   𝑓𝑜𝑟 𝑡 ≠ 𝑡′     (16) 

⇒   𝐸(𝑒𝑡) = 0, 𝐸(𝑒𝑡
2) = 𝜎𝑣

2(1 − 𝜌2) = 𝜎2                          

where 𝐸 is the mathematical expectation operator. It can be 

shown that the corresponding covariance matrix for the 

model disturbances can now be expressed as (Iz and Chen., 

1999): 

      ∑ = 𝜎2

[
 
 
 

1 𝜌  𝜌2 ⋯ 𝜌𝑇−1

𝜌 1   𝜌   ⋯ 𝜌𝑇−2

⋮ ⋮   1  ⋯ ⋮
𝜌𝑇−1 𝜌𝑇−2        ⋯  1 ]

 
 
 

                               (17)         

A two-stage approach can obtain the solution for the time 

variable harmonic coefficients with its statistical model. 
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First stage: the correlation coefficients are estimated from 

the residuals of an approximation (according to the initial 

periods). The second stage: use the above covariance matrix. 

The mentioned solution has two main problems: (i) A 

significant assumption in this approach is that the stochastic 

process is stationary and the corresponding disturbances are 

homogeneous (that this assumption is not valid), (ii)- 

Furthermore, although the above statistical model accounts 

for the effect of serial correlation, it fails to model the 

weights (Iz, 2008) properly. Due to the mentioned problems, 

we use a differencing algorithm as follow: 

3.3.  Model transformation via differencing 
 

The model given by (11) is rewritten as 

  𝑦𝑡 = 𝑥0 + 𝑎1𝑡𝑥1 + 𝑎21𝑡𝑥2+ . . . +𝑎1𝑡𝑥𝑘𝑡 + 𝑒𝑡                    (18) 
 

where, 𝑥 denotes the parameters to be estimated, and 𝑎′𝑠 are 

the corresponding known coefficients. Differencing model is 

defined as follow: If the model (18) is evaluated at the 

preceding epoch, 𝑡 − 1, and multiplied by 𝜌  (estimated from 

approximate solution residuals), and then subtracted from 

itself which is evaluated at 𝑡 as shown in (19), then: 

Δ𝑦𝑡 = (1 − 𝜌)𝑥0 + Δ𝑎1𝑡𝑥1 + Δ𝑎21𝑡𝑥2          (19) 

+ . . . +Δ𝑎1𝑡𝑥𝑘𝑡 + 𝑣𝑡  

where:  

    

    

        Δ𝑦𝑡 = 𝑦𝑡
− 𝜌𝑦𝑡−1           

    

    

        Δ𝑎𝑡 = 𝑎𝑡 − 𝜌𝑎𝑡−1                                                        (20) 

    

    

        𝑣𝑡 = 𝑒𝑡 − 𝜌𝑒𝑡−1                                  

Observe that the differencing leave the unknown parameters 

𝑥𝑘 invariant; therefore, the transformed observation Eq. (19) 

can be solved using an LS solution with a diagonal 

covariance matrix of the stochastic process {𝑣𝑡} which is 

given by:                             

∑ = 𝜎2 [

𝑣1 0 0  ⋯ 0

0 𝑣2 0  ⋯ 0
⋮ ⋯         ⋯ ⋮
0 0 0   ⋯ 𝑣𝑇

]                                      (21) 

If the correction coefficient is high (near to one), then the 

following approximations can be made:  

 Δ𝑦𝑡 = 𝑦𝑡 − 𝜌𝑦𝑡−1 ≅ 𝑦𝑡 − 𝑦𝑡−1          

 Δ𝑎𝑡 = 𝑎𝑡 − 𝜌𝑎𝑡−1 ≅ 𝑎𝑡 − 𝑎𝑡−1                     (22)    

 

 

and (19) reduces to: 

Δ𝑦𝑡 = Δ𝑎1𝑡𝑥1 + Δ𝑎21𝑡𝑥2+ . . . +Δ𝑎1𝑡𝑥𝑘𝑡 + 𝑣𝑡         (23) 

This approximation is reasonable, especially for the daily 

GPS time series. If all systematic variations in the series are 

properly accounted for, then the residuals reflect the 

accuracy of the measurements, i.e., the RMS solution 

residuals should be close to a reported sub-mas 

measurement precision of modern satellite-born techniques. 

4.  Numerical examples  

This section presents the results of the coordinate time series 

analysis using the methodology explained in previous 

sections. Figure. 1 shows the distribution of selected stations 

used in this research. The time series of 19 stations in the 

Western United States were selected from the 2000 and 2010 

years.  

     The daily positions of the network are processed by the 

SOPAC processing center using GAMIT-GLOBK software, 

and the result is placed in the ITRF2000 reference 

framework on the center’s website. It is important to note 

that outliers have been removed from the coordinates time 

series of each station by the median and Inter Quartile Range  

(IQR) statistics. Also, offset epochs are detected and 

removed from the data. 

     The solution requires a set of periods for the presumably 

known frequencies. The periods used in the solution are 

365.24 for the annual periodic signal, 182.4 for the semi-

annual periodic signal, and 350/n of significant periodic 

patterns with periods of 350 days and its fractions           

350/n, n = 2, …, 8. 

     Figure 2 displays the comparisons of fitting two methods 

(LS and TDPC) in three components of the ALAM station 

(left panel) and ELKO station (right panel) of 

selected permanent stations. It is clearly shown that the 

amplitude of the time series and true seasonal variation is 

not constant from year to year. The LS-derived curve 

generally fits the time series well while failing to capture the 

peak from time to time. However, as seen from the figure, 

the TDPC model has modeled the amplitude variation in 

time series. As we expect, the difference between the models 

is more visible due to the higher amplitudes of noise 

Figure 1. Distribution of the stations used in this study. 
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components over the vertical component. 

     Table 1 shows the list of RMS values of the residues from 

the two models after removing the systematic effects of 
coordinate components of the nineteen selected stations. 

Also, the RMS values of the TDPC model are lower than 
those of the LS method, which is especially noticeable in the 

vertical component. Moreover, in order to validate the 
results of real data set using modeling of two models, we 

simulated the 90 time series of GPS using the periods of the 
annual and semi-annual periodic signal, and 350/n of 

significant periodic patterns with periods of 350 days and its 

fractions 350/n, n = 2, …, 8, and different combinations of 

white noise and flicker noise. 
     Figure 3 illustrates comparing RMS values of the 

residuals (meters) for 90 simulated time series for two 

methods using boxplots. That is an alternative method for 

graphically depicting groups of numerical data through their 

quartiles. Box plots may also have lines extending from the 

boxes (whiskers), indicating variability outside the upper 

and lower quartiles, hence the terms box-and-whisker plot 

and box-and-whisker diagram. Outliers are plotted as 

individual points. The spacings between the different box 

parts indicate the degree of dispersion and skewness in the 

data and show outliers. According to Figure 3, in 

comparison between the RMS of residuals of two models, 

the results show that the proposed model is superior to LS in 

its ability to capture signals with modulated amplitudes and 

phases. 

 
 
 

 
 

 
 

 
 

 

  

  

  

Figure 2. Comparisons of fitting two methods in three components of ALAM station (left panel) and ELKO station 
(right panel) of selected permanent stations. 

 

5.  Conclusion 

     The main objective of our study is to try to address the 

problem in an alternative way to extract the modulated 

periodic cycles from the original GPS time series. Periodic 

signals in the GPS position time series are conventionally 

modeled using constant amplitudes and phase lag. However, 

the amplitude of these signals varies slightly over time. This 

study shows that the change in amplitude of periodic signals 
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Table 1.  Compare RMS values of the residuals (meters) for modeling of time 

series of 19 stations in the Western United States were selected from the 2000 and 

2010 years. 
 

Site code Components RMS Values 

Site code 

ALAM 

Components 

North 

East 

Vertical 

LS 

7.4075×10 -4 

0.0015 

0.0034 

TDPC 

CAST 
North 

East 
Vertical 

7.4416×10 -4 

0.0014 
0.0027 

7.3413×10 -4 

0.0014 
0.0033 

DYER 
North 

East 

Vertical 

7.7047×10 -4 

0.0014 

0.0032 

7.2022×10 -4 

0.0014 

0.0026 

ELKO 
North 

East 
Vertical 

6.9451×10 -4 

0.0013 
0.0025 

7.6493×10 -4 

0.0014 
0.0032 

FERN 
North 

East 

Vertical 

7.7493×10 -4 

0.0013 

0.0031 

6.8401×10 -4 

0.0013 

0.0024 

FOOT 
North 

East 
Vertical 

6.9906×10 -4 

0.0013 
0.0027 

7.5635×10 -4 

0.0013 
0.0031 

GABB 
North 

East 

Vertical 

6.5024×10 -4 

0.0013 

0.0026 

6.9001×10 -4 

0.0013 

0.0027 

HEBE 
North 
East 

Vertical 

9.1626×10 -4 
0.0018 

0.0040 

6.4766×10 -4 
0.0013 

0.0025 

SHIN 
North 

East 

Vertical 

8.5178×10 -4 

0.0016 

0.0033 

9.0799×10 -4 

0.0017 

0.0039 

AHID 
North 
East 

Vertical 

7.6909×10 -4 
0.0015 

0.0034 

8.3848×10 -4 
0.0016 

0.0032 

ECHO 
North 

East 

Vertical 

6.8005×10 -4 

0.0014 

0.0026 

7.4863×10 -4 

0.0015 

0.0033 

FRED 
North 
East 

Vertical 

7.1423×10 -4 
0.0012 

0.0030 

6.7192×10 -4 
0.0014 

0.0026 

GARL 
North 

East 

Vertical 

9.0124×10 -4 

0.0017 

0.0043 

7.0002×10 -4 

0.0012 

0.0030 

JOHN 
North 

East 

Vertical 

9.1080×10 -4 

0.0015 

0.0032 

8.8983×10 -4 

0.0016 

0.0043 

MONI 
North 

East 
Vertical 

7.8478×10 -4 

0.0014 
0.0029 

9.0257×10 -4 

0.0015 
0.0032 

RAIL 
North 
East 

Vertical 

8.0970×10 -4 
0.0014 

0.0030 

7.8093×10 -4 
0.0014 

0.0029 

RUBY 
North 

East 
Vertical 

8.0201×10 -4 

0.0014 
0.0029 

8.0620×10 -4 

0.0014 
0.0030 

CORV 
North 
East 

Vertical 

0.0013 
0.0014 

0.0033 

7.9331×10 -4 
0.0014 

0.0029 

REDM 
North 

East 
Vertical 

8.5912×10 -4 

0.0013 
0.0029 

0.0013 

0.0014 
0.0032 
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can be modeled using time-varying harmonic coefficients 

and by differencing observation equations to eliminate 

autoregressive disturbances. Using the real and simulated 

GPS data analysis, we demonstrate that the proposed model 

can extract amplitude varying periodic variabilities from 

GPS coordinate time series. 
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