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ABSTRACT 

Naysian Porphyry Cu District (NPCD) is situated northeast of Isfahan, in the center of Iran along the 

Urumia-Dokhtar Magmatic Assemblage (UDMA) belt. Mineral Potential Mapping (MPM) is an important 

issue in mining to reduce the exploration costs by proposing a layout of drilling over the most favorable 

regions in association with an ore-bearing target. MPM can be defined as a multi-criterion decision-

making (MCDM) problem. Out of many MCDM methods, the VIKOR is based on a compromise solution 

which evaluates issues with inappropriate and incompatible criteria. In this study, seven geospatial 

indicators related to the NPCD were extracted from geological, geochemical, and geophysical criteria. 

According to the conceptual model of a porphyry copper mineralization system, the highest weight was 

allocated to the geochemical criterion with a value of 0.499 and the sublayer of the copper concentration 

map (0.425). In addition, the lowest weight was allocated to the geophysical criterion (0.113). Two 

variants of the VIKOR method that are the conventional (C-VIKOR) and the adjusted (A-VIKOR) ones 

were examined in this study, and their outputs were compared with the index overlay (IO) method as a 

popular approach in MPM. Taking a threshold value of 0.6 into account for final synthesized indicators, 

the mineral favorability areas highlighted by the  IO, A-VIKOR, and C-VIKOR methods have occupied 

49.5, 15.8, and 18.7 hectares, respectively. It is worth pointing out that the MPM derived from the A-

VIKOR method has superiority over the outputs of the IO and C-VIKOR methods by introducing the 

lowest favorable area and 92% matching of high-grade boreholes with the proposed areas. Comparing the 

mean grade of copper obtained from boreholes drilled in the area and the values of MPM, a significant 

correlation between boreholes and prospectivity map was also obtained. 
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1. Introduction 

One of the most important steps in the exploration of 

mineral deposits is to identify favorable areas in association 

with ore-bearing mineralization. In this regard, different 

geospatial information layers derived from geological, 

geochemical, geophysical, and so on, are collected over the 

study area, and then processed to synthesize different 

exploratory indicators. It is so-called “Mineral Potential 

Mapping (MPM)” which delimits a deposit or district scale 

prospecting region into several highly favorable areas. 

Therefore, MPM can be assumed as a multi-criteria decision-

making (MCDM) problem, since it aims to produce 

predictive maps based on different exploratory criteria 

(Abedi et al., 2016; Abedi, Ali Torabi, et al., 2012; Abedi, 

Norouzi, & Fathianpour, 2012; Abedi & Norouzi, 2016; 

Najafi et al., 2014). The concept of MPM was first 

introduced by Cargill and Clark (1978), which was laid as a 

base for many studies, and later a large number of scholars 

have developed a wide range of models to integrate 

exploratory geospatial data sets (Cargill & Clark, 1978). 

These methods of MPM are often classified into three main 

groups that are knowledge-, data-driven, and hybrid. 
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training data points in the data-driven MPM methods. 

Therefore, these methods are usually employed in a well-

explored area with known mineral occurrences (Bonham-

Carter, 1994). Among various methods of this group, the 

main ones are weights of evidence (Porwal et al., 2001), 

artificial neural network (Oh & Lee, 2010; Porwal et al., 

2003), support vector machine (SVM) (Abedi, Norouzi, & 

Bahroudi, 2012), and random forest (Emmanuel John M. 

Carranza & Laborte, 2015).  In the knowledge-driven MPM 

method, the pieces of evidence are weighted and 

subsequently integrated based on experts’ judgments. Hence, 

knowledge-driven MPM methods may lead to uncertainty in 

spatial data due to the bias weighting of each expert 

(Emmanuel John M. Carranza, 2009). These methods are 

index overlay (Billa et al., 2004), fuzzy logic (Abedi et al., 

2012b; Abedi et al 2015, Najafi et al., 2014), fuzzy-AHP 

(Abedi et al., 2013), and wildcat mapping (Emmanuel John 

M. Carranza, 2010). Hybrid methods combine the experts’ 

knowledge and the location of known mineral occurrences, 

known as data-knowledge-driven approaches (e.g., Carranza 

et al., 2008; Porwal et al., 2006; Yousefi and Carranza, 

2015). Some data-driven methods use an experimental 

function and select the weights for the evidential features 

based on the expert judgment. Also, the method does not act 

based on the training data points (Emmanuel John M. 

Carranza, 2010; Luo & Dimitrakopoulos, 2003).  

Out of many MCDM algorithms, the VIKOR outranking 

method has been successfully used as a knowledge-driven 

MPM  (Abedi et al., 2016; Ghezelbash & Maghsoudi, 2018). 

Opricovic (1998), introduced the VIKOR method, which is 

based on a compromise solution by evaluating issues with 

inappropriate and incompatible criteria. When a decision-

maker is unable to identify and express the superiority of an 

issue at the time it is started and designed, the VIKOR can 

be an appropriate tool for decision making (Opricovic & 

Tzeng, 2004). Of note is that the VIKOR method of 

compromise ranking determines a compromise solution, 

provides a maximum ‘‘group utility’’ for the ‘‘majority’’ and 

a minimum of an individual regret for the ‘‘opponent’’. 

When implementing a VIKOR method, a linear 

normalization is used to eliminate and scale the units of 

diverse criteria (Opricovic & Tzeng, 2004). 

The main purpose of this study is to compare the 

performance of two variants of the VIKOR methods for 

synthesizing indicator layers. Two conventional (C-VIKOR) 

and adjusted (A-VIKOR) variants were used in MPM and 

their outputs were compared to the index overlay (IO) 

method as a popular MPM methodology. In order to assign 

weight to the evidential/indicator layers by the VIKOR 

method, it is first necessary for continuous maps to be broken 

down into different classes. One of the methods of anomaly 

separation from the background is the concentration-area (C-

A) fractal method, which in addition to data frequency 

distribution, determines their spatial variability in 

computation with a high level of confidence (Cheng et al., 

1994). A data set pertaining to the Naysian Porphyry Cu 

District (NPCD) in Iran is used in this study. 

   Naysian district is located about 73 km away from the 

northeast of Isfahan. This prospecting area is aligned along 

the UDMA (Alavi, 2004). Based on reconnaissance studies 

such as field survey, geophysics remote sensing, lithological 

and mineralogical studies, this district is known to be prone 

to porphyry copper and molybdenum reserves (Afshooni et 

al., 2013; Farmahini Farahani, 2008; Hatami, 2008; 

Tabatabaei, S.H., Asadi Haroni, 2006). Farmahini Farahani 

(2008) and Afzal et al. (2013) introduced the Naysian as a 

classic porphyry system and believed that the model of 

alteration and mineralization of this deposit was similar to 

the world-known models (Afzal, Harati, et al., 2013; 

Farmahini Farahani, 2008). Hatami (2008) introduced the 

processes affecting the formation of igneous rocks of 

Naysian ancient porphyry deposit, including three categories 

of separation crystallization, the effects of intense alteration 

activities on them, and the fragmentation and shear of 

igneous rocks. Based on geological and exploratory studies, 

this deposit has been divided into three eastern, central, and 

western parts. The studies show a better condition of the 

eastern and central parts of this deposit and more exploratory 

studies have been dedicated to these two parts (Afzal et al., 

2010; Tabatabaei, S.H., Asadi Haroni, 2006). According to 

the studies carried out to explore the Naysian deposit, the 

definite copper reserve of this deposit is about 40 million 

tons with a grade of 0.053%, and it is about 120 million tons 

for Mo with a grade of 0.02%(Asadi Haroni, 2007). 

In this study, seven geospatial evidence layers over the 

NPCD were extracted and separated into different 

populations using the C-A fractal model to assign an 

appropriate score and weight for each layer. Then, the final 

decision matrix is prepared based on the weights of the 

criteria and sub-criteria, and MPMs were generated through 

implementing two variants of the VIKOR and the IO 

methods, where the efficiency of each map was evaluated 

with drilling results as well. 

 

2. Methodology 

2.1. VIKOR method 

 The VIKOR method was first introduced by Opricovic 

(1998) as a powerful MCDM technique to efficiently rank 

multi-attribute problems with different criteria. Indeed, it 

ranks and selects from a set of alternatives in the presence of 

conflicting multi-criteria, by introducing a multi-criteria 

ranking index based upon a measure of “closeness” to an 

“ideal solution” (Opricovic, 1998; Opricovic & Tzeng, 

2004). The formulation of the conventional “C-VIKOR” and 

the adjusted “A-VIKOR” variants are concisely presented as 



 
 

150 

 

follows,  

Assume that 𝐴𝑖(𝑖 = 1,2, … , 𝑛) and 𝐶𝑗(𝑗 = 1,2, … , 𝑚) are a 

set of n alternatives and m criteria/attributes respectively. 

The C-VIKOR method can be described in a series of steps; 

Step 1: Construct a decision matrix from the geospatial 

data sets by assigning a priority score 𝑋 = (𝑥𝑖𝑗)𝑛×𝑚 to each 

alternative i on each criterion j.        

Step 2: Determine the weight (𝑤𝑗) of all criteria (through 

Delphi method in this study) such that; 

∑ 𝑤𝑗 = 1,     𝑗 = 1,2, … , 𝑚.𝑚
𝑗=1                                             (1) 

Step 3: Obtain the normalized decision matrix (𝑟𝑖𝑗) to 

avoid scaling effects perturbing the result, 

𝑟𝑖𝑗 = 𝑥𝑖𝑗 (∑ 𝑥𝑝𝑗
2𝑛

𝑝=1 )
0.5

,     𝑖 = 1,2, … , 𝑛  &  𝑗 = 1,2, … , 𝑚⁄

                            

                      

(2) 

Step 4: Determine the best 𝑓𝑗
+and the worst 𝑓𝑗

− values of 

all criteria,  

𝑓𝑗
+ = (𝑓1

+, 𝑓2
+, … , 𝑓𝑗

+, … , 𝑓𝑚
+) = {(max

𝑖
{𝑟𝑖𝑗}|𝑗 ∈

𝐵) , (min
𝑖

{𝑟𝑖𝑗}|𝑗 ∈ 𝐶)}                                                        (3) 

𝑓𝑗
− = (𝑓1

−, 𝑓2
−, … , 𝑓𝑗

−, … , 𝑓𝑚
−) = {(min

𝑖
{𝑟𝑖𝑗}|𝑗 ∈

𝐵) , (max
𝑖

{𝑟𝑖𝑗}|𝑗 ∈ 𝐶)}                                                     (4) 

where 𝐵 and 𝐶 correspond to the benefit and cost criteria, 

respectively (Tavana & Hatami-Marbini, 2011).  

Step 5: Compute the values of 𝑆𝑖and 𝑅𝑖 from the following 

equations. Development of the VIKOR method started from 

𝐿𝑘-metric as (Opricovic & Tzeng, 2004), 

𝐿𝑘,𝑖 = (∑ [𝑤𝑗 (𝑓𝑗
+ − 𝑟𝑖𝑗) (𝑓𝑗

+ − 𝑓𝑗
−)⁄ ]

𝑘𝑚
𝑗=1 )1/𝑘,    1 ≤ 𝑘 ≤∞

                                                        (5) 

Here the values of 𝑆𝑖and 𝑅𝑖 are calculated from Eq. (5), 

 𝑆𝑖 = 𝐿1,𝑖 = ∑ 𝑤𝑗 (𝑓𝑗
+ − 𝑟𝑖𝑗) (𝑓𝑗

+ − 𝑓𝑗
−)⁄𝑚

𝑗=1                   (6) 

𝑅𝑖 = 𝐿∞,𝑖 = max
𝑗

(𝑤𝑗 (𝑓𝑗
+ − 𝑟𝑖𝑗) (𝑓𝑗

+ − 𝑓𝑗
−)⁄ )            (7) 

Step 6: Compute the values of  𝑄𝑖  for each alternative i 

from the following equation; 

𝑄𝑖 = 𝑣 (
𝑆𝑖−𝑆−

𝑆+−𝑆−) + (1 − 𝑣) (
𝑅𝑖−𝑅−

𝑅+−𝑅−) ,    0 ≤ 𝑣 ≤ 1      (8) 

where 

{

𝑆+ = max 𝑆𝑖 ,
𝑖

𝑆− = min 𝑆𝑖
𝑖

𝑅+ = max 𝑅𝑖,
𝑖

𝑅− = min 𝑅𝑖
𝑖

  

and parameter v is introduced as a weight for the strategy 

of the majority of criteria “
𝑆𝑖−𝑆−

𝑆+−𝑆−” and (1 − 𝑣) is the weight 

of the individual regret “
𝑅𝑖−𝑅−

𝑅+−𝑅−”. The value of v lies in a range 

of [0,1] and in most cases, it was chosen equal to 𝑣 = 0.5 for 

a compromise solution (Abedi et al., 2016). 

Step 7: Compute MPM values of 𝑀𝑖
𝑉−𝐶 for synthesized 

data as, 

 𝑀𝑖
𝑉−𝐶 =

𝑄+−𝑄𝑖

𝑄+−𝑄−                                                      (9)  

where 𝑄+ = max 𝑄𝑖
𝑖

 and 𝑄− = min 𝑄𝑖
𝑖

. Higher values of 

𝑀𝑖
𝑉−𝐶  correspond to higher potential zones for ore 

occurrences in the region of interest.  

To implement an A-VIKOR method proposed by Jahan et 

al. (2011), the values of 𝑆𝑖and 𝑅𝑖 are calculated from the 

following equations to determine 𝑀𝑖
𝑉−𝐴 while the other steps 

are similar to the C-VIKOR method (Jahan et al., 2011). 

𝑆𝑖 = ∑ 𝑤𝑗 (1 − 𝑒

|𝑟𝑖𝑗−𝑓𝑗
+|

𝑓𝑗
−−𝑓𝑗

+

)𝑚
𝑗=1                                                                                                         (10)  

𝑅𝑖 = max
𝑗

[𝑤𝑗 (1 − 𝑒

|𝑟𝑖𝑗−𝑓𝑗
+|

𝑓𝑗
−−𝑓𝑗

+

)]                                                                                                     (11)  

 

2-2- A C-A fractal model 

Many natural processes, especially those related to earth 

sciences, do not follow regular Euclidean geometry, so one 

must use another geometry to describe events in nature. 

Thus, for the first time in 1983, Mandelbrot introduced a 

geometry that could discuss the processes in nature and 

called it fractal geometry (Mandelbrot, 1983). For the first 

time, Cheng et al. (1994) used the Mitchel-Sulfurests 

Porphyry Cu-Au in British Columbia, Canada to separate 

geochemical anomalies and background from each other 

(Cheng et al., 1994). In general, the exploration data have 

multifractal behavior indicating the extent of changes in 

geological, tectonic, geochemical, geophysical, alteration, 

and subsequent enrichment and ore formation stages. By 

matching these features to field data and observations, the 

accuracy of multifractal modeling is well established (Afzal, 

Ahari, et al., 2013; M. Mohammadpour et al., 2019; Zuo et 

al., 2009). A C-A fractal method is based on the amount of 

space that each specific concentration occupies in the study 

area and is presented on the basis of a series of simple 

empirical equations (Cheng et al., 1994) .This empirical 

model states that the area A (ρ) follows an exponential 

relation by setting the values of ρ less than or equal to a 

predetermined threshold value υ: 

𝐴(𝜌 ≤ 𝜗)∞𝜌−𝛼                                                                                        
                                 

(12)  

Where A(ρ) is an area of higher concentration than the 

curve ρ, υ expresses a threshold and α is a fractal dimension 

(Cheng et al., 1994). 

3. Geological Setting 

The NPCD with an area of about 6 km2 is located about 72 

km away at the northeast of Isfahan. This deposit is 

tectonically located in the UDMA belt (Figure 1a) 

(Aghanabati, 2004; Stocklin, 1968), which is formed as a 

volcanic belt with a general northwest-southeast trend 

consisting of Eocene-Quaternary age volcanic and intrusive 

bodies (Berberian & Berberian, 1981). The UDMA zone is 

elongated in east-northeast of the Sanandaj-Sirjan zone and 
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west-southwest of the Central Iran zone (Aghanabati, 2004; 

Sabahi et al., 2019). 

The NPCD system was previously studied in enormous 

researches (e.g. Afshooni et al., 2013; Afzal et al., 2010; 

Tabatabaei, S.H., Asadi Haroni, 2006). Concerning the 

petrological investigations, the volcanic rocks of this area are 

dacite, andesite, basaltic andesite, and basalt, and the 

intrusive rocks contain a combination of granodiorite and 

tonalite. In addition, magma content is of sub-alkaline and 

calco-alkaline types. The alteration processes are wide and 

severe on the NPCD. The main observable alterations, in the 

expansion order, are propylitic, phyllic, potassic, quartz–

tourmaline, silica, and FeO zones (Zarnab Co., 2011). 

Naysian area is tectonically active and dynamic. The 

presence of extended faults with a trend around N55E and 

their interactions with the perpendicular faults of the UDMA 

zone has been effective in emplacing the stocks in the zone 

and expanding the alteration processes in rock units. The 

general trend of magmatic dikes injected in this zone is along 

the NE-SW (Zarnab Co., 2011). The geological map in the 

1:1000 scale for the studied zone is presented in Figure 1, 

which presents the rock type distributions.   

 
Figure 1. (a) The position of the Naysian Porphyry copper deposit in the Iranian structural geology divisions, b) Geological 

Map of the Naysian Porphyry Copper district with a scale of 1: 5000.  
4. Exploratory Information System (EIS) 

Information systems help organize, analyze, and convert 

raw data into useful information for the purpose of 

supporting and improving decision-making (Laudon & 
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Laudon, 2014). One of the examples designed to support 

decision-making in earth sciences, with which most earth 

scientists are familiar, is the Geographic Information System 

(GIS). An exploratory information system (EIS) is required 

to convert data into insight, and GIS technology is used to 

explore minerals. EIS is defined as a framework for; (1) 

collecting regular and systematic data, (2) defining target 

characteristics and criteria, (3) generating target proxies or 

exploratory layers, and finally (4) integrating target criteria 

(Yousefi et al., 2019). EIS can be quickly used to generate 

exploration targets using a variety of integration functions. 

As an efficient system, EIS has been used to integrate 

evidential geospatial layers in this paper. 

 

4.1. Exploratory geospatial data sets  

Data clearance has a significant impact on the type and 

quality of exploratory information related to the purpose of 

exploration. On a regional scale, for instance, existing data 

typically have a lower resolution, while overall data on a 

deposit scale has a higher resolution. Therefore, the methods 

of preparing exploratory data should be selected based on the 

scale of mineral exploration. Given the introduction of the 

studied area in section 3 and the area under study (6 km2), 

the phase of exploratory studies is on a local scale, and it is 

expected that the map of the mineral potential of this stage 

determines the mineral prospectivity areas for detailed 

operations including litho-geochemistry, geoelectrical 

surveys and designing the layout of drilling. 

Mineral exploration data are divided into five broad 

categories: (I) geology, (II) geochemical data, (III) 

geophysical data, (IV) remote sensing, and (V) drilling 

(Yousefi et al., 2019). In this paper, different types of 

exploratory data have been used according to the exploratory 

scale, which will be mentioned below. Naysian exploration 

district is lithologically composed of different rocks such as 

andesite, porphyry andesite, porphyry dacite, shear volcanic 

rocks, microdiorite, and quartz monzonite (Hatami, 2008; 

Hosseini, 2011). All rocks in the area have been altered 

partially to large extent by hydrothermal fluids and have been 

affected by phyllic, argillic, and propylitic alterations 

(Afshooni et al., 2013; Azadi et al., 2015). The main minerals 

include hematite, goethite, jarosite, malachite, and azurite 

belonging to the oxide zone, chalcopyrite, chalcocite, and 

covellite belonging to the supergene zone, and chalcopyrite, 

pyrite, and magnetite belonging to the hypogene zone. In 

NPCD, there are several main faults with two trends of NE-

SW and NW-SE, and the ore-bearing mineralization in the 

region is almost controlled by these tectonic structures 

(Asadi Haroni, 2007). Due to the area of the exploratory 

district, the geological map at a scale of 1: 5000 was prepared 

by Zarnab Company as a field survey. Geological map 

information was used to prepare MPM. 

One of the most effective methods for the exploration of 

metallic low-grade deposits, such as Cu, is the geochemical 

method, which was used here due to the good soil cover in 

the area and an exploration scale of 1: 5000. In this method, 

each sample has a greater radius impact than the litho-

geochemical method, and it can be said that the soil-

geochemical method is a suitable method in this scale and 

stage of exploration. Based on the geological map and 

mineralization process in the area, a 50 × 25 m rectangular 

grid was designed for soil sampling so that the rectangular 

length was in the direction of mineralization. 2564 soil 

geochemical samples were collected in the area and analyzed 

by the ICP-OES method (Zarnab. Co, 2011). After chemical 

analysis of the specimens, the results were subjected to 

preprocessing and organizing operations, including removal 

of the censored data, outlier correction, and data distribution 

analysis. 

Various geophysical methods are used to explore deposits. 

Magnetometry is the most common geophysical method 

used in both airborne and surface methods. According to the 

local scale of the exploration, 4446 surface points were 

measured through the magnetometer operation on a 20×50 

network. Through the processing of the magnetometry signal 

over the NPCD, alteration mapping can be deduced.   

In mineral exploration, remote sensing is often used to 

distinguish hydrothermal alteration zones, faults, and 

lineaments (Honarmand et al., 2012; Mohammadpour et al., 

2019). Satellite imagery with high spectral resolution 

(ASTER and Hyperspectral sensors) is used to define 

alteration zones (Fakhari et al., 2019; Honarmand et al., 

2012), and high-resolution images such as panchromatic 

images are used to determine faults and lineaments in the 

image (Ahmadfaraj et al., 2019; Mohammadpour et al., 

2019). In this study, the field survey results were used to 

determine the alteration according to the local scale, but the 

Quickbird image was used to determine the linear structures. 

The Quickbird satellite is capable of spatial resolutions of 

0.61 m and 2.44 m with Pan and MS sensors, respectively, 

and it is currently among the most powerful commercial 

satellites in terms of ground resolution. Panchromatic band 

image with a spatial resolution of 0.61 m, developed in 2006, 

is used in this study. 

At this stage of the study, drilling results are used to 

validate the mineral potential map. Within the studied area, 

40 exploratory boreholes were drilled to evaluate the mining 

prospectivity of the NPCD. 

4.2. Exploratory Target Criteria 

Exploratory target criteria should be determined and 

defined based on the conceptual model of a mineralization 

system. There are many examples of mineral system models 

that cover different types of mineral resources and geological 

areas. Many models of existing mineral systems are very 

complex, incomplete, or contradictory because they are 

usually designed for a specific area, and each author presents 
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a model in a slightly different format. As such, existing 

mineral systems models are not easily usable in the EIS or 

are not applicable for targeting on a global scale. As a result, 

it is essential to continuously update and improve existing 

models (Yousefi et al., 2019). Since the studied deposit is of 

porphyry copper type, the mineralization and exploration 

characteristics of this type of deposit are presented here. 

Porphyry copper deposits include scattered copper ores and 

their variants in veins and incisions that are uniformly 

distributed in large amounts of rock and form high tonnages 

(more than 100 million tons) and have copper with the grades 

of 0.3-2%. Geological and geochemical evidence suggests 

that the porphyry copper systems are predominantly formed 

by thermal fluids released during the shallow replacement of 

porphyry granite stocks (John et al., 2010).  

Porphyry copper deposits have been formed in most 

historical periods, but because unstable tectonic regions of 

bordering convergent plates are formed typically at the top 

of the crust (less than 5-10 km deep) and are vulnerable to 

erosion, more than 90% of known deposits are related to 

Cenozoic and Mesozoic in terms of the age (John et al., 

2010). 

Wide ranges of igneous rocks with different compounds 

are locally associated with and host the porphyry copper 

deposits. Quartz monzonite, diorite, granodiorite, dacite, 

andesite, quartz diorite, and monzonite are the most common 

types of reported rocks. Post-  

mineralization faults are also important in exploration and 

evaluation, in addition to their major role in maintaining 

porphyry copper deposits(John et al., 2010). 

The major copper ores in the hypogenic ore are 

chalcopyrite and pyrite, which are found in almost all the 

deposits, and bornite, which is found in approximately 75% 

of the deposits. Molybdenite is the only major mineral in 

molybdenum, accounting for about 70% of the world's 

deposits. Au and Ag accounted for about 30% of deposits as 

an accompanying product or by-product and they are thought 

to be present in the bornite and chalcopyrite minerals. 

Rhenium is also obtained as a by-product of molybdenite. 

Supergene ore contains copper-extractable minerals and a 

large number of other minerals formed by the following: 

descending and groundwater with low pH that dissolves the 

hypogenic copper minerals and regenerates Cu in the stable 

minerals of the oxidative environments and low 

temperatures. The spatial distribution of Cu, Mo, Ag and Au 

is normally determined in Cu + / - Mo +/- Au porphyry mines 

for grade control and mining planning. The abundance of 

these and other sub-elements in rocks, soils, and sediments 

have been commonly used in the exploration of porphyry 

copper deposits (John et al., 2010). 

The vary nature of porphyry copper system evolution 

concentrates minerals of diverse geophysical properties near 

the topographic surface. The distribution of magnetite in a 

porphyry copper deposit varies from abundant to 

insignificant, depending on the type and intensity of the 

alteration and parent lithology. The first stage of the 

alteration, along with porphyry copper deposits, occurs in 

areas that provide predictable spatial patterns of magnetic 

anomalies. A high-resolution surface magnetic investigation 

has been able to map these areas and provide useful 

exploration tools on a deposit scale (John et al., 2010). 

In areas with good outcrops and limited vegetation, remote 

sensing by multi-spectral spatial imaging systems can be 

used to map transforming mineral complexes and their 

spatial relationships in porphyry copper systems. Minerals 

alterations such as phyllic (sericitic), argillic, propylitic, iron 

oxides, and silica can be mapped from a distance due to their 

special absorption properties in the visible spectrum to short-

wave infrared and thermal infrared.  

4.3. Target Proxies or Exploratory Layers 

Criteria for the performance of mining subsystems, 

identified through the analysis of exploratory data, should be 

mapped as evidence of the document and/or proxy so that 

they can perform spatial analysis. It is important to note that 

some criteria may not be directly mapped, but maybe 

modeled as spatial proxies (Mccuaig et al., 2010). The 

characteristics of evidence and proxies are themselves 

indications of the rock formation processes that exist directly 

(i.e., the lithology extracted from the geological map) or 

indirectly (e.g., lithology interpreted from geophysical data) 

derived from the existing exploratory data set (Mccuaig et 

al., 2010). In this study, exploratory layers were produced 

using the criteria and characteristics of the deposit based on 

the available data and information. 

4.3.1. Geology layers 

I) Rock Types 

Lithological and volcanic-volcanoclastic units with 

Eocene age and various phases of intrusive-subvolcanic units 

with Oligo-Miocene age are exposed in this region. The 

composition of volcanoclastic units is mainly medium to 

acidic tuffs and volcanic rocks include andesite and andesite 

basalt. All these units have been cut by Oligo-Miocene 

intrusive rocks, and they also account for the bulk of the 

outcrops in the area. The composition of intrusive rocks, 

including micro-quartz diorite, varies to granodiorite and 

dacite porphyry. The variety of sub-volcanic units in the area 

has been followed by successive replacing of intrusive stocks 

in earlier phases with very short time intervals, and a 

completely differentiated trend can also be observed in the 

intrusive rocks from the old to the new ones. The body of 

evidence is similar to the occurrence of a sub-volcanism 

associated with a Cu porphyry system. Finally, andesitic 

dikes have settled in the late stages of magmatism, which is 

a characteristic of porphyry Cu systems (Zarnab Co., 2011). 

For integrating evidential layers, the rock types of the area 

were divided into nine classes and each class was assigned 
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an appropriate weight based on the conceptual model and 

expert knowledge. The rock types and the lithological 

evidential maps are shown in Figure 2.

 
Figure 2. Rock type evidence map, based on 1: 5000 geological map. 

II) Alteration  

In this study, the alteration areas were determined by field 

survey according to the phase of exploration operations  

(Zarnab. Co, 2011). Thin section analysis, XRD, and surface 

geology in different parts of the NPCD proved that the most 

important alteration regions in Naysian were phyllic, 

potassic (biotite), propylitic (calcite, and chlorite), and 

Argillic, respectively. The most widespread alteration zone 

in the Naysian deposit is the phyllic alteration zone, which 

has affected many parts of the deposit with varying 

intensities. Most of the index minerals of the phyllic 

alteration present in the deposit are quartz, sericite, 

tourmaline, muscovite, pyrite, and anhydrite. Taking the 

results of the geological field survey into consideration, the 

regions with high mineralization rates are along with the 

phyllic zones. Therefore, the highest value was allocated to 

the phyllic alteration. A map of the alterations is shown in 

Figure 3. 

 
Figure 3 Alteration evidence map of the Naysian Porphyry copper district. 

III) The density map of lineaments 

It is an appropriate guide to identify the Cu mineralization 

place by determining the structural lineaments. Areas with 

tectonic evidence and high fault density are directly related 
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to mineralization (Ahmadfaraj et al., 2019). Lineaments were 

extracted from the 1:5000 geology map, the satellite images, 

and geomagnetic data, and finally, a density map was 

generated in this study., Fault traces derived from the field 

survey are shown in Figure 4a. 

One powerful way to detect the lineaments on the ground 

surface is to use satellite images (Ahmadfaraj et al., 2019; 

Han et al., 2018; Mami Khalifani et al., 2019). Since the 

visual extraction of lineaments from the satellite images is 

the most common method, the automatic extraction 

techniques for detecting the lineaments can significantly 

reduce the user error and implementation time. The best 

automatic extraction techniques are those that integrate the 

edge detectors with the line extraction algorithms (Masoud 

& Koike, 2011; Rahnama & Gloaguen, 2014b). In the 

present study, Canny algorithm (Biswas & Sil, 2012) and 

Hough transform (Rahnama & Gloaguen, 2014a) were used 

as the edge detector filter and for extracting the linear 

features in an image, respectively. 

These techniques were used on the images of the 

Quickbird satellite, which is capable of spatial resolution of 

0.61 m and 2.44 m with Pan and MS sensors respectively. It 

is currently among the most powerful commercial satellites 

in terms of ground resolution. A panchromatic band image 

with a spatial resolution of 0.61 m, developed in 2006, is 

used in this study. The reason for such a selection is that it 

detects the several-ten-meter linear features as an important 

indicator layer in close association with the ore 

mineralization systems. After image corrections, the Canny 

filter is applied for detecting the edges in the line extraction 

phase, and then the Hough transform is used in the post-

processing phase to enhance tectonic lineaments. The map of 

extracted lineaments related to the copper mineralization 

(Figure 4b) shows a prominent direction along the NE-SW. 

Another way to detect the shallow and deep-seated 

lineaments is to use the geomagnetic data where they are 

called geophysical lineaments (Ajayakumar et al., 2017). 

The ground-based magnetometry survey was conducted over 

a 5.2 km2 area with a grid of 20×50 m, where 4446 data were 

measured with a proton magnetometer. After diurnal 

correction, the regional magnetic effect was removed from 

the observations. There are many techniques to determine the 

geomagnetic lineaments, most of which are based on the 

directional derivatives of the potential field magnetometry 

data. The tilt angle method, relying on the initial concepts of 

the horizontal and vertical derivatives of the total field data 

(Miller & Singh, 1994), was used in this research. Before 

implementing the tilt angle filter, the reduced-to-pole (RTP) 

filter was applied on the residual magnetometry data to 

amplify the signal and correct the effect of the Earth’s 

magnetic field inclination by putting the positive portion of 

anomalies over the main causative source(s) (Abedi and 

Oskooi, 2015). Figure 4c shows the output of the tilt angle 

method on the RTP data in the NPCD, where zero values 

locate over the shallow or deep-seated lineaments.  

The final lineament map is generated by merging those 

derived from the geology map (field survey), Quickbird 

image, and the magnetometry data (Figure 4d). The 

generation of a  lineament indicator map requires the 

classification of the lineament density using the fractal 

geometry concept that usually works well (Saein and Afzal, 

2017; Yousefi and Carranza, 2015).  

 
Figure 4 The structural lineaments in the Naysian region extracted from (a) field survey, (b) Quickbird satellite image processing, 

and (c) the tilt angle mapping of the ground-based magnetometry survey. (d) The final lineament map was generated by the 

integration of all ones. 

To implement the C-A fractal method on the lineaments 

density map, values of lineaments density intensity were 

taken into account instead of the concentration values. On the 

basis of the diagram shown in Figure 5a, the fractal curve 
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was divided into four classes to obtain the fault density map (Figure 5b). 

 
Figure 5 Evidence map of lineaments’ density, a) C-A fractal curve for lineament density, and b) reclassified lineament density 

map based on the C-A fractal model. 

4.3.2. Geochemical Layers 

According to the conceptual model of porphyry copper 

deposits mentioned above, the spatial distribution of Cu, Mo, 

Au, and Ag is important for the exploration of porphyry 

copper deposits in geochemical methods. Bivariate and 

multivariate statistical analyses were performed on the data 

and the paragenesis of Cu and Mo was obtained from the 

results. Therefore, Cu and Mo were considered as the main 

evidential layers. The results of the soil geochemical data are 

in good agreement with the geological maps. Due to the 

characteristics of the ore deposit in the area and multivariate 

analysis of the geochemical layers of Cu, Mo, and factor 4 

were selected as exploration layers. 

I) Cu and Mo concentration maps  

The resulting data from chemical analysis of the soil 

geochemical samples were arranged and after correction of 

the censored and outliers, the data were prepared for plotting 

of Cu and Mo geochemical maps. Then, geochemical maps 

of Cu and Mo were prepared using IDW interpolation 

method (Shepard, 1968). The anomaly from the background 

was separated using the C-A multifractal method as well. 

The C-A fractal method was performed on geochemical 

maps and finally, the Cu and Mo maps were classified into 

four classes according to Figures 6a and 7a. Figures 6b and 

7b present the geochemical maps of Cu and Mo, respectively. 

Most of the weight is assigned to areas with Cu and Mo 

anomalies, and more weight is assigned to the Cu evidence 

map due to the close association of Cu with mineralization. 
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Figure 6 Geochemical evidence map of Cu, a) C-A fractal diagram for Cu, and b) reclassified geochemical map of Cu based on 

the C-A fractal model. 

 

Figure 7 Geochemical evidence map of Mo, a) C-A fractal diagram for Mo, and b) reclassified geochemical map of Mo based on 

the C-A fractal model. 
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II) Factor Analysis 

Multivariate statistical methods are widely used in the 

investigation of the elemental geochemical patterns by 

coping with simultaneous changes of several variables and 

their statistical inferences.  They are used more than the 

univariate or bivariate statistical techniques in geoscience 

studies (Howarth, 1983) such that they can be utilized for 

searching the geochemical anomalies (Aliyari et al., 2020; 

Loska & Wiechuła, 2003). The factor analysis used here is 

among the valid and important multivariate methods. The 

number of the main initial variables is decreased by detecting 

the lengths with the most changes, and it is possible to 

investigate and identify the structures among the data. 

Therefore, both single- and multi-element variables can be 

analyzed to introduce the potential mineralized zones 

(Kumru & Bakaç, 2003). Through applying the factor 

analysis on the normalized values of variables (Table 1), the 

fourth factor with higher loading of Cu and Mo is selected as 

the main factor in association with the anomalous regions. 

According to Table 1, the Cu-Mo anomaly regions in factor 

4 are shown with high values. Therefore, the C-A 

multifractal curve (Figure 8a) was plotted to generate the 

factor map. The high values of Factor 4, shown in red in 

Figure 8b, may indicate areas of Cu-Mo anomaly. 

Table 1. Factor analysis table of the geochemical data. 

Element Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6 

Ag -0.008 -0.477 -0.155 0.172 0.401 -0.089 

As 0.303 0.332 -0.459 -0.294 0.370 -0.298 

Co 0.702 0.489 0.073 0.128 0.159 -0.190 

Cr 0.634 -0.463 0.372 -0.105 0.041 -0.080 

Cu 0.044 0.068 -0.099 0.415 0.091 0.390 

Fe 0.639 0.241 0.163 0.223 0.186 0.013 

Mn 0.678 0.120 -0.429 0.154 -0.130 -0.121 

Mo -0.321 0.243 0.137 0.353 0.220 0.122 

Ni 0.671 -0.254 0.264 -0.380 0.075 0.083 

P 0.179 -0.139 0.110 0.743 0.154 0.112 

Pb 0.269 -0.064 -0.663 0.053 0.190 -0.160 

S -0.415 -0.126 0.066 0.280 0.582 -0.130 

Sb 0.125 0.112 -0.586 -0.311 0.236 0.302 

Sn 0.080 -0.756 0.138 0.189 0.055 0.073 

Ti 0.680 0.179 -0.029 -0.015 -0.326 -0.162 

V 0.838 -0.237 0.084 0.192 -0.110 -0.006 

W 0.142 0.036 -0.573 0.318 0.283 0.386 

Zn 0.585 0.130 -0.572 -0.064 0.120 -0.124 
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Figure 8 Geochemical evidence map of Factor 4, a) C-A fractal diagram for Factor 4, and b) reclassified geochemical map of 

Factor 4 based on the C-A fractal model. 

4.3.3. Geophysical Layer 

Simple models for porphyry copper deposits (Berger et al., 

2008; Lowell & Guilbert, 1970) involve contrasting zones of 

alteration centered on the deposit. Magnetic anomalies can 

reflect the location of these zones: weak local magnetic highs 

over the potassic zone, low magnetic intensity over the 

sericitic zones, and gradually increasing intensities over the 

propylitic zone (Thoman et al., 1997). Therefore, areas with 

moderate magnetic intensity can be a sign of phyllic 

alteration in porphyry copper deposits. In the NPCD, since 

the phyllic alteration is expanding and mineralization is 

observed in this alteration, the moderate magnitude is given 

the highest weight. 

   Various techniques were proposed to enhance potential 

field magnetometry data that are the directional gradients, 

downward continuation, and several high-pass filters (Mami 

Khalifani et al., 2019; Shahsavar et al., 2019). One of these 

filters is the analytic signal (AS), which is advantageous to 

enhance the borders and the main body of sought targets. The 

initial formulation of the analytic signal filter for magnetic 

data was discussed by Nabighian (1974). This filter can 

better present the borders of the magmatic intrusive-related 

sources in the studied area. The analytic signal map was 

implemented on the RTP magnetometry data and then 

classified after applying the C-A multifractal method (Figure 

9a). Since Cu-Mo mineralization occurred mostly on the 

margins of causative sources, those promising regions were 

closely related to the medium values of this filter. The 

geophysical map used in the integration model is shown in 

Figure 9b. 
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Figure 9. Geophysical evidence map of the magnetometry survey, (a) C-A fractal curve, and b) reclassified geophysics map 

based on the C-A fractal model. 

 

4.4. Geospatial Evidence Integration  

There is a consensus among geo-mathematical scientists 

that areas with higher statistical or conceptual characteristics 

(for example, higher weights) have a higher priority for 

subsequent explorations than those with lower ones (Yousefi 

& Carranza, 2016). Therefore, the best integration function 

is one that can use any of these features. Various integration 

functions have been developed and used to combine maps, 

i.e. weight exploration layers, and to generate exploratory 

targets. The effectiveness of the integration functions in the 

preparation of the mineral potential map has been used under 

the influence of the nature of data entry (for example, the 

quality of the forecast maps) and the applied weighted 

methods. Therefore, different integration functions should be 

considered to select the best and most suitable exploration 

targets. In this regard, three integration methods of the IO, C-

VIKOR, and A-VIKOR have been evaluated here. 

A geospatial decision matrix of 7×36791 was formed to 

integrate the seven layers prepared from geology, 

geophysics, and geochemistry. The decision tree shown in 

Figure 10 illustrates the inference network for the integration 

of layers. Mineral potential maps were obtained by three 

methods of the IO, C-VIKOR, and A-VIKOR. Assuming 

weights assigned to each layer presented in Table 2, the IO 

method was implemented as a popular and linear method of 

data integration for MPM. The integration result is plotted by 

the IO in Figure 11a, where higher values correspond to 

favorable regions with higher Cu mineralization desirability. 

Several zones are promising in the eastern, northeast, central, 

and western parts, depicted by red color in Figure 11a. 
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Figure 10. Flowchart of mineral potential mapping in the Naysian porphyry copper deposit. 

 

Table 2: The normalized weight of each criterion acquired from a group of geoscientist decision-makers. 

Criterion Weight Sub-criterion Weight Final weight 

Geology 0.388 

Lithology 0.332 0.1288 

Alteration 0.345 0.1339 

Density 0.323 0.1253 

Geochemistry 0.499 

Cu 0.425 0.2121 

Mo 0.270 0.1347 

Factor 0.305 0.1522 

Geophysics 0.113 AS 1 0.113 

 

The VIKOR approach is among the most widely used 

MCDM methods that are able to systematically prioritize the 

available options according to the criteria. Due to the high 

capability of this method, various researchers have used this 

approach to model MCDM problems (Opricovic & Tzeng, 

2004). The reasons for the wide use of this method to 

prioritize options are (a) the logic used in the VIKOR method 

is understandable, (b) the computational processes are 

simple, (c) it provides the best consensus solution, and (d) 

this method provides, at the same time, proximity to the 

maximum mineral potential and the maximum distance from 

the region of sterility or background in the calculations in 

simple mathematical form. 

In this research, the C-VIKOR and A-VIKOR methods 

were used for MPM. Regarding the implementation stages of 

the C-VIKOR and A-VIKOR methods in Section 2.1, these 

methods were applied to obtain the mineral potential maps 

according to Figures 11b and 11c, respectively. 
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Figure 11 MPM derived from three algorithms of a) IO method, b) A-VIKOR method, and c) C-VIKOR method. 

5. Discussion 

Within the studied area, 40 exploratory boreholes were 

drilled to evaluate the mining prospectivity of the NPCD. 

The Cu concentration analysis was also made using an 

atomic absorption system. To validate the results obtained 

from this study, the average copper concentration in each 

borehole is calculated via Eq. (13): 

𝐶𝑢̅̅̅̅ =
∑ 𝐶𝑢𝑖∗𝑇𝑖

𝑛
𝑖=1

∑ 𝑇𝑖
𝑛
𝑖=1

                                                                                                                                              (13) 

where Cui is the copper concentration in ith sample, T i is 

the borehole thickness of ith sample, and n is the number of 

samples in each borehole. 

Once the copper concentration was calculated in each 

borehole, its value was compared to those of MPM 
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(independent outputs) generated by the three aforementioned 

strategies. In Figure 12, the horizontal axis shows the average 

copper concentration and the orthogonal one indicates the 

MPM value in the pixel of borehole locations. The Top, 

middle, and lower rows in Figure 12 are derived from the IO, 

A-VIKOR, and C-VIKOR strategies, respectively. Higher 

Cu concentrations must correlate with the higher values in 

generated MPMs. Therefore, as the fitted line slope (between 

the MPM versus the Cu concentration) is closer to a line with 

a slope of  = 450, it indicates the greater accuracy of MPM. 

As seen in Figure 12, positive slopes of all fitted lines 

indicate the efficiency of the VIKOR technique in MPM 

generation, where those related to the A-VIKOR method are 

more than the IO and C-VIKOR methods. As this value is 

360 for the A-VIKOR map, it led to higher accuracy of the 

MPM. A notable point is that a positive correlation (or slope) 

exists between the A-VIKOR map and Cu concentrations, 

demonstrating more favorable regions in association with 

higher potential of Cu mineralization.   

 
Figure 12 Scatter plot of the average copper concertation versus the value of MPM, a) IO method, b) A-VIKOR, and c) C-

VIKOR. 
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   In preparing a synthesized geospatial map, a method is 

preferred that introduces less area as prospectivity areas 

because it will reduce exploration costs in later stages. In 

addition, the success rate of the method can be taken into 

consideration through drilled boreholes in the region. An 

average copper grade above 0.1% was observed in 25 out of 

40 drilled boreholes, Therefore, these 25 boreholes were 

considered as the criteria of measurement. In the MPM 

binary map by the IO method (Figure 13 a), 20 boreholes 

(80%) are located within prospectivity areas with an area of 

0.495 Km2. In the MPM binary map by the A-VIKOR 

method (Figure 13b), 23 boreholes (92%) are located in the 

prospectivity section with an area of 0.158 km2. In addition 

to covering a larger number of boreholes, this map also 

introduces a smaller area than the IO method, implying that 

the A-VIKOR method is superior to the IO method. In the 

MPM by the C-VIKOR method (Figure13 c), 23 boreholes 

(92%) are located in the prospectivity section with an area of 

0.187 km2. Therefore, it has introduced more boreholes than 

the IO method and more area than the A-VIKOR method. In 

this study, the A-VIKOR method is superior to C-VIKOR 

and IO methods and there is a higher probability of success 

and deposit discovery. 

 

Figure 13 The binary mineral prospectivity mapping, a) IO method, b) A-VIKOR, and c) C-VIKOR.  
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6. Conclusion  

The VIKOR method is one of the MCDM methods used 

for MPM. Based on consensus planning, this method 

evaluates issues with inappropriate and incompatible criteria 

and is effective in deciding on mineral potential issues. In 

this study, geochemical, geological, and geophysical 

evidential maps were prepared based on a porphyry copper 

deposit in the Naysian district. The highest weight was 

assigned to the geochemical layer of Cu and the lowest 

weight to the geophysical layer due to the mineralization 

potential of porphyry copper. MPM was prepared using the 

IO, A-VIKOR, and C-VIKOR methods. In these maps, high 

values are associated with promising areas of Cu 

mineralization. With a threshold of 0.6 for the maps obtained 

from the three methods, the area of promising zones are 49.5, 

15.8, and 18.7 hectares for IO, A-VIKOR, and C-VIKOR 

methods, respectively. Therefore, the VIKOR methods 

introduce less area as promising areas, which reduces the risk 

of exploration. A comparison of the results obtained from 

exploratory boreholes between the three proposed methods 

reveals that the A-VIKOR method has higher accuracy and 

provides better results. Therefore, high-value areas in the A-

VIKOR mineral potential map are suggested for drilling and 

further mining prospectivity. 
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