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ABSTRACT 

Investigating the geometric similarity of trajectory data to extract movement patterns in urban 

environments is an emerging area of research that has attracted several efforts over the past few years. 

This paper uses a convex-hull algorithm whose objective is first to identify curvatures and turning points 

in a given trajectory and secondly to provide a computable solution to identify the similarities of 

trajectories. Moreover, the present paper tries to detect additional capabilities that will support the 

exploration of regular patterns efficiently. This approach is supported by a series of geometrical 

definitions and algorithms that reduce the complexity of primary trajectories significantly and identify a 

trajectory geometrical decomposition modeled by an abstract trajectory descriptor (ATD). The main 

novelty of this paper is to find out the similarity between the row trajectory's geometry and the results of 

the ATD method using the known geometric measures as distance, orientation, complexity, and shape. 

Based on this decomposition principle, trajectory similarities can be studied using physical, geometrical, 

or both descriptors as considered in the ATD method. The proposed method has been evaluated using 

Geolife benchmark trajectory database. the results show that the proposed algorithm not only successfully 

identify curvatures and turning points at different scales, but also proved to provide relevant trajectory 

similarities with efficient computation times as the overall similarity difference value equals 0.002 

between the two row trajectories. The resulted trajectories using the ATD method applying less than 5% 

of the primary points. In addition, the computation time of about 93% is reduced using the detected critical 

geometric points using the ATD method. 
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1. Introduction 

Nowadays, trajectory data in urban environments has been 

widely used; taking into account the rapid development of 

positioning devices, mobile technologies, and user-oriented 

applications. Several available benchmark trajectory 

databases use the development of novel applications and 

cross-comparisons between different research works. 

Amongst the previous researches, the analysis of the 

similarities between trajectories is more considerable. This 

fact might allow us to derive regular patterns and then to 

provide a better view and potentially to understand of the 

human behaviors that arise in the large urban environment, 

this undoubtedly being an asset for many urban planning and 

transportation behavioral studies. Specifically, it might be 

useful to examine intra-urban travel patterns and derive some 

possible scenarios for planning further transportation 

network developments (Yuan, Qian et al., 2014, Yue, Lan et 

al., 2014). Additionally, such movement patterns could be 

beneficial for extracting space-time accessibilities, cost, and 

travel time between different places in the city (LIN, LV et 

al. 2014). A movement pattern in the city can be regarded as 

composed of two complementary geometric and semantic 

shouldthe geometric dimensiondimensions. While

its origin,according totrajectorya givencharacterize

destination, and its intrinsic geometrical properties 

(Widhalm, Yang et al. 2015). While the semantic patterns are 

crucial when examining the behavioral components of a 
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given movement in the city (Lipan & Groza 2010). 

When exploring the similarity between different 

trajectories, choosing the right parameters to represent an 

important preliminary step. In related work, Buchin et al. 

(Buchin, et al. 2008) selected several geometric and semantic 

criteria as well as some context-aware criteria. However, the 

temporal component has  been unconsidered so far, and a 

given trajectory is considered a linear sequence of points 

(Yuan & Raubal 2014). Using a primary geometrical 

approach, two trajectories can be cross-compared using a 

series of Euclidean, Hausdorff, or Fréchet distances 

(Demšar, Buchin et al. 2015). However, other geometrical 

properties as exhibited by curvature and turning points are 

unconsidered. Another category of approaches considers 

some additional geometrical or second order parameters such 

as direction, speed, and acceleration (Soleymani, Cachat et 

al. 2014, Demšar, Buchin et al. 2015). However, these 

parameters can be operated to characterize some movement 

patterns (Dodge, Weibel et al. 2011). Finally, contextual 

properties like the environmental conditions (e.g., 

temperature and pressure) can be considered as external 

parameters worth being related to some trajectory and 

movement patterns (Buchin, Dodge et al. 2012).  

Several methods and computational approaches have been 

used and implemented to explore the similarity between 

trajectories in urban environments. For instance, schematic 

representations of the origin and destination of some 

trajectories provide some effective means when studying 

origin-destination behaviors in the city (Lu, Wang et al. 

2015) and their distribution in space and time at various 

levels of granularity from intra-city to city-to-city 

transportation patterns (Jiang, Zheng et al. 2015, Tang, Liu 

et al. 2015). When considering large sets of trajectories, a 

main geometricderive thegeneralization should

trajectories. This provides moresomeofcharacteristics

between differentcorrelationopportunities to study the

categoritrajectory es ( et al. 2005Cao, Mamoulis ) The.

as thecan equally be considereddimensiontemporal

essential criteria to analyze, particularly when a given 

trajectory is decomposed according to some given points of 

interest (Giannotti & Pedreschi 2008). Overall, trajectory 

evaluateddifferentandparameters can be visualized

according to different human profile behaviors (Dodge, 

Weibel et al. 2009). In another study, Soleymani, Cachat et 

al.  (2014) employed the maximum, minimum, and mean 

values of the speed, rotation angle, acceleration when 

comparing two given trajectories. Another group of research 

has applied some clustering techniques to identify similar 

trajectories. For example, Morzy (2007) applied a swarm 

optimization and dynamic time warming (DTW) algorithm 

to cluster a series of trajectories. In related studies, a Fuzzy 

c-means method (FCM) (Parent, Spaccapietra et al. 2013) 

and a support vector machine (SVM) (Lee, Han et al. 2011) 

were applied for clustering trajectories. As a result, there are 

variety analysis methods depending on the application goals 

as the physical, geometrical, or both of them could be utilized 

in the mentioned works in the analysis. 

The approach presented in this paper is unique in several 

aspects. First, since most of the above contributions consider 

all surveyed points of trajectories into the analysis while 

most of these points are unnecessary and just increase the 

complexity of methods. Hence, the proposed method at first 

introduces a data-filtering algorithm whose objective is to 

keep the most relevant geometrical trajectory points to 

improve computation times, this being a key issue when 

considering huge data sets. Next, the peculiarity of our 

algorithmic approach is to consider a different point of view 

and assumption, giving specific importance and role of the 

convex-hull geometrical structure as well as a series of 

additional trajectory parameters such as the shape, the 

turning points, the direction, and the short-line median 

Hausdorff distances. In our previous work, we introduced a 

geometrical and semantic framework to identify the main 

physical and geometrical critical points of a given trajectory 

(LIN, LV et al. 2014, Yue, Lan et al. 2014). The distribution 

of such critical points has been explored using an entropy-

based approach (Widhalm, Yang et al. 2015). In the present 

paper, trajectories similarities are further studied applying 

the primitive distribution of the critical points of the 

respective convex-hull s of these trajectories. In addition, this 

paper seeks to evaluate the efficiency of the ATD method in 

preserving the geometric specifications of trajectories using 

geometric descriptors of distance, orientation, complexity, 

and shape. Therefore, the semantic or topological relations 

between the trajectories are unconsidered in this paper. 

The remaining of the paper is organized as follows. The 

next section introduces the main principles of our proposed 

approach. Section 3 presents the experimental 

implementation and discusses the results are presented. 

Finally, Section 4 concludes the paper and provides a few 

directions for further work. 

2. Proposed Methodology 

Figure 1 shows the framework of the proposed method, 

which consists of three main steps. The first step involves 

pre-processing the trajectory data. At the pre-processing 

stage, the points with low spatial accuracy are withdrawn 

from the trajectory sequence (e.g., trajectory points with the 

weak GPS signal, receiver technical problems). In many 

cases, map matching processes can eliminate these 

positioning errors. However, in the remaining cases, and 

when the error value is beyond an acceptable threshold, other 

methods should be adopted to eliminate these points or match 

them to the trajectory point sequence appropriately (Zheng 

2015). To process such error-prone remaining points, a 

Kalman filter has been applied. Application of this Kalman 

filter represents a recursive process that provides a linear fit 
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based on the positions of the input trajectory points; an 

average standard deviation (σ) between two consecutive 

points is first calculated, then trajectory points with a 

distance higher than (twice as much as σ) the trajectory 

fitting line are eliminated from trajectory points. Next the 

turning and curvature critical points of the two considered 

trajectories i and j are detected using the Convex-hull 

structure described by (Hosseinpoor Milaghardan, Ali 

Abbaspour et al. 2018). Finally, the spatial similarity degree 

is calculated using the considered geometric parameters 

including distance, orientation, complexity, and shape. 

of a relativelymade upMany of the trajectories are

significant number of points. These challenges the 

assessment of the spatial similarity of each of the trajectories, 

as well as computation time, are likely to be heavy. This 

leads us to apply an Abstract Trajectory Descriptor (ATD) 

approach in which each trajectory is decomposed into a 

sequence of significant points derived from curvature and 

turning points. For example, in Figure 2a, consider the 

trajectory Ti, which consists of 416 points. The significant 

points of this trajectory were extracted (Figure 2b) and 

finally, the Ti
′ graph was theand providedderived

representative generalization of this trajectory with 47 

significant points to further consider when evaluating spatial 

similarities with other trajectories (Figure 2c). 

Let us consider the spatial characteristics and graphs 

extracted for each of the trajectories. The similarities are 

derived from four geometric criteria including the shape, 

direction, turning point, and Hausdorff distances as described 

in the following sections. The following is a detailed 

description of first the trajectory ATD extraction and then 

similarity evaluations according to the different trajectory 

geometrical parameters identified so far. 

2.1. Trajectory ATD Extraction 

trajectorytheofsignificant pointsTo identify the

according to the principles introduced in the previous 

section, a convex-hull geometric structure and a search for 

turning points are computationally implemented.  

Figure 3 illustrates the position of the curvature and 

turning points for an example of trajectory. One of the critical 

aspects and the role of these significant trajectory points is to 

entail the spatial distances and temporal intervals between 

them. Indeed, this can be applied for further analysis of the 

typical characteristics embedded in a given trajectory as well 

as providing a few insights to analyze the underlying 

behaviors to identify the most minimal possible number of 

these points a convex-hull algorithm is applied to extract the 

minimum number of critical points that can be used to show 

all geometric properties of the trajectory including shape, 

complexity, direction and distance. The role of these 

parameters is to embed comprehensive information on the 

underlying spatial and temporal properties that can be used 

for further analysis and trajectory pattern detection.

 

 

 
 

Figure 1. Methodological flowchart. 
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The convex-hull structure is one of the most commonly 

used structures in geometric computations based on the 

concept of convexity, which may be used directly or as a tool 

for constructing other structures. Figure 4 illustrates the 

computational process applied to extract curvatures and 

turning points. In this figure, ni is the number of nodes in 

trajectory Ti, and j is the numerator for vertices of a convex 

polygon. 

Considering the framework presented in Figure 4, the 

computational process begins from the first point of the 

trajectory while the largest convex polygons are formed 

along the trajectory as the convex-hull geometric structures. 

  

 
Figure 2. A Sample trajectory with the extracted significant points. 

 
Figure 3. A trajectory along with significant curvature and turning points. 

 

 
Figure 4. The framework applied to identify significant points. 
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Broadly, the order of the points to form this structure does 

not matter when defining the convex-hull structure. 

Nonetheless, in the approach suggested, the ordering of the 

points is considered when forming the convex-hull structure 

considered.points successivelyimposed the trajectory

Figure 5 illustrates the application of the convex-hull 

structure to an example of a trajectory. Considering the 

structure of the trajectory data, which can be defined as a 

time series of trajectory positions, the implementation 

algorithm of the proposed method is incremental.  

 

Figure 5. A trajectory with convex-hull structures. 

After forming the convex-hull structure, the significant 

points of the curvature and turning are extracted. Turning 

points are indeed the points of the beginning and the ending 

points of a given curvature, and at least one point from the 

trajectory points set must be between these two turning 

points. In Figure 6, turning points are identified from a 

trajectory example. In particular, Figure 6 exhibits two points 

of sequential turning change, while only one curvature can 

lie between these two points. Moreover, the two points and 

the curvature points between them are illustrated by the 

convex-hull. The generation of the convex-hull s in a 

trajectory is processed in sequence, and in fact, the end point 

of convex-hull i and the convex-hull are considered the 

starting points for the convex-hull (i+1). 

 
Figure 6. Turning points in a trajectory 

More formally, Turning and curvature points are of a given 

convex-hull are defined as follows. 

Definition 2 – Turning point: A point T(ti) materializes a 

turning point for each i=1,2,….,n from a given trajectory n if 

and only if: 

1- Eqs. (1) and (2) are true for two values of j=i+1 

and s<i-1. 

 
i i 1 jdist T(t )T(t ),T(t ) 0



  
 

                      (1) 

(2)

 

s<iFor →  ∆t is andminimumis

i i 1 sdist T(t )T(t ),T(t ) 0
   

  

2- The signs of the values extracted from Eq. (3) are 

the same and opposite to the sign of Eq. (4) for the 

two values j and s. 

s 1 s 1i i

i 1 i 1 s s

s s s 1 s

T(t ) T(t )T(t ) T(t )

T(t ) T(t ) T(t ) T(t )

T(t ) T(t ) T(t ) T(t )

x y 1x y 1

x y 1 0; x y 1 0

x y 1 x y 1

 

 



   (3) 

 

i i

i 1 i 1

j j

T(t ) T(t )

T(t ) T(t )

T(t ) T(t )

x y 1

x y 1 0

x y 1

 

                      (4) 

where xT(ti)
 and yT(ti)

 are the coordinates of the point T(ti) 

the points s and j. Moreover,and the same for

dist[T(ti)T(ti−1)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅T(tj)] gives the distance between the 

connecting line of T(ti) and T(ti−1) to the point T(tj). 

Additionally, ∆tis is the time difference between the points i 

and s. Next, a curvature point is detected according to 

definition 3 as follows. 

Definition 3 - curvature point: For each point, T(ti) and 

T(tj) respectively denote the start and the end points of a 

convex-hull  (Hosseinpoor Milaghardan, Ali Abbaspour et 

al. 2018), while T(tr) denotes the curvature point if and only 

if the Eq. (5) is true; 

i j rdist T(t )T(t ),T(t ) is Max 
 

                 (5) 

After identifying the significant points of the curvature and 

turning points, the trajectory ATD is compiled. All the 

geometric parameters listed above are detected and stored in 

a series of Abstract Trajectory Descriptor (ATD) 

representations that also take into account the starting and 

ending points as well as the critical points identified by the 

geometrical parameters.  The nodes of this ATD contain the 

significant points of the reference trajectory, distances and 

temporal intervals between successive points are also stored 

as contextual information. 

2.2. Spatial similarity 

Based on Eq. (1) and the trajectory ATD extracted in Section 

2.1, for each trajectory, a degree of spatial similarity can be 

derived. Let us initially describe the geometric properties 

used which are distance, direction, turning point, and shape 

(Chehreghan & Ali Abbaspour 2017). 

2.2.1. Short-line median Hausdorff 

Measuring the distance between two trajectories is one of 

the most primary geometric criteria to check when evaluating 

the similarity between two trajectories. In many studies, the 

Euclidean, Hausdorff, DTW, and Fréchet distances have 

been used to evaluate some degrees of similarity. The 
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Hausdorff distance (Buchin, Buchin et al. 2008) and the 

Short-line Median Hausdorff introduced by Tong, Liang et 

al. (2014) have been used largely in previous trajectory 

analysis studies. Unlike the other Hausdorff distances such 

as the median Hausdorff, these types of distances are 

appropriate against longitudinal anomalies (Tong, Liang et 

al. 2014, Chehreghan & Ali Abbaspour 2018). Considering 

the anomalies and turning points in the trajectory data, 

applying an optimal criterion is mandatory. Eq. (6) gives the 

Short-line Median Hausdorff distance (Tong, Liang et al. 

2014) based on the length between two given trajectories 

Ti and Tj: 

i j i j

1 i j

j i i j

m(T ,T ) ; if length(T ) length(T )
C (T ,T )

m(T ,T ) ; if length(T ) length(T )

 
 



     (6) 

where the length(Ti) and length(Tj) denote the lengths of 

the two trajectories Ti and Tj, respectively, and where 

m(TiTj) and m(TjTi) are derived by Eqs. (7) and (8):  

 a i b ji j P T P T a bm(T ,T ) median min P L
 

                   (7) 

 
b j bj i P T P Ti b am(T ,T ) median min P L                    (8) 

where, 

‒ La and Lb are two optional parts of the trajectories 

Ti and Tj. 

‒ Pa is a point from the trajectory Tj. 

‒ ‖Pa − Lb‖ is the vertical distance between one 

point on the Ti)Pa( and one of the parts of Tj (Lb). 

‒ ‖Pb − La‖ is the vertical distance between one 

point on the Tj)Pb( and one of the parts of Ti (La).  

2.2.2. Direction 

Another geometric criterion that can be used to check the 

geometric similarity of two given trajectories is direction. 

For a given trajectory, the direction can be defined as the 

angle between the virtual line of the starting point to the 

endpoint of the trajectory and the horizontal axis. 

Accordingly, for two trajectories having directions α and β, 

the direction difference is equal to | α-β | as shown in Eq. (9) 

(Tong, Liang et al. 2014). In this equation | α-β | is between 

0 to π. If the angle difference is about 0 radians, the two 

trajectories are nearly parallel, if the value of the angle 

difference is close to π, trajectories are parallel but consider 

opposite directions; if the angle approximates 
𝜋

2
 , then these 

perpendiculararetwo trajectories (Chehreghan & Ali 

Abbaspour 2017).  

i j

i j

T T1
2 i j

T T

V .V
C (T ,T ) cos ( )

V . V



  
                      (9) 

where 

‒ V⃗⃗ Ti
 is the vector made up of the first point to the last 

point of the first trajectory. 

‒ V⃗⃗ Tj
is the vector formed from the first point to the last 

point of the second trajectory. 

‒ the operator ‖  .  ‖ gives the Euclidean distance 

of thepointlasttheandbetween the first point

considered trajectory. 

‒ C2(TiTj) gives the direction difference between two 

given trajectories Ti and Tj. 

2.2.3. Torsion Complexity 

A notion of torsion complexity is another criterion that can 

be employed to calculate the degree of geometric similarity 

between two trajectories. Torsion Complexity can be derived 

by taking into account the weighted average of the distance 

between the points of the trajectory from the virtual line 

drawn between the start and the end points (Anderson, Ames 

et al. 2014). Eq. (10) evaluates Torsion point differences 

when comparing two trajectories Ti and Tj. 

(10)
i j

n 1
k k 1 k

3 i j T T T
k 1

h h d
C (T ,T ) Com Com ; Com (( ).( ))

2 D








      

where 

‒ hk denotes the vertical distance between the point 

kth and the imagery line between the start and the 

end points of the trajectory. 

‒ dk is the length of the kth edge denoting two 

successive turning points. 

‒ D denotes the length of the imagery line. 

‒ n is the number of the points of the trajectory T. 

‒ C3(TiTj) returns a measure of torsion complexity 

difference between two considered trajectories Ti 

and Tj.  

 
Figure 7. Complexity derivation according to trajectory 

vertical distances (Chehreghan and Ali Abbaspour 2017). 

2.2.4. Shape 

One of the most widely-used functions associated with the 

shape is the cumulative angle function, also known as the 

Turning function (Veltkamp 2001). The Turning function 

derives for each point of a given trajectory the value of the 

angle of the edge connected to the next point relative to the 

horizontal axis. Having derived these functions for each 

trajectory, the value of the area enclosed between the two 

turning functions is considered as the difference between the 

two trajectories. Eqs. (11) and (12) formally define the shape 

difference between two trajectories PL1  dna PL2 (Zhang 

2009), where θ(s)  is the turning function of a considered 
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trajectory (Chehreghan & Ali Abbaspour 2017). 

i j i j

1

T T T T
0

(s) (s) f ( , )ds                           (11) 

i j i j

i j

i j i j

T T T T

T T

T T T T

; if
f ( , )

2 ; if


     


   

        


              (12) 

while Eq. (11) derives the difference of turning function for 

two trajectories, the turning function for the mentioned 

trajectories is derived from Eq. (12). Finally, the degree of 

similarity SSD(TiTj) of two given trajectories Ti and Tj are 

derived using the Eq. (13): 

   
i j

m

k i j

k 1

i j

i i,1 i,2 i,n j j,1 j,2 j,n

C (P ,P )

SSD(T ,T ) ;
m

P P ,P ,...,P ,P P ,P ,...,P



 


           (13) 

where 

‒ propertiesgeometricofnumberm is the

considered. 

‒ Ck gives the difference between the calculated 

values for the two trajectories from the viewpoint 

of the kth property  

‒ Pi theforextractedpointis a significant

Ti trajectory. 

‒ Pj theforextractedpointis a significant Tj 

trajectory. 

‒ ni is the number of points of the Ti trajectory. 

‒ nj is the number of points of the Tj trajectory. 

‒ SSD(TiTj) gives the degree of spatial similarity 

between the two Ti and Tj trajectories. 

Having calculated the degree of spatial similarity, a matrix 

(Figure 8) is derived as the similarity matrix, and where 

SSD(TiTj) = SSD(TjTi). (Figure 8) 

3. Implementation and results 

This section reports the implementation results of the 

proposed method. Figure 9 illustrates the trajectory dataset 

used in this study, which includes a part of the Geolife project 

(Zheng, Zhang et al. 2009)  that recorded human trajectories 

in the city of Beijing from 2007 to 2012. We selected a 

sample of 326 trajectories recorded by various devices 

equipped with a GPS such as taxis, personal cars, bicycles 

and even walking displacements. After pre-processing and 

withdraw of outlier data, this gives 83412 intermediate 

trajectory points, and a total distance traveled of 672195 

meters. The shortest trajectory is 8.54 meters whereas the 

longest is 14408.2 meters and the mean length of the 

trajectory is 2417.97 meters. Similarly, the mean sampling 

distance is 10.21 meters and the mean sampling time is 5.11 

seconds. 

3.1. Identifying Trajectory Significant Points 

In the first phase of the study, a convex-hull geometric 

structure is implemented for the 326 trajectories. This gave a 

total number of 7498 convex-hull structures. The first 

peculiarity that appeared was a relative difference in convex-

hull structures for trajectories with similar origins and 

destinations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Trajectory sample from the Geolife dataset. 
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For example, trajectories with ids 76 and 83 are 

geometrically similar but contain 107 and 148 convex-hull 

structures, respectively (Figure 10). Different sampling times 

and an insufficient prior cleaning process are likely to 

explain these differences. Clearly, the critical points 

identified from this convex-hull s should give additional 

insights while analyzing trajectory differences and 

similarities. Typically, the number of convex-hull s is 

extremely variable, especially when the chosen thresholds at 

the pre-processing phase are relatively high values. 

 
Figure 10. Two similar trajectories of 76 and 83 with different 

convex-hull s. 

2.definitionusingare derivedpointsThe curvature

Subsequently, for the removal of outlier structures, a 

threshold was defined to evaluate the distance between the 

curvature point and the convex-hull line (i.e., connecting line 

as start and end points of a convex-hull), taking into account 

the length of the trajectory so that we eliminated the 

structures in which the mentioned distance was more than 

0.02D (D is the distance between the origin and destination 

of the trajectory) as well as the structures with less than four 

points. In order to achieve the best balance of the need to 

keep the main semantics of a given trajectory while reducing 

its complexity, the most appropriate threshold value should 

be identified. Indeed, this is context-dependent. In the 

context of the dataset used in the experimental validation, it 

appears after several iterations that a threshold value of 0.02 

is appropriate to delete noisy convex. Overall, 2317 

structures were removed from the initial set of structures. 

Table 1 tabulates the number of eliminated structures and the 

significant points obtained for the trajectories categorized 

with different lengths. The results presented in Table 1 also 

show the existence of the greatest outlier structures for 

trajectories with high length. 

What follows is the derivation of trajectory similarities by 

identifying the significant points and extracting the structure 

of each trajectory.  

3.2. Geometric Criteria Derivation 

The derived trajectories generated by the pre-processing 

introduced in the previous section are compared according to 

the selected geometric parameters (i.e., shape, turning point, 

direction, and distances). Without loss of generality, three 

trajectories (i.e., ids 63, 82, and 88) were chosen from the 

studied data to examine the efficiency of the proposed 

method (Figure 11). Practically, in order to evaluate the 

proposed approach, the results obtained by comparing the 

similarity between all the main trajectories and the extracted 

trajectories are compared. 

 

 

Figure 11. Trajectories sample used for geometric similarity 

analysis.

 

Trajectories ids 63, 82 and 88 have 403, 534, and 711 

points, respectively. By applying the convex-hull filtering 

approach, 16, 27 and 17 significant points are extracted for 

each trajectory, respectively. This overall generates around 

5% of the number of initial points of the trajectories, which 

pthe number ofconsiderably reduces thenandoints

significantly decreases computation times. Next, the 

geometric similarity of each pair of trajectories is examined 

(Table 2). As shown in this table, the ATD of these 

trajectories is similar to the main trajectories to a great 

degree. Similarity differences between trajectories 63-82, 

63-88, and 82-88 are extracted and presented in Table 2. 

distance,Moreover, by comparing differences regarding

direction, shape and turning point parameters, one can 

observe a relatively high efficiency of the convex-based 

approach in extracting the significant points. For example, 

the trajectories 88-63 and the related ATD exhibit more 

similarity in shape with respect to other pairs as can be seen 

in Table 2.  

After applying the whole similarity approach to the cross-

comparison of all the trajectories from our sample dataset, 

the overall similarity difference value equals 0.002, which 

highlighted a high efficiency in extracting the significant 

points. Moreover, this filtering approach significantly 

decreases computation times: with a Personal Computer, 

RAM of 8 GB, and a CPU = Intel Core (TM) i5-2310, @ 2.9 

GHz, computing time reduced from 15270 seconds to 1140 

seconds. Moreover, MATLAB software is used to 

implement the proposed method. Therefore, the proposed 

method caused to approximately 93% reduction in 

computing time, which is considerable. So, the overall result 

of the proposed method could be mentioned in two points. At 

first, the geometry of the trajectories is preserved to be 
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utilized in the related analysis with less than 5% of the 

primary points of the trajectory since the similarity between 

two trajectories does not change significantly. Secondly, due 

to the lower number of processed points of the trajectory, the 

computing time is reduced by approximately 93%. In 

addition, considering no similar method to detect the critical 

geometric points of the trajectory, the comparison with any 

other methods is not suitable. 

 

4. Conclusion 

Over the past few years, many large urban trajectory 

databases have been made available thanks to the rapid 

development of mobile and positioning devices. It opens 

many avenues of research and applications oriented to the 

understanding of how humans behave in large urban systems. 

Amongst many research issues still to address, the search for 

trajectory similarities in urban environments is still an 

important direction worth exploring. The research presented 

in this paper introduced a geometrical approach based on 

convex-hull s that help to identify a series of the intrinsic 

trajectory properties, that is, turning points, shapes, direction, 

and distances. Our work is grounded on our previous work 

and the development of a geometric framework oriented to 

trajectory modeling.  

In the present paper, we further explore additional 

capabilities that will efficiently support the exploration of 

regular patterns. This approach is supported by a series of 

geometrical definitions and algorithms that first significantly 

reduce the complexity of incoming trajectories and secondly, 

identify a trajectory geometrical decomposition modeled by 

an ATD. The experimental evaluation applied to the Geolife 

benchmark trajectory database reveals a series of significant 

patterns considering the geometric functions introduced. The 

results are presented using the geometric similarity 

difference between two trajectories before and after applying 

the ATD method, as there is a mean of 0.002 similarity 

difference in results considering the mean of 5% of the row 

points used for the ATD method. Therefore, the quantitative 

results of this paper show that the ATD method is extremely 

efficient in reducing the trajectory points in a lower number 

of critical points. So, the used method could be considered in 

many domains of trajectory analysis to reduce complexity, 

especially in big data applications. This paper reveals  the 

efficiency of the ATD method, which could be used for big 

data applications such as online route finding, extracting the 

patterns of movement, and major selected roads for business 

or management goals.  Further work will be oriented to the 

integration of additional contextual properties, especially 

when considering additional urban dimensions that might 

provide more insights when studying the behavior and the 

reasons behind such behaviors. We also plan to apply the 

whole framework to different urban trajectory databases as 

well as to different moving objects databases such as the ones 

available in many biological studies. 
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