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ABSTRACT 

Three-dimensional measurement of coordinates in different optical metrology techniques involves the 

measurement of image coordinates and/or phase values as observations as well as system parameters. 

These system parameters are usually determined through a calibration process. Self-calibration of digital 

fringe projection systems takes advantage of the fringe projection technique in a photogrammetric 

mathematical model. Many pieces of research have shown the capability of this technique which is called 

phasogrammetry, to achieve high accuracy and reliability. However, the difference between projection 

lenses and imaging lenses has not been investigated yet. In this paper, a set of experiments is performed 

to analyze the behavior of systematic errors in digital projectors as the basic component of this method. 

The results indicate that the well-known physical model of camera in close range photogrammetry might 

be used for digital projectors. The best results if the 3D measurement of the test object achieved where the 

first term of radial distortion K1 and the first in-plane distortion parameter B1 are involved in the self-

calibration of the digital fringe projection system. 
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1. Introduction 

The measurement of three-dimensional object coordinates 

such asin different optical metrology methods,

photogrammetry, digital fringe projection, and Moiré 

techniques, involves the measurement of pixel coordinates or 

phase in the camera or projector sensor frame, as well as 

system parameters. These parameters usually describe the 

optical and geometrical characteristics of the system, such as 

interior and exterior orientation parameters of camera and 

projector or relative orientation parameters between camera 

and projector, and are usually determined before the 

measurement process in a calibration procedure (Kirschner 

et al., 1997). In the digital fringe projection technique, 

system calibration involves determining the phase-to-height 

mapping using flat plate translation over the measurement 

volume, which can be time-consuming and requires precise 

equipment. Alternatively, stereo calibration computes the 

interior and exterior orientation parameters of the projector-

camera  system  using  a  calibration  plate  placed  in  several 
positions and orientations. Only an accurate scale is required 
to  introduce  the  scale to  the  measured  3D  coordinates,

without  requiring  information  about  the  calibration  plate. 
The  homography  method  was  proposed  to  calibrate

projector-camera  for  a  smart  presentation  system  that  pre- 
wraps  the  images  before  projection  to  ensure  a  perfectly 
aligned  and  rectilinear  image  on  the  projection  screen

(Sukthankar  et  al.,  2001).  Therefore,  the  projector  can  be 
freely placed anywhere in the room, where it less interferes 
with  the  speaker  or  audience.  A  steerable  projector 
calibration  method  based  on  planar  homographies  was 
proposed that treated the projector the same as a camera, to

obtain  eight  intrinsic  parameters  of  the  projector;  focal 
length, aspect ratio, two parameters for the principal point, 
and four parameters for radial and tangential distortion, while

assuming  zero  pixel  skew  (Ashdown  &  Sato,  2005).  In 
addition to the mentioned methods, two different techniques
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with the photogrammetric point of view were proposed to 

calibrate a digital projector (Knyaz, 2006). The first method 

used two calibrated cameras to generate a virtual three-

dimensional test field that is used to calibrate the projector, 

while the second one synthesized the test field images for the 

projector, then the camera-projector pair was calibrated in a 

standard bundle adjustment. This method utilized ten 

additional parameters to describe the projector model; two 

parameters for the principal point, two-scale factors in x and 

y directions, an affinity parameter, three radial distortion 

parameters, and two decentering lens distortion. A method 

was proposed for the calibration of intrinsic and extrinsic 

parameters of both camera and projector in a structured light 

system (Fernandez & Salvi, 2011) based on Zhang’s 

calibration method (2000) implemented in Bouguet’s camera 

calibration toolbox. First, a regular camera calibration 

process was performed. A planar homography was used to 

bring 2D coordinates of the projected checkerboard pattern 

to the reference frame of the camera, then the intrinsic and 

extrinsic parameters of the projector were computed. Local 

homographies were also used to estimate the coordinates of 

the calibration points in the projector image from the points 

in the calibration object (Moreno et al., 2012). The main 

contribution was finding the correspondences between the 

projector and camera pixels that were carried out by 

projecting a sequence coded targets, like those used in object 

scanning. A different method was proposed to calibrate a 

camera and projector that used collinearity equations rather 

than homography (Portalés et al., 2015). Two image sets of 

a checkerboard calibration plane were captured in different 

positions, with and without a projected checkerboard pattern. 

The camera interior orientation parameters were computed 

based on Zhang’s method using 2D image coordinates of 

corners and corresponding 3D object coordinates that were 

easily computed knowing the dimension of the squares on 

the checkerboard. Then, the exterior orientation parameters 

of the camera were computed by a spatial resection. In order 

to calibrate the projector, the same procedure was applied 

with an additional step to establish 3D coordinates of the 

projected checkerboard corners. It was fulfilled by inputting 

camera exterior orientation parameters, 2D coordinates of 

the corners in the projector image, and knowing the geometry 

of the calibration object which was a plane here with Z=0 to 

the rearranged collinearity equations. While the proposed 

method allows estimating interior and exterior orientation 

projectortheofaccuracytheparameters separately,

the cameraaccuracy ofon thedependscalibration

calibration. Liu et al. (2017) used a bundle adjustment 

strategy to optimally locate the coordinates of feature points 

on the planar reference target, allowing compensation for the 

fabrication errors. A method was proposed in (Zhang et al., 

2017) to determine the projector pixel coordinates of the 

marker points of a calibration target accurately in terms of 

projective transform. With the method, the projector can be 

with an accuracy of the subcalibrated -pixel level. The 

method is applicable to the calibration target with a 

chessboard pattern or a circle pattern, and the calibration 

result is independent of the results of camera calibration. 

However, this method requires repetitive changing of the 

target board with a white plate and acquiring data. Moreover, 

it is based on Zhang’s calibration technique which does not 

involve high-accuracy physical model parameters to describe 

lens distortions. A multi-view calibration and 3D 

measurement method was proposed based on digital fringe 

projection method (Gai et al., 2019) by which digital fringe 

projection and a phase map are used to establish global 

calibration information. Large-sized calibration targets and 

other auxiliary calibration devices are not required when 

using this method. However, this method still requires 

extensive projection and capturing of fringe patterns. In 

(Chen et al., 2020), the fundamental assumption is that the 

existing calibration methods are subjected to the low 

accuracy because planar boards with a checker, ring or dot 

are used to provide only limited number (tens to hundreds) 

of reference points with lower accuracy (pixel level). 

Therefore, a calibration method was proposed using a liquid 

crystal display (LCD) screen to offer high-density reference 

points. The experimental results demonstrated that the 

proposed 3D calibration method achieved the higher 

measurement accuracy of the shape data compared with the 

existing state of the art methods. However, the method was 

only compared with Zhang’s method, which is not capable 

of modeling accurate lens distortions. The drawback of all 

the methods mentioned above is the dependency of the 

projector calibration result to the camera calibration 

procedure. All of the camera-projector calibration methods 

that were reviewed before, more and less, use the same 

concept: they perform projector calibration using a virtual 

reference, which has been established by a photogrammetric 

measurement process utilizing camera observations. So, 

every amount of error in the camera calibration process, and 

the computation of reference frame coordinates, directly 

conveys to the projector calibration procedure as it takes 

those as inputs. Unlike these techniques, the self-calibration 

of the projector (phasogrammetry technique) does not rely 

on the computed virtual reference points. It directly 

determines the system parameters along with 3D coordinates 

of the measured object from the first observations: phase 

values.  Moreover, the standard procedure of calibration 

requires several camera-projector setups, projecting and 

capturing several dozens of binary and phase-shifted fringe 

patterns. The difference between our method and other 

reviewed techniques is that they need calibration before 

measurement, while our method is a self-calibration 

procedure, which does not involve performing a calibration 

before measurement. All the required parameters of the 

system are computed simultaneously with 3D object 

coordinates. Thus, it is safe to say that data acquisition and 
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the processing time is shorter than other methods. The 

collinearity equations that are the basis of the analytical 

photogrammetry describe the relationship between object 

point, its corresponding image point, and the perspective 

center of the camera. These equations can be solved for both 

unknown object coordinates and system parameters 

simultaneously, which is called self-calibration. This 

technique does not require any prior information about the 

system parameters. The method does not require prior 

calibration and target on the object surface, provides 

redundant observations that increase the reliability of the 

calculated coordinates, and bypasses the time-consuming 

and complicated process of finding corresponding points 

(matching). It is also immune to the temporal instabilities in 

the system and environment (Kirschner et al., 1997) 

(Schreiber & Notni, 2000). The same concept was adopted 

for the fringe projection technique in combination with 

photogrammetry, which resulted in a self-calibration fringe 

projection technique (Bräuer-Burchardt et al., 2014). 

Although the proposed self-calibration of the digital fringe 

photogrammetricprojection system employs common

additional parameters for describing the deviation of 

coordinates from the strict central projection, it does not take 

into account the structural difference of imaging lens of 

camera and projection lens of the projection device.  

This work presents an analysis of the self-calibration 

digital fringe projection system, focusing on the additional 

parameters describing the systematic error of the projector 

lens. Previous works such as (Kirschner et al., 1997) utilized 

the same additional parameters of the imaging lens for the 

projector, while did not provide further analysis. The 

physical radial distortion model with three terms (K1, K2, 

and K3) was used to correct the projector distortions 

(Schreiber & Notni, 2000). The main drawback of these 

works was that the same behavior was assumed for imaging 

lens and projection lens and the difference between the 

camera lens and projection lens was not taken into account. 

Although the collinearity condition applies to both cameras 

and projectors, they are designed and built based on different 

concepts and functionality. In this paper, the well-known 

physical additional parameters model, which is often used in 

close-range photogrammetry camera calibration, is adapted 

for digital projector self-calibration. The self-calibration of 

the digital fringe projection system involves a fixed camera 

compared to the object space and a digital projector that 

projects two sets of fringe patterns, horizontal and vertical, 

onto the object’s surface from different positions. A modified 

collinearity equation describes the relationship between 

image space and object space. A well-known physical model 

that is capable of modeling symmetric radial distortion, 

decentering distortion, image plane unflatness is utilized to 

model the distortions of the optical component of the 

projector. 

The rest of this paper is organized as follows: The next 

section presents the mathematical model of the self-

calibration of digital fringe projection systems. A well-

known additional parameter model for the camera lens is 

expressed, then optics of the projection lens is discussed in 

detail and compared to that of the general imaging lens. 

Section 3 provides experiments and test results. The results 

of the experiments are discussed in Section 4. Finally, 

Section 5 concludes the paper. 

  

2. Mathematical Model of Self-Calibration Digital Fringe 

Projection System 

     The self-calibration of the digital fringe projection system 
involves a fixed camera with respect to the object space and 
a digital projector that projects two sets of fringe patterns, 

fromsurfaceobject’stheontovertical,horizontal and

different positions. The configuration of this system is 
illustrated in Figure 1. Two positions are the minimum 
requirement, while more positions increase the reliability of 
the measurements.  
     A vertical and a horizontal phase map are computed for 
each projector position using captured images. These phase 

values are the replacements of image coordinates in the 
collinearity equations, as they indicate the position of the 
point in the projector sensor. The modified collinearity 
equation (Schreiber & Notni, 2000) is given by: 
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In this relationship ,
k

i j
  and ,

k

i j
 denotes the vertical and 

horizontal phase value of the kth position of the projector at 

the camera pixel (i,j) and [ , , ]m m mX Y Z  are the corresponding 

object coordinates for that pixel. Similarly, 0
k  and 0

k  are 

the phase values at the principal point of the projector at the 

kth position. The  
,

k

i j
d  and 

,

k

i j
d  are the correction terms 

that contain additional parameters and will be discussed later. 

The 
k

C  , 1,1 1,2 1,3 2,1 2,2 2,3 3,1 3,2 3,3[ , , , , , , , , ]
k

r r r r r r r r r ,and 

0 0 0
[ , , ]

kX Y Z are the principal distance of the projector, the 

elements of the rotation matrix of the projector, and the 
coordinates of the perspective center of the projector at the 
kth position. The formulation above fully describes the 

parameters of the projector(s). It also allows calculating the 
3D object coordinates and calibrating the parameters 

simultaneously. 
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Figure 1. Schematic of digital fringe projection  

self-calibration 

 

2.1. Physical model for camera calibration 

     A well-known physical model capable of modeling 

symmetric radial distortion, decentering distortion, image 

plane unflatness, and In-plane image distortion was proposed 

by Fraser (1997) for self-calibration of cameras in close-

range photogrammetry. This model is the basis of this work 

as stated in equation 2: 

,radial decentering in plane out of planex x x x x          

.radial decentering in plane out of planey y y y y                   (2) 

 

     The terms radialx  and radialy  corrections for symmetric 

radial distortion. The radial distortion which is symmetric 

compared to the principal point, represented by an ideally 

infinite odd ordered polynomial series, as a consequence of 

the nature of Seidel aberrations (Fraser, 1997): 
3 5 7

1 2 3 ,r K r K r K r             (3) 

where Ki terms represent the radial distortion coefficients, 

and r is the radial distance from the principal point. The 

corrections for x,y image coordinates are computed from: 

/ ,

/ .
r

r

x x r r

y y r r
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          (4) 

where 0x x x�  � � and 0y y y�  � �.  

The imperfection in aligning optical elements of a lens in the 

same optical axis causes both radial and tangential image 

distortion, which is known as decentering distortion. It can 

be corrected by the model proposed by Brown (1971):     
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where P1, P2, P3 are coefficients of decentering distortion.  

The focal plane unflatness introduces an error into the image 

coordinate in high accuracy photogrammetric applications. 

Usually, in metric analogue cameras, the topography of the 

image plane is measured directly and the derived image 

coordinate perturbation is modeled by a third-order or fourth-

order polynomial equation:  
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However, the applicability of these methods to CCD sensors 

is uncertain. It is reported that at an incidence angle of 45 

degrees, a 10-micron departure from planarity produces an 

image displacement of the same magnitude (Fraser, 1997). 

The in-plane distortion correction model is a two-term model 

for correcting x-coordinate. The B1 term accounts for 

different scales in x- and y- pixel spacing (affinity term), and 

B2 accounts for non-orthogonality between x and y axes 

(shear term): 
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     while the in-plane error was significant in analogue 

photogrammetry, modern digital sensors are not affected by 

this error. "The problems of physical in-plane distortion that 

filmadversely influenced - arebased photogrammetry

fortunately absent from digital systems employing high 

resolution, large-area CCD cameras. The geometric integrity 

of the layout of the pixel array is typically precise to the 

0.1µm level.” (Fraser, 1997).  

 

2.2. Optics of Digital Projectors 

     The optics of a digital projector can be simplified into two 

main parts: the optical illumination system (also known as 

condenser lens system) that provides uniform illumination 

on the sensor and the projection lens that projects the 

enlarged image onto a screen (Brennesholtz & Stupp. 2007). 

The quality of the projected image is defined by its optical 

characteristics, such as system magnification, the size of the 

projection beam, and the energy distribution of the projected 

image (Chang & Shieh, 2000). Most of the normal projection 

lenses share some main features: wide field of view (usually 

80 to 120 degree), larger relative aperture, small system axis 

aberration, and minimum distortion (Chang & Shieh, 2000). 

In recent years and with the advancement of the Digital 

Micromirror Device (DMD) technology, the focus of optical 

designers has been shifted toward designing miniaturized 

and lightweight projection systems. The traditional 

telecentric projection lens now is going to be replaced by 

non-telecentric lenses which offer almost the same quality 

while lowering the size and weight of the system as well as 

the cost of manufacturing (Sun, W.-S., et al.,2011; Sun, W.-

s. and J.-W. Pan, 2017). However, the design criteria are 
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almost the same. These projection optic system features must 

be considered in the calibration process, where additional 

parameters are used to describe the lens system behavior.  

     The projection lenses are designed to minimize the 

distortions, usually set a goal of 1% maximum distortion (TI 

Application Note, 2017). In order to reach this goal, aspheric 

lenses are implemented in projection lens systems. The 

surfaces profile of an aspheric lens is neither a portion of a 

sphere nor of a circular cylinder. An aspheric lens has a more 

complex surface compared to a simple lens. This 

characteristic eliminates spherical aberration and reduces 

other optical aberrations. Hence, using a sphere enhances 

image quality, minimizes distortion, reduces distortions at 

wide angels, and also improves corner resolution of the 

system (Pruss et al., 2008). By addressing the structure of 

projection lenses, it seems the physical model of imaging 

lenses can be used to model systematic errors of projection 

lenses with some considerations. Some tests are designed, 

implemented and analyzed to study these considerations in 

the next section. 

 

3. Experiments and Results  

withconsists of a cameraThe experimental setup

1024 1024 and an offresolution -the-shelf pico DLP 

projector with 858 480  native resolution. The camera was 

fixed during the measurement while the projector was moved 

to nine different positions to illuminate fringe patterns onto 

the object’s surface. Based on a given set of user accuracy 

requirements, the network must be designed, diagnosed, and, 

if necessary, optimized. The problem of optimal design can 

be classified into four interconnected problems: zero-order 

design embraces the datum problem, first-order design of the 

configuration problem, second-order design of the weight 

problem, and third-order design of the densification problem 

(Fraser, 1984). The principle of network design was 

considered to provide an optimum network geometry. A 

double hemisphere object with known dimensions was 

measured by a digital fringe projection self-calibration 

method for numerical analysis. Figure 2 illustrates the 

projector positions and the point cloud of the test object. 

In the self-calibration of digital fringe projection systems, 

the optical and geometrical attributes of the camera are not 

involved in the calculations. The camera records the 

projected patterns that are used for phase calculation. For 

each pixel in the camera, eventually, a 3D object coordinate 

is calculated, where the number of observations is equal to 

the number of valid pixels in the camera image. The valid 

pixels are those pixels that are illuminated by the projector 

from at least two different positions. The resolution of the 

measurement, therefore, depends on the resolution of the 

camera. The valid pixels are demonstrated as a visibility map 

in Figure 3. 

 

 
Figure 2. Configuration of the projectors and point cloud 

of the test object. 

 
Figure 3. Visibility map of the test objects shows the 

number of projectors illuminating each camera pixel. 

 
 

The observations are usually highly redundant in the self-

calibration of digital fringe projection systems, and all the 

observations are not required to determine system 

parameters. Therefore, the processing procedure was divided 

into two steps to avoid unnecessary computations and speed 

up the process. In the first step, self-calibration was 

performed using some sampled points which were well-

distributed over the scene. Then, 3D coordinate calculation 

of all valid pixels was done with the computed parameters in 

the previous step.  

A set of experiments are designed, performed, and 

analyzed to investigate how the additional parameters should 

be used in digital projector self-calibration. It is assumed that 

the interior orientation parameters of a digital projector are 

constant and have not been changed during the 

measurements. In the first experiment, all additional 

parameters, i.e., 1 2 3 1 2 1 2
, , , , , ,K K K B B P P , are involved in the 

self-calibration process. This test provides an overall 

estimate of the behavior of the projection lens system, as well 

as the correlations between additional determined 

parameters. In the second test, in-plane distortion correction 
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terms, 
1B  and 

2B , are ignored and self-calibration is 

performed with radial and decentering distortion correction 

terms to determine the influence of in-plane distortion 

Althoughcorrection on the 3D measurement result. the 

decentering parameters are necessary to describe the 

probable misalignment of optical competent in the projection 

lens, they were ignored in the third test because a high 

correlation between decentering distortion parameters and 

principal point components are expected (Brown, 1971). In 

the fourth test, the shear term, 
2B , was ignored because it 

had been shown (Brown, 1971) that B2 was invariably 

insignificant. In order to study the total impact of decentering 

distortion and in-plane distortion correction terms on the 

self-calibration process, the final test carried out only 

involving the radial distortion correction. The determined 

parameters of the projector in all tests are summarized in 

Table 1. 

 

Table 1. Additional Parameters (A.P.s) Model in all tests; Test I: radial, decentering, and in-plane distortion terms; Test 

II: the first term of radial and decentering distortion terms; Test III: the first term of radial and in-plane distortion terms; 

Test IV: the first terms of radial distortion and in-plane distortion; and Test V: only the first term of radial distortion are 

involved in the self-calibration process. 

Parameter 
Test I Test II Test III Test IV Test V 

Value Std. Value Std. Value Std. Value Std. Value Std. 

f  8.9353 6.13e-02 8.9272 6.01e-02 8.9391 6.10e-02 8.9255 6.00e-02 8.9307 5.93e-02 

xp -0.0263 9.43e-02 -0.0613 8.22e-02 -0.0802 3.06e-02 -0.0406 1.83e-02 -0.0423 1.84e-02 

yp -1.3056 8.76e-02 -1.2908 7.54e-02 -1.2406 4.56e-02 -1.2258 4.42e-02 -1.2045 3.17e-02 

K1 -1.122e-03 6.68e-04 8.49e-04 1.56e-04 9.17e-04 1.58e-04 9.09e-04 1.59e-04 8.88e-04 1.54e-04 

K2 5.184e-04 1.63e-04 0 0 0 0 0 0 0 0 

K3 -4.210e-05 1.34e-05 0 0 0 0 0 0 0 0 

P1 -1.159e-04 3.97e-04 4.56e-05 2.83e-04 0 0 0 0 0 0 

P2 3.491e-04 4.96e-04 2.47e-04 2.71e-04 0 0 0 0 0 0 

B1 2.777e-04 1.15e-03 0 0 -3.01e-04 6.13e-04 -3.19e-04 6.07e-04 0 0 

B2 5.873e-04 8.76e-04 0 0 7.08e-04 5.90e-04 0 0 0 0 

Table 2. The estimated radius of hemisphere and RMSE of fit for the implemented tests. 

Test 

Radius Difference RMSE of Fit 

Hemisphere 1 Hemisphere 2 Mean Hemisphere 1 Hemisphere 2 Mean 

Test I: All A.P.s  0.103 mm 0.381 mm 0.242 mm 0.259 mm 0.391 mm 0.325 mm 

Test II: K1, P1, P2 0.167 mm 0.346 mm 0.257 mm 0.242 mm 0.401 mm 0.322 mm 

Test III: K1, B1, B2 0.110 mm 0.368 mm 0.239 mm 0.365 mm 0.246 mm 0.306 mm 

Test IV: K1, B1 0.128 mm 0.051 mm 0.090 mm 0.239 mm 0.364 mm 0.302 mm 

Test V: K1 0.308 mm 1.003 mm 0.656 mm 0.338 mm 0.320 mm 0.329 mm 
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Table 3. The correlation between additional parameters in Test I, where all radial, decentering, and in-plane distortion parameters 

are involved in the self-calibration process. 

 C xp yp K1 K2 K3 P1 P2 B1 B2 

C 1 -0.05 0.029 -0.065 -0.017    0.039    0.013 0.028    0.094    0.087   

xp  1 -0.179 0.002 -0.075 0.078   -0.943 0.263    0.230 0.405 

yp   1 0.061    0.032   -0.038 0.181   -0.844 -0.505 0.052 

K1    1 -0.909 0.840   -0.085 -0.198 -0.117 0.224 

K2     1 -0.982 0.127   -0.043 -0.099 -0.151 

K3      1 -0.114 0.067 0.102 0.114 

P1       1 -0.216 -0.209 -0.648 

P2        1 0.830 -0.155 

B1         1 -0.101 

B2          1 

 

 

Table 4. The correlation between additional parameters in Test III, where only the first radial distortion term and in-

plane distortion parameters are involved in the self-calibration process. 

 C xp yp K1 K2 K3 P1 P2 B1 B2 

C 1 -0.156 0.089   -0.190    0 0 0 0 0.151    0.164   

xp  1 0.256   -0.162 0 0 0 0 -0.073 -0.800 

yp   1 -0.726 0 0 0 0 0.675 -0.237 

K1    1 0 0 0 0 -0.255 0.071 

K2     1 0 0 0 0 0 

K3      1 0 0 0 0 

P1       1 0 0 0 

P2        1 0 0 

B1         1 -0.015 

B2          1 
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 The exterior orientation parameters of the projectors that are 

determined simultaneously during the self-calibration 

procedure were used for dense object reconstruction in a 

multi-ray intersection procedure. Table 2 demonstrates the 

results of the performed tests. The radius of the test object 

hemisphere was 50.80 mm, and the mean fitted radius and 

mean RMSE of fit to the measured point cloud in Test I, Test 

II, Test III, Test IV, and Test V were 50.558 mm and 0.325 

mm, 50.544 mm and 0.322 mm, 50.561 mm and 0.306 mm, 

50.711 mm and 0.302 mm, and 50.145 mm and 0.329 mm, 

respectively. The point cloud of the measured object and the 

meshed surface are presented in Figure 4. The best result, i.e., 

both the smallest standard deviation and fitting residual, were 

achieved in Test IV where only the first terms of radial 

distortion and in-plane distortion parameters were involved 

in the self-calibration process. 

  

(a) (b) 

Figure 4. 3D reconstruction of the test object: (a) Point cloud; (b) Meshed point cloud. 

Table 5. The correlation between additional parameters in Test IV, where only the first radial distortion term and the first in-

plane distortion term are involved in the self-calibration process. 

 C xp yp K1 K2 K3 P1 P2 B1 B2 

C 1 -0.029 0.129   -0.201 0 0 0 0 0.151 0 

xp  1 0.098 -0.123 0 0 0 0 -0.118 0 

yp   1 -0.728 0 0 0 0 0.694 0 

K1    1 0 0 0 0  -0.257 0 

K2     1 0 0 0 0 0 

K3      1 0 0 0 0 

P1       1 0 0 0 

P2        1 0 0 

B1         1 0 

B2          1 
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4. Discussion 

A projector can be treated as an inverse camera. Therefore, 

the same concept and physical model can be adapted to 

model a projection lens. Many works in the literature have 

discussed the physical model of the camera lens (Fraser, 

2001; Remondino & Fraser, 2006). The 10-parameter 

physical model is efficient, robust, and enabling calibration 

of a wide variety of different lenses. However, the main 

drawback of this model is the high correlation between 

different parameters. The high correlation between two 

parameters indicates that the error caused by one parameter 

can be partially corrected by the other. There are two types 

of correlations; correlations between interior orientation 

parameters and exterior orientation parameters, and 

correlations between interior orientation parameters itself. In 

the first type of correlations, a strong geometry of 

camera/projector configuration diminishes these 

correlations. The second type of correlation is of major 

concern in self-calibration practice and should be handled 

carefully.  

In this study, the principal of the camera (here projector) 

network design is applied, so the first type of correlations is 

negligible. The correlations between the determined interior 

orientation parameters in Test I are provided in Table 3. It 

has been demonstrated that for the majority of medium-

angle, non-photogrammetric lenses employed in today's 

metric and nonmetric close-range cameras, the third-order 

term is sufficient to account for the induced aberrations 

(Fraser, 2001). For wide-angle lenses, higher-order terms 

required tooftenare(very rarely above seventh order)

mediumadequately model lens distortion. For low to

accuracy CCD camera applications, the use of the 
1K  term 

alone will usually suffice since the most commonly 

encountered distortion profile is that of the third-order barrel 

distortion. The inclusion of 
2K  and 

3K  might be warranted 

for higher accuracy applications. The distortion coefficients

1K , 
2K  and 

3K  are generally highly correlated, usually 

indicating that most of the error signal is accounted for by 

the cubic term 
3

1K r . This coupling is restricted to the radial 

distortion parameters and is of little importance as far as the 

overall numerical stability of the self-calibration adjustment 

is concerned. Here, high correlations exist between radial 

distortion parameters, 91% between
1K  and 

2K , 85% 

between 
1K  and 

3K , and 98% between 
2K  and 

3K . It means 

that using only 
1K  can sufficiently correct the radial 

distortion effect. In the next experiments, Test II, Test III, 

Test IV, and Test V only K1 term is involved in correcting 

the radial distortion effect. The self-calibration was repeated 

without in-plane distortion correction terms in Test II to 

determine the effect of in-plane correction terms on the 

result. The next significant correlations are correlations 

between the principal point offset and the decentering 

distortion parameters. The 94% correlation between px  and 

1P , and 84% between py  and 
2P  suggest that decentering 

additionaldistortion parameters can be removed from

the selfoneffectadversewith nomodelparameters’ -

showed in Test III. The inascalibration result -plane 

correction terms, 
1B  and 

2B , are also correlated with the 

not as high as decenteringbutpoint offset,principal

distortion parameters. The correlations between in-plane 

parameters in Test III have changed significantly as shown 

in Table 4. Removing the decentering parameters from the 

self-calibration process increased correlations between px

and 
2B  and between py  and 

1B . As discussed earlier, the 

shear parameter effect is insignificant, so 
2B  was removed 

in Test IV and the correlations are shown in Table 5. Finally, 

Test V was performed with only the first term of the radial 

distortion term.  

 

 

 

 

  
(a) (b) 

 

Figure 5. Schematic illustration of the projector offset: (a) 0% offset; (b) 100% offset. 
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The results of 3D reconstruction that are summarized in 

Table 2 show that, as predicted before, removing the 

decentering correction terms does not decrease the accuracy, 

while ignoring the in-plane distortion parameters despite 

their correlations with principal point offset, degrades the 

result of 3D reconstruction. The probable non-

perpendicularity of the optical axis to the projector sensor 

surface produces an affine distortion in the projected image. 

Therefore, the in-plane distortion correction should be 

involved in the self-calibration process. Despite the high 

correlation between B1 and py  in Test IV, ignoring 
1B  and 

performing self-calibration without both decentering and in-

worsttheinresultedhaveplane distortion parameters

accuracy in Test V.  

According to the experiments, the proper additional 

parameters model that describes the projection lens used in 

this experiment seems to involve both the first terms of radial 

distortion and in-plane distortion correction as stated in 

equation 8: 

        

radial in-plane

radial in-plane

Δ = Δ +Δ ,

Δ = Δ +Δ

  

   .
   (8) 

 

 

 
Figure 6. Error Ellipsoids in Test IV. 

 
Figure 7. Reprojection Error (in pixel) in Test IV. 

The unusual large value of term py  in Table 1, is explained 

a DLP projector, offset is aby the projector offset. In

measure of the shift of the DMD sensor with respect to the 

optical axis of the projection lens, as shown in Figure 5. In a 
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0% offset design, the center of the DMD sensor is aligned 

exactly with the optical axis of the projection lens while in a 

100% offset, the DMD sensor is dropped until its upper edge 

is aligned with the optical axis of the projection lens. This 

means that if the projector is sitting on a table, in case of 0% 

offset, the image is projected equally up and equally down 

from the optical axis, contrary to 100% offset, for which the 

bottom half of the projected image is blocked, and only the 

top half of the image reaches the screen. In order to consider 

the offset of the projector, the y component of the principal 

point is set to a constant value, which is the product of half 

of DMD width and DMD pixel size. Figure 6 illustrates the 

error ellipsoid of object points in the self-calibration of the 

projector. As expected, the semi-major axis of the ellipsoid 

is parallel to the depth of the object, here y axis. The 

reprojection errors of test IV are shown in Figure 7. The 

selected terms sufficiently described the distortions in the 

projector lens. Regardless of some blunders, most of the 

reprojection errors distributed around zero. 

 

5. Conclusions 

This work presented an analysis of additional parameters 

in the self-calibration of digital fringe projection systems. 

The well-known physical model of cameras can be used for 

strong networkAprojectors with some considerations.

geometry configuration can alleviate the correlations 

between the interior orientation parameters and the exterior 

orientation parameters. The analysis of correlations between 

different interior orientation parameters showed that the first 

term of radial distortion 
1K , and the first term of in-plane 

distortion 
1B  could sufficiently describe the systematic error 

behavior of projection lenses and generate the most accurate 

and reliable 3D measurement.  
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