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ABSTRACT 

Magnetic Resonance Imaging (MRI) provides a non-invasive manner to aid clinical diagnosis, while its 

limitation is the slow scanning speed. Recently, due to the high costs of health care and taking account of 

patient comfort, some methods such as Parallel MRI (pMRI) and compressed sensing MRI have been 

developed to reduce the MR scanning duration under the sampling process. It is almost unavoidable to 

accept some doses of X-rays in computed tomography (CT scans). If one could find a more efficient way 

to represent the required visual information, the tasks of image processing and medical imaging would 

become easier and less troublesome. In this paper, first, we used pMRI on complex double data of brain 

magnetic resonance image. pMRI significantly reduces the number of measurements in the Fourier domain 

because each coil only acquires a small fraction of the whole measurements. It is important to reconstruct 

the original MR image efficiently and precisely for better diagnosis. In this research, we proposed a new 

super resolution and deblurring algorithm with dictionary learning, based on assuming a local Sparse-

Land model on image patches, serving as regularization, then we validated the proposed method by using 

another one called the adaptive selection of sub dictionaries- adaptive reweighted sparsity regularization. 

Visual comparison and significant difference in psnr calculation (0.8111db) and time complexity showed 

that the proposed method had much better results. 
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1. Introduction 

In medical imaging, such as magnetic resonance imaging 

(MRI), patients have to stay in the machine for more than 30 

minutes for a scan of the major parts. In order to obtain a 

high-quality image, it is almost unavoidable to accept some 

doses of X-rays in computed tomography CT scans (Lee et 

al., 2004). Finding a better way of representing visual 

information with scan time reduction included will benefit 

patients and health care economics. Local motions, e.g. 

breathing and heart beating during long time scanning, may 

result in ghosting, smearing, streaking on the reconstructed 

MR image (Chen et al., 2013). Many applications such as 

medical image processing, require resolution enhancement 

of images acquired by low-resolution sensors (e.g., for high-

resolution displays) while minimizing visual artifacts (Zeyde 

et al., 2011). 

The hydrogen nuclei in a patient, often just referred to as 

protons, behave like tiny bar magnets. Hydrogen makes up 

80% of all atoms found in the human body, making hydrogen 

extremely useful for MRI. Because hydrogen is a single-

charged spinning nucleon, the hydrogen nucleon exhibits 

magnetism due to its angular momentum and magnetic 

moment; before the patient is put into the B0 magnetic field, 

the magnetic moments of the patient’s nuclei are randomly 

oriented. Under normal circumstances, magnetic dipoles 

(each has a north and south magnetic pole) are randomly 
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distributed in space. Consequently, if the net magnetic field 

of a patient was measured, it would be zero because all of the 

individual magnetic dipole moments were canceled (Carlyle 

et al., 2015). Most of the information in the natural images 

are redundant (Marial et al., 2014). Human eyes can quickly 

obtain key information of an image without looking at the 

details of each pixel. Our interesting data pieces are 

relatively very sparse compared with the whole data. Most 

MR images are sparse in an appropriate transform domain. 

More complex imagery, such as brain images, can be 

sparsified in more sophisticated domains, such as the wavelet 

domain (Lustig & Pauly, 2010). 

The MR image reconstruction process can be formulated as: 

 1 2
argmin 12 TV

x Fx b x x
x

       (1) 

Where x is an MR image to be reconstructed, F is the 

under-sampled Fourier transform, b is the vector of k-space 

measurements, ϕ is the wavelet basis, ‖x‖TV is the total 

variation defined as: 

TV
x =

2 2

1 21
(( ) ( )

N

i ii
x x


    (2) 

Here,
1

 and
2

 denote the forward finite difference 

operators on the first and second coordinates. 𝛼 and 𝛽  are 

two parameters to be tuned. 

Sparsity-based techniques have shown great success in 

medical image processing. They are also very useful in 

image processing and computer vision, such as image 

registration (Peng et al., 2010), face recognition (Wright et 

al., 2009), image super-resolution (Yang et al., 2010), 

background subtraction (Huang et al., 2009), photometric 

stereo (Reddy et al., 2009), etc. The ability of sparse 

representations to uncover semantic information in image 

processing and computer vision is based on the fact that the 

images (naturally very high dimensional) often lie on or near 

low dimensional subspaces, sub-manifolds, or stratifications 

(Wright et al., 2010). The optimization methods such as L1 

norm minimization can efficiently extract such key 

structures, and then recover the original image without or 

with little information loss. The algorithms that are based on 

sparse representation can often achieve state-of-the-art 

performance if sparsity is appropriately applied (Wright et 

al., 2010). In medical image processing, sparsity is used for 

solving problems in a lot of practical issues. The sparsity 

patterns are not randomly distributed but follow some special 

structures. For example, in diffuse optical imaging (Chen et 

al., 2014), the activation area of the human brain 

corresponding to a finger tapping task often is sparse among 

the whole brain. In addition, such activation is often clustered 

in a certain region. In dynamic MR images (Li et al., 2014), 

                                                           
1 Singular value decomposition 
2 Low resolution 

all the images of a cardiac motion have very similar 

structures along the temporal direction. In background 

subtraction (Peng et al., 2014), the foreground objects often 

consist of mutually connected pixels but not randomly 

distributed ones. Theoretically, it has been shown that better 

performance can be obtained if more prior information about 

the data is exploited (Huang, 2011). Many of the existing 

algorithms may not be efficiently able to solve complex 

sparsity inducing problems. This issue motivated the authors 

to develop a new efficient method for super-resolution and 

deblurring of complex data such as MRI images. We used 

sparse prior, for the first time, and assumed that if the 

reconstructed image using pMRI still possesses blurs, 

deblurring it will form the highest resolution. 

  

2. Related Works 

     Resolution (consequently, the quality of given images) is 

more than a traditional image processing term (Ferreira., 

2016). Single image super-resolution (SR) can be classified 

into three categories: Interpolation-based, Reconstruction-

based and Example learning-based. Zhang et al. (2006) 
utilized the correlation between pixels to construct a 

prediction function to estimate the missing pixel. Zhu et al. 

(2014) proposed a fast single image super-resolution method 

that combines self-example learning and sparse 

representation by replacing the exact SVD1 and L1 norm with 

K-SVD and L0 norm to achieve rapid self-learning. Dong et 

al. (2013) proposed nonlocal similarity, a critical type of self-

similarity, which is incorporated into the sparse 

representation model to constrain and improve the estimation 

of sparse coefficients 

     To add more diversified and abundant patterns to the 

internal dictionary, Huang et al. (2015) proposed to expand 

the internal patch search space by localizing planes with 

detected perspective geometry variations in the LR2 image. 

Some external SR3 methods apply the learned priors to SR 

estimation directly, without any online auxiliary adaptation; 

thus they are categorized into fixed external methods, 

including neighbor embedding (Timofte et al., 2014), kernel 

ridge regression (Kim et al., 2010), factor graph (Xiong et 

al., 2013), kernel PCA (Chakrabarti et al., 2007), locality-

constrained representation (Jiang et al., 2014), and coupled 

dictionary (He et al., 2013). Several methods have been 

developed for super-resolution based medical image 

analysis, including sparse representation based MR 

spectroscopy quantification, constrained generative 

regression model-based Fmri4 analysis, filter-based machine 

intelligence, sparse coding based super-resolution learning, 

similar based image blocks sparse relation (Li et al., 2017). 

Huang et al. (2018) used an algorithm based on an improved 

3 Super Resolution 
4 Functional Magnetic Resonance Imaging 
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sparse autoencoder for image super-resolution, and the result 

showed that the proposed SRISAE algorithm achieved 

significant improvement in terms of both quantitative and 

qualitative measurements. 

 

3. Reconstructing image with pMRI based on     

compressed sensing SENSE 

   The data acquisition step in conventional MRI is a 

relatively slow sampling procedure. To improve the scanning 

speed of MRI, an efficient and feasible way is to acquire the 

data in parallel with multi-channel coils. The scanning time 

depends on the number of measurements in the Fourier 

domain, and it will be significantly reduced when each coil 

only acquires a small fraction of the whole measurements. In 

literature, this issue is called pMRI. By surrounding the 

scanned objects by an array of multiple sensing coils, pMRI 

can extract spatial information from many coils in parallel, 

resulting in accelerated data acquisition. Such pMRI 

techniques use spatial information from arrays of RF detector 

coils to substitute the phase encoding that would otherwise 

have to be obtained in a sequential fashion using field 

gradients and RF pulses. The use of multiple effective 

detectors has proved to multiply the imaging speed, without 

increasing gradient switching rates or RF power deposition. 

For Fourier pulse sequences that sample a rectilinear 

trajectory in k-space, parallel imaging techniques invariably 

reduce the number of phase encoding steps needed to sample 

k-space and thereby reduce the imaging time.  

   The coil sensitivity information is used during the image 

reconstruction to remedy the loss of spatial information. 

Parallel imaging techniques are classified into one of two 

categories. They can fill in the omitted k-space lines prior to 

Fourier transformation, by constructing a weighted 

combination of neighboring lines obtained by different RF 

detector coils (Glowinski et al., 2016). They can first Fourier 

transform the under-sampled k-space dataset to produce an 

aliased image from each coil, and then unfold the aliased 

signals by a linear transformation of the superimposed pixel 

values. Two such parallel imaging techniques that have 

recently been developed and applied to vivo imaging are 

SENSE (Sensitivity Encoding) and SMASH (simultaneous 

acquisition of spatial harmonics) (Glowinski et al., 2016). 

    Sparsity techniques have been used to improve the 

classical method SENSE (Pruessmann et al., 1999). Unlike 

previous CS-SENSE (Liang et al., 2009), which reconstructs 

the images of multi-coils individually, calibration of parallel 

MRI (Chen et al., 2013) recovers the aliased images of all 

coils jointly by assuming the data is jointly sparse. 

   There are two steps for compressed sensing pMRI 

reconstruction (Chen et al., 2013): 1) The aliased images are 

recovered from the under-sampled Fourier signals of 

                                                           
5 compressed sensing 

different coil channels by CS5 methods; 2) The final image 

for clinical diagnosis is synthesized by the recovered aliased 

images using the sum-of-square (SoS) approach. SENSE is 

based on the following acquisition model: for j=1...,J  

RfS u b
j j

  ,where u is the unknown image, bj is the 

vector of measured partial Fourier coefficients at the jth 

receiver, R is a diagonal sub-sampling operator, f is the 

Fourier transform, η is the Gaussian noise, and J is the total 

number of coils. The operator Sj is a diagonal matrix 

sensitivity mapping for the jth receiver, as is used to 

compensate for the decay of signal intensity with distance 

from each pixel. Finally, the sensitivity map Sj can be 

estimated. The flowchart diagram of the Compressed 

Sensing SENSE in pMRI is represented in Figure1. 

 

3.1. Calculating partial Fourier coefficients 

    Partial Fourier imaging techniques are the reconstruction 

methods in which the data from as little as one-half of k-

space is used to generate an entire MR image. This result 

originates from the fact that some of the information in k-

space is redundant. The provided phase-less errors occur 

during data collection, k-space possesses a peculiar mirrored 

property known as conjugate (or Hermitian) symmetry 

(McGibney et al., 1993). Conjugate symmetry applies to 

pairs of points (like P and Q) that are located diagonally from 

each other across the origin of k-space. If the data at P is the 

complex number [a+bi], the data at Q is immediately known 

to be P's complex conjugate, [a−bi] (LR, 2011). Conjugate 

symmetry can be shown to exist whenever a Fourier 

transform is performed on any real-valued function. In more 

concrete terms related to 2D MR imaging, the conjugate 

symmetric points represent corresponding data acquired on 

the rising and trailing tails of two echoes obtained with 

opposite phase encoding steps. In other words, the signal 

intensity of a point on the rising portion of an echo obtained 

using a positive phase-encode step is the complex conjugate 

of that signal on the downward portion of another echo 

obtained using the corresponding negative phase-encode step 

(Feinberg et al., 1986). 

   The practical result of conjugate symmetry is that only half 

of k-space data need to be collected and the other half can be 

estimated. This can be translated into a reduction in imaging 

time, reduction in minimum echo time, or both. Conjugate 

symmetry of P and Q is shown in Figure 2. In this paper, due 

to the fine reconstruction of pMRI, it was used on complex 

double data of brain magnetic resonance image downloaded 

from https://www.data.gov/ in .mat format. The result of 

pMRI is shown in Figure 10. 

   Also, pMRI reconstructs the data as well, but some blurs 

appear. To overcome this gap, we assume that by deblurring 
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and removing the blur from the image, the resulting image 

has the highest quality. Deblurring steps are as follows: 

 

4. The Proposed super resolution and deblurring 

algorithm 

  Image restoration (IR) tries to reconstruct a high quality 

image x from its degraded version y, Which is a typical ill-

posed inverse problem (Bertero et al., 1998). IR can be 

formulated as: 

l hz SHy v                                                                       (3) 

Where y is the unknown image to be estimated, H and S are 

degrading operators and v is the additive noise. Here the 

additive noise is a white Gaussian noise 2v N(0,σ I) . 

When H and S  are identities, the IR problem becomes 

denoising; when S is identity and H is a blurring operator, IR 

becomes deblurring; when S is identity and H is a set of 

random projections, IR becomes compressed sensing 

(Donoho, 2006). When S is a down-sampling operator and H 

is a blurring operator, IR becomes (single image) super-

resolution. Due to the Gaussian nature of  v, the maximum 

likelihood estimation is obtained to minimize ‖SHyh − zl‖2. 

Since SH has more columns than rows, it cannot be inverted 

stably; this leads to infinite solutions with zero values in the 

least-square term. In order to solve this problem, the sparse 

land model used (Zeyde et al., 2011). The super resolution 

problem is described in Figure 3. This model assumes that 

each patch of the image can be well represented by a linear 

combination of few dictionary atoms. The steps of the 

proposed method are shown in Figure 4. The steps of super 

resolution and deblurring algorithm are represented in 

sections 4.1 to 4.7. The test image here is the pMRI 

reconstruction result, in order to be deblurred. 

 

4.1. Incorporating the sparse-land prior  

   In order to avoid dealing with the complexities of different 

resolutions between  zl and yh, and simplifying the recovery 

algorithm, it is assumed that the image zl  is scaled-up by a 

simple interpolation operator h lN N
Q : R R  (here Bicubic 

interpolation), which fills in the missing rows and columns, 

returning to the size of yh. Therefore, computational 

complexity reduces subsequently. yl denote as scaled-up 

image and calculated by the following equation: 

all

l h h hQz =Q(SHy +v) QSHy Qv L y v                       (4) 

   The goal is to process hN
ly R  and produce hN

hy R


  

as a result which is the closest high-resolution image to the  

 

 

 

 

 

 

original one, hN

hy R .  

The algorithm operates on the patches extracted from yl 

aiming to estimate the corresponding patches from yh . 
k N

h k hP R y R  is a high-resolution image with a patch size 

of n× n , extracted by the operator hN n

kR : R R from 

the image yh in location k.  k location is centered around 

true pixels in the low-resolution image yl. 
k n

hP R can be represented by k mq R over the dictionary 

n×m

hA R , k k

h hP A q . 
hA  is the dictionary matrix 

containing high-resolution patches. k

l k lP =R y  are 

corresponding low-resolution patches extracted from yl in 

the same location (centered around the same pixel k with 

n× n patch size). The operator 
allL =QSH transforms the 

complete high-resolution image yh to the low resolution yl.

L is a local operator being a portion of 
allL . Low-resolution 

patch k

lP can be represented by the same sparse vector kq

over the dictionary 
l hA =LA . The sparse representation 

vector kq is found for k

lP , then k

hP can be resolved by 

multiplying the representation by the dictionary 
hA . In order 

to focus on the resolution between the low-resolution patches 

and the edge and texture content corresponding to high-

resolution ones, a high-pass filtering technique was 

employed directly on the full images. Local patches formed 

the dataset  k k

h lP= P ,P . k

hP patches with n× n pixel 

sizes are extracted from the high-resolution images j

he . The 

corresponding low-resolution k

lP patches are extracted from 

the same locations in filtered images * j

k lf y with the same 

size( n× n pixels). The high-resolution patch size should 

be at least s×s to cover the whole image and to improve the 

reconstruction result (by reducing errors and discontinuities  

between the reconstructed patches). Figure5 represents the 

flow diagram of the sparse-land prior 

 

4.2. Image interpolation (Bicubic) 

   Bicubic interpolation is used to construct the unknown data 

points on the regular grids of a High-resolution image from 

known data points of a low-resolution image (Yang et al, 

2010). Bicubic interpolation has a low computational cost 

and it over-smooths the image and creates edge halos. This 

method uses Bicubic interpolation to synthesize a low-

resolution input image into its high-resolution version 

(Figure 6).  
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Figure1. Flow diagram of the Compressed Sensing SENSE in pMRI  

 

                                                                                           
Figure2.  Conjugate symmetry of P and Q. If the data for one is known, the other one can be calculated 

 

                                                                         
Figure3. Illustrates the super resolution problem   

                 

                                                                                 

 
Figure.4. Flow diagram of the proposed method
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4.3. Training phase  

 

  a. Training set construction: A set of high-resolution 

training images  j

h
j

y  are collected, Low-resolution images 

 jl
j

y  are constructed using the scale-down operator 
alll  and 

pairs of matching patches that form the training database 

 k k

h l
k

Ρ= Ρ ,Ρ are extracted. 

  b. Each of these patches-pairs undergo a pre-processing 

stage that removes the low-frequencies from k

hΡ  and extracts 

features from k

lΡ  

  c. Dimensionality reduction is applied on the features of 

low-resolution patches k

lΡ , making the dictionary training 

step much faster. 

  d. A dictionary 
lA  is trained for low-resolution patches so 

that they can be represented sparsely. 

  e. A corresponding dictionary 
hA  is constructed for high-

resolution patches so that it matches the low-resolution one. 

 

4.3.1. Reconstruction phase 

  a. Given a low-resolution image test lz  to be scaled-up, it 

is interpolated to y l of the destination size, and it requires 

only spatial non-linear filtering to sharpen it.  

  b. Pre-processed patches k

lP  are extracted from each 

location k Ω  and are then sparse-coded using the trained 

dictionary lA  

  c. The found representations  kq  are then used to recover 

the high-resolution patches by multiplying them with 
h

A to 

obtain approximated high-resolution patches. 

  d. The recovered high-resolution patches  k

h
Ρ  are finally 

merged by averaging in the overlap area to create the 

resulting image.  
 

4.3.2 Training Set Construction 

   The training phase starts by collecting several images  j

h
j

y

which are considered to be the high-resolution examples. 

Each of these images is blurred and down-scaled by a factor 

of s. This leads to the formation of the corresponding low-

resolution images  jl
j

Z  , which are then scaled up back to 

the original size using Q resulting with the set  jl
j

y  Thus, 

j

ly = j

all hL y +V .S,H and Q should be used in both training 

and reconstruction phases. 

 

4.4. Preprocessing and feature extraction 

  Similar to the approach proposed by Wang et al. (2010), 

High-pass filtering is employed directly on the full images 

which avoided boundary problems due to the small patch 

size. High-resolution low-frequencies are removed by 

computing  j

he = j

hy - j

ly . Typical filters to be used are 

gradient and Laplacian high-pass filters. After the two pre-

processing steps described above, local patches are extracted, 

forming the data-set k k

h l kP={P ,P } and patches of size 

n× n  pixels are extracted from the high-resolution 

images j

he . The corresponding low-resolution k

lP  patches 

are extracted from the same locations in the filtered images 
j

k lf *y . 

 

4.4.1. Dimensionality reduction 

   The formed low-resolution image patches start at 
2n/s

dimensionality and it should not increase. The advantage of 

performing a dimensionality reduction is saving 

computations in the related training and super-resolution 

algorithms. Therefore, the last step before dictionary learning 

is dimensional reduction of the low-resolution image 

patches. In order to reach this goal, Principal Component 

Analysis (PCA) algorithm is implemented on the vectors. 

 

4.5. Dictionary learning 

  Low-resolution dictionary ln ×m

lA R  constructed by 

applying K-SVD algorithm on low-resolution training 

patches  ln ×m

lA R : 
lA (Aharon, et al., 2006),  

 kq =
 A ,arg min

k
l q

  
2

0
A . .k k k

l lk
P q s t q L     k  (5) 

   The product of this step is sparse representation vectors 

 k

k
q corresponding to the training patches k

l
k

P . The next 

step is constructing the high-resolution dictionary. The 

purpose is to reconstruct k

hP patches by approximation of 

k k

h hP A q . The high-resolution dictionary
hA is defined to 

be the one that minimizes the approximation error 
2 2

2

arg min arg min
h h

k k

h h h h h F
A Ak

A P A q P A Q          (6)                                                                 

Matrix 
hP is constructed with high-resolution training 

patches k

h{P } . The columns of Q are similar to the columns 

of   kq  (Wang et al., 2010). 

 

4.6. Bootstrapping approach 

   The algorithm is able to bootstrap itself from a single test 

image as proposed by Glasner et al., (2009). Low-and high-

resolution dictionaries  l hA ,A can be trained with a pair of 

low and high-resolution images. The test image is considered 

as the high-resolution image. The low-resolution image will 
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be obtained using appropriate degrading factors ( S and H ). 

Here, image super-resolution was based on a bootstrapping 

approach and a sparse land model and a test image itself. 

 

4.7. Summary of the algorithm 

  a. Constructing  yl using scale-down operator 
allL  

  b. Pre-processing of yl 

  c. Applying high pass filtering and down-sampling by a 

factor of s=3  

  d. Scaling up the image to original size followed by Bicubic 

interpolation  

  e. Feature extraction of patches with a size of  n× n

pixels in yl Using Laplacian and gradient filters 

  f. Feature dimension reduction using PCA 

  g. Using the OMP6 algorithm and allocating l atoms per 

patch presentation 

  h. High-resolution dictionary training using the pseudo-

inverse expression +

h hA =P Q  and low-resolution dictionary 

training with K-SVD algorithm 

  l. Obtaining approximated high-resolution patches by 

multiplying the high-resolution dictionary and representation 

vectors. 

The flowchart diagram of the super-resolution algorithm is 

depicted in Figure7.  

 

5. Validation of experiment 

  The most important part of the super-resolution and 

deblurring algorithm is choosing the best dictionary for this 

purpose. Many dictionary learning methods applied to the 

result of pMRI but our proposed method had the best result 

so we choose one of the frequently used dictionary learning 

methods based on adaptive sparse domain selection and 

adaptive regularization (ASDS). We evaluated the proposed 

method with Bicubic interpolation and ASDS, ASDS-AR, 

ASDS-AR-NL methods. Two different dictionaries were 

used for reconstruction (introduced as TD1 and TD2) and 

implementation on the result of pMRI. Then, they were 

compared with psnr, time complexity and visual results. 

 

5.1. Adaptive sparse domain selection and adaptive 

regularization  

  Sparse representation owes its success to the development 

of l1-norm optimization techniques. Considering the fact that 

image content can vary significantly in a single image, 

various image patches were collected and the local sparse 

domain was adaptively selected. Two adaptive regularization 

terms were introduced into sparse representation. A set of 

autoregressive(AR) model learned from the chosen dataset. 

                                                           
6 Orthogonal Matching Pursuit 

The best fitted AR models are adaptively selected to 

regularize the local structures. The flowchart of the 

validation method is shown in Figure 8. The ASDS7 is based 

on sparse representation with a union of dictionaries and 

local selection of trained sub-dictionaries. In addition to 

sparsity regularization, they proposed two more 

regularization terms: one that characterizes the local image 

structures, named Autoregressive Model (AR), and other one 

that preserves edge sharpness and suppressing noise, named 

Non-Local Self-Similarity Constraint (NL). All those terms 

served as a regularization term. ASDS uses the regularization 

terms AR and NL to obtain reasonable estimates of the sparse 

coding coefficients of the original image, and then 

centralizes the sparse coding coefficients of the observed 

image to those estimates. Moreover, the ASDS method is 

characterized by learning the sub-dictionaries offline and 

selecting the best sub-dictionary online. In this algorithm, the 

authors used the Iterative Shrinkage-thresholding (IST) 

algorithm to solve the l1-minimization problem generated by 

the models (Ferreira, 2016).  In the ASDS method y=DHx  

is defined as an appropriate model, where y is the Low-

Resolution image, x is the High-Resolution image, D is a 

down-sampling operator and H is a Gaussian kernel, 
iy and 

ix  the Low- and High-Resolution patches, respectively, 

extracted from y and x using the operator 
iR . Using the IST 

algorithm, where   is composed of all sparse vectors 
i ,

x


 is the estimation of x and ix


is the estimation of patches 

ix . Using ASDS, the super-resolution problem is formulated 

as:  2

2 1
arg min .y DH



   


   . The IST algorithm 

that is used for the estimation of  is composed of all sparse 

vectors. The main procedure in ASDS is the determination 

of 
ik which best fitted to each local patch. The best sub-

dictionary 
ik is selected and assigned to each 

ix using 

2

min
h

ii c c k
k

k x  


                                                       (7)                                                                                                              

where 
k  are trained orthonormal sub-dictionaries, 

kμ is the 

centroid of each cluster available and 
c is a projection 

matrix that consists of the first several most significant 

eigenvector, and 

h

ix


 is a high-pass filtered patch of ix


. 

Moreover, .x 


  is defined as 

1

1 1

N N
T T i

ii i i k

i i

R R R  




 

   
   
   
                                                 (8)                                                                                                         

7 Adaptive Sparse Domain Selection 
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where 
iR  is a matrix that extracts 

ix . Then, the following 

problem 


2

2

first term

2

2

second term

2

2

third term

min . ...

                                               ( ) . ...

                                               ( ) . ...

  

x
ar y DH

I A

I B

 

  

  



  

 

 

, ,

1 1

fourth term

                                             
N n

i j i j

i j

 
 







           (9)                                                                  

is solved iteratively to find the estimated 


using the IST 

algorithm subject to a stop criterion, where   is the set of all 

sub-dictionaries  k . 
i,j  is a coefficient related to thj atom 

of 
ik and 

i,j is dedicated weight to 
i,j . 

i,j is empirically 

computed as 
, ,1i j i j  

 
  

 
 where 

i,j


 is the estimate 

of 
i,j  and ε is a small constant. η is a constant balancing the 

contribution of non-local regularization, I is the identity 

matrix,  is an AR parameter vector, γ is a constant balancing 

the contribution of the AR regularization term. 

 

   Table 1 represents a description of the symbols used in this 

paper. In Equation (9), the first l2-term is the reliability term, 

guaranteeing that the solution x


 can well fit the observation 

y  after degradation by operators H  and D . The second l2-

term is the local AR model-based adaptive regularization 

term, requiring that the estimated image is locally stationary. 

The third l2-term is the non-local similarity NL regularization 

term, which uses the non-local redundancy to enhance each 

local patch. The last weighted l1-norm, named here as the 

fourth term, is a sparsity penalty term, requiring that the 

estimated image should be sparse in the adaptively selected 

domain. The ASDS method initializes the training set D  by 

extracting the patches from several natural training images 

that are rich in edges and texture in the scale space of the HR 

image. PCA was used for training the patches in D  that 

were obtained from the K-means algorithm. 

6. Results  

In this section, we represent the results of the proposed 

method and its comparison obtained from Zhang et al., 

(2011). First, we used pMRI technique for reconstructing 

magnetic resonance imagery in complex double type 

downloaded from https://www.data.gov/. The reconstruction 
                                                           
8http://www.eecs.berkeley.edu/Research/Projects/CS/vision

/grouping/segbench 

procedure took about 3 minutes implemented in Matlab 

2016b on a desktop Intel corei7 8550U CPU. The result of 

pMRI is shown in Figure 10.  After the reconstruction, some 

blurs appeared; this time we assumed that by deblurring and 

removing the blurs, the image should be reconstructed in the 

best of its quality. The result of pMRI is the test image for 

the deblurring step. We studied several deblurring and super-

resolution methods based on sparse representation modeling 

and dictionary learning to find the best dictionary. The 

proposed method for deblurring was implemented in the 

same environment using optimized K-SVD and OMP. High-

resolution images were used for training data downloaded 

from the Berkeley segmentation database8 (Figure 9). For the 

validation algorithm, we extended the training set by 90  

rotation considering that the human visual system is sensitive 

to image edges. For fair comparison, the degraded factor 

(s=3) and white Gaussian noise with a standard deviation of 

2 were adopted for both algorithms. In the proposed method, 

the training image was blurred with bicubic filter and then 

degraded with an s factor of 3. Feature extraction was 

conducted by Laplacian filters and gradient, for which nearly 

bout 130,000 training patch pairs were gathered, and with the 

PCA feature, the dimension reduced to 30. The dictionary 

learned for low-resolution images with 40 iterations of the 

K-SVD algorithm with 1000 atoms in the dictionary and 

allocating 3 atoms to each patch representation which took 

about 10 minutes on the same environment. Learning the 

dictionary for high-resolution images with pseudo-inverse 

expression +

h hA =P Q , took only 45 seconds. By running the 

the highwhole algorithm, -resolution image was 

  

 

  

 

 

reconstructed  in  30  seconds.  The  dictionary  learning 
procedure  for  validation  algorithm  took  12  hours  and  the 
deblurring  process  took  about  5  minutes  for  700 to  1000 
iterations. This suggests that the proposed algorithm is much 
faster. Choosing the right patch size is very important. In the

proposed  method,  larger  patch  sizes  result  in  overlaps 
between the patches, which improve the reconstruction result

(by  reducing errors  and  discontinuities  between

reconstructed patches). In the validation algorithm, we used 
various  patch  sizes  (3×3 or 5×5  or  7×7). The  results  show

that small patch sizes (3×3 or 5×5) tend to generate artifacts 
in  smooth  parts,  and  the  reconstructed edges  are  not  sharp 
enough.  For  validating  the  algorithm  by  choosing  a 7×7 
patch size, 727,615 patches were extracted from the training 
images.

As   a   cluster-based   method,   choosing   the   number  of

classes is very important. Small classes tend to smooth class 
boundaries.  Large-number  classes,  however, make  sub- 
dictionary  less  reliable.Therefore,  we  chose  200  clusters 
containing  less  than  300  patches. The  psnr  (peak  of  snr)

calculated by Eq. (10):

 

https://www.data.gov/
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                                                             Figure 5. Sparse-land prior 

                                         

Figure 6. Refinement of an interpolated high resolution image (by Bicubic interpolation) for Super Resolution 

 

 

 Figure 7.The super-resolution algorithm used in the proposed method 
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Figure 8. The flowchart diagram of the algorithm for Image Deblurring and Super-resolution by Adaptive SparseDomain Selection and 

Adaptive Regularization (ASDS) 

 

 

Table1. The description of the symbols used in this paper 

 

 

Table2. The average running time of different methods 

 

 

Table3. Psnr(DB), SSIM and RMSE results 

 

Symbol                                                                                                                description 

hy            vector of length 
hN pixel                                                         

ly          scaled up image 

H            The blur operator                                                                      k

hP         high-resolution image with n× n patch  

                                                                                                                               size 

lz            low-resolution and noisy image                                               v          additive white Gaussian noise       

k            pixels locations/number of clusters                                           s          Scale factor 

h lA ,A      high-/low- resolution dictionaries                                            Q         Bicubic interpolation operator                                                   

allL          degrading operator                                                                    kq         sparse representation vector                                                        

ik           orthogonal sub-dictionaries                                                      
ix          vector image                                                           

iR            a matrix extracting patch
ix                                                     x           reconstructed image   

 
hS            high pass filter                                                                        

k        coefficient matrix    

kP           orthogonal transformation matrix                                            
i,j       coefficient related to thj atom of 

ik   

i,j             weight dedicated to 
i,j                                               

Method PMRI ASDS-

TD1 

ASDS-

AR-TD1 

ASDS-

AR-NL-

TD1 

Bicubic Proposed 

Method 

ASDS-

TD2 

ASDS-AR-

TD2 

ASDS-AR-

NL-TD2 

Running 

time(s) 
  180   728   740   780   45   30   483   545   666 

Method 

                      MRI image 

ASDS-

TD1 

ASDS-

AR-TD1 

ASDS-

AR-NL-

TD1 

Bicubic Proposed 

Method 

ASDS-

TD2 

ASDS-AR-

TD2 

ASDS-

AR-NL- 

Psnr 30.90 31.42 31.46 30.0206 33.1133 32.02 32.13 32.3023 

SSIM 0.716 0.8532 0.8741 0.863 0.8984 0.8806 0.8812 0.8833 

RMSE 8.1 8.8446 8.8435 6.31 5.1459 8.8773 8.56 7.7662 
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1010logpsnr 
2

2

255 .

( )ii

i

N
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

 
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 
 
 

 
 


                                       (10)                                                                                                                    

The average running time of different methods is listed in 

Table 2. The PSNR, SSIM and RMSE results from different 

methods are listed in Table 3. For the proposed method, psnr 

calculated about 33. 1133db. The highest psnr value for the 

validation methods belongs to ASDS-AR-NL-TD2 

(32.3023db). Training dataset 2 always had better results. 

From the visual comparison, it is obvious that the proposed 

method means combining pMRI and training both high- and 

low-resolution dictionaries to provide a better result (about 

0.8111db difference in psnr). The proposed method for 

deblurring and super-resolution had much better visual 

results than bicubic interpolation. The validation algorithms 

are shown in Figure 11(a-g). Figure 10 represents the result 

of pMRI as an input image. Figure 11(a) represents the 

bicubic interpolation result, this interpolation was not able to 

remove the blur; As seen, the image is very smooth and it 

failed to reconstruct sharp edges. This method only uses 

weighted averaging on neighboring elements without 

considering the image degradation procedure; thus, it cannot 

recover high-frequency details of high-resolution images. 

Figure 11(b, c, d) represent that ASDS-TD1, ASDS-AR-

TD1, ASDS-AR-NL-TD1 generate some artifacts in smooth 

regions, the edges are relatively smooth and some fine image 

structures are not recovered. It is obvious that the proposed 

method has fewer artifacts, it suppresses the noise, sharpens 

the edges with improved psnr as well as it is much faster 

because of K-SVD and OMP implementation. Many noise 

residuals and ghost artifacts in the deblurring image still exist 

after using the validation methods (ASDS-TD2, ASDS-AR-

TD2, ASDS-AR-NL-TD2) as represented in Figure11(e, f, 

g). The proposed dictionary learning method was 

implemented on natural images. The best result belonged to 

the bmp type of natural images. By using pMRI on the 

complex double type and transmitting through wavelet and 

Fourier domain as well as choosing K-SVD algorithm 

instead of a lasso for training the high-resolution dictionary, 

it is capable of handling complex data as well. The proposed 

algorithm increased the number of image unit’s 

representation. Therefore, the distance between the gray and 

white matters improves (Figure 11(h)). 

 

Figure 9. The two datasets of high-quality images used for training sub-

dictionaries. The first row represents the images of training dataset 1 and 

the second one represents the images of training dataset 2 

 

Figure 10. The result of pMRI reconstruction 

6.1. Error image 

A high-resolution ground truth image similar to the input 

image is required for obtaining the error image. Due to a lack 

of access to such an image, we assumed the reconstructed 

image (the result of the proposed method) to be the ground 

truth (Figure 12(a)). Figure (12(b)) represents the Error 

image of ASDS-AR-NL-TD2 and Figure(13(a)) is the pMRI 

result (input image). The error image of the proposed method 

(Figure 13(b)) contains less brightened white pixels. This 

approves that the proposed method contains less error. 

7. Conclusion 

Various methods used for image super-resolution and 

deblurring based on sparse representation and dictionary 

learning. For the first time, we combined pMRI and 

dictionary learning for super-resolution and deblurring of 

images in the complex double format. We used pMRI results 

as the test image for deblurring. For enhancing the scanning 

time of MR images, one efficient way is to acquire data from 

parallel multi-channel coils. The scanning time will 

significantly reduce if each coil acquires a small fraction of 

the whole measurement. Therefore, the procedure is less 

troublesome for the patient. The goal of this method, called 

pMRI, was to reconstruct the original image precisely. We 

deblurred the result of pMRI with sparse representation 

modeling and dictionary learning based on assuming a local 

Sparse-Land model on image patches, serving as 

regularization. The algorithm operated by training a pair of 

low- and high-resolution dictionaries, using the test images 

as the training dataset. Then, we evaluated our work with 

another single image super-resolution and deblurring 

algorithm that would use an adaptive sparse domain selection 

(ASDS) and adaptive regularization (AReg). This was 

because the optimal sparse domains of natural images would 

change significantly across different images and different 

image patches in a single image.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 
(a) 

 
(g) 

 
(h) 

Figure 11. (a) Bicubic interpolation, (b) ASDS-TD1, (c) ASDS AR-   TD1, (d) ASDS-AR-NL-TD1, (e) ASDS-TD2, (f) ASDS-AR-TD2, (g) 

ASDS-AR-NL-TD2, (h) Proposed method 
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(a) 

 
(b) 

Figure 12. (a) Ground truth, (b) The error image of ASDS-AR-NL-TD2 

 
(a) 

 
(b) 

Figure13. (a) pMRI result (input image), (b) The error image of the proposed method 

 

The experimental results showed that the proposed method 

was highly efficient in reducing ringing artifacts, suppressing 

noise, reconstructing sharper edges, and it was also much 

faster.  

A different training approach was used for the dictionary-

pair: K-SVD for learning 
lA  from extracted features, and 

pseudo-inverse for hA  from error patches. The OMP 

algorithm was used as a sparse coding algorithm, which was 

much faster than 1l -optimization-based methods. Using two 

dictionaries (high and low) might improve the result of image 

super-resolution and deblurring By using different methods 

for the learning step, the algorithm was capable of handling 

complex data as well. Besides, the best approximation of  

hhy y


 obtained while using different methods for learning 

high- and low-resolution dictionaries. It is possible to force 

the overlapping patches

k

hP


to better align with each other. 

This can be carried out by operating sequentially on the 

incoming patches
k

lP , and when applying the sparse coding 

stage (to produce k
q ), a penalty can be added on the distance 

between the newly constructed patch, 

k

hP


, and the ones 

already computed. 
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