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ABSTRACT 

The aim of this paper is to study the theory of spline interpolation and smoothing problems on the surface 

of a triaxial ellipsoid for the Consecutive Iterated Helmholtz operator and a set of linearly independent 

evaluation functionals. Spline functions were introduced based on the minimization of a semi-norm in the 

context of a semi-Hilbert space whose domain was the surface of the ellipsoid. The semi-Hilbert space was 

decomposed into two different subspaces, a particular Hilbert space and the null space of the desired 

operator. Using surface Green’s functions for the Consecutive Iterated Helmholtz operator, the 

reproducing kernel for the Hilbert subspace was constructed. Spline and smoothing functions were 

explicitly represented based on the reproducing kernel and the evaluation functionals. An approximation 

formula was derived to facilitate the potential use in Earth’s gravity field data interpolation and smoothing. 

An application of this technique was presented to show the interpolation of potential fields over Iran. 

Ellipsoidal and spherical splines were compared as well. It revealed the ellipsoidal splines to be more 

accurate than the spherical counterparts. 
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The focus of this paper is mainly on the derivation of spline 
interpolant and smoothing functions defined on the surface

of an ellipsoid. The fundamental role of norm minimization 
is evident in the definition of spline and smoothing

functions. Spline and smoothing functions are merely based 
on a particular reproducing kernel Hilbert space and 
underlying evaluation functionals, which ensure the 
uniqueness of the solution. The given evaluation functionals 
have to be linearly independent at points scattered on the

ellipsoid’s surface.

The application of this study is to Earth’s gravity data 
interpolation, where one seeks a function with which the

gravity data can be best interpolated. The criterion that
 

determines this property is L2-semi-norm minimization on a

manifold   which   is   performed  in the sense of generalized
 

 

 

 

 

 
  
        
      

          
  

         
        
  
       

         
 

and Green’s functions. This leads to a function that does not 
vary much from one point to another and thus, the function

satisfies the optimum continuity condition in terms of the 
interpolant’s derivatives. This is something following

Earth’s gravity field nature.

The domain of interest qualifies the nature of the problem 
that has to be solved. The notion of Earth’s spherical shape

has long been supported since the sphere is the simplest and

most ideal shape by which Earth’s geometric shape is 
represented. The spline interpolation for sphere has been

investigated in several different works, including Freeden et

al. (2018a), Freeden (1981), Wahba (1981), and Wahba

(1990).

Spherical splines and zonal kernels were defined in the 
context of the Sobolev space and the reproduction of kernel
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Hilbert spaces by Freeden et al. (2018a). Spherical spline 

approximation of discrete boundary value problems for 

smooth or regular surfaces as well as the Cauchy-Navier 

splines were introduced by Freeden et al. (2013). For a 

Sobolev space defined on a spherical surface, spline 

interpolation and (exact)integration for the Beltrami-

Laplace operator have been discussed by Freeden et al. 

(2018b). A simple spline interpolation problem on the 

sphere for the Beltrami-Laplace and Helmholtz operators 

and their iterations was investigated by Freeden (1982) who 

introduced and derived surface Green’s functions based on 

the eigenvalue expansion method. Freeden et al. (1998) 
discussed the computational aspects of the problems to 

facilitate their potential applications. In a comprehensive 

discussion of spherical splines, Green’s functions were 

presented for Iterated Beltrami-Laplace and Consecutive 

Iterated Helmholtz operators, pseudodifferential operators, 

and radial basis functions. Freeden (1984) and Freeden 

(1981) discussed the most fundamental theory of spline 

functions through the distribution theory as well as surface 

Green’s functions for Consecutive Iterated Helmholtz 

operator and their existence, uniqueness, and computational 

procedures. Green’s functions and their underlying integral 

formulas for their iterations are defined in Freeden (2009). 

Spline functions and zonal kernels were introduced based 

on Green’s function. Wahba (1981) discussed the spherical 

interpolation and splines smoothing for a set of linearly 

independent evaluation functionals. Also, kernels 

reproduction was given in an integral analytical 

representation. 

Smoothing problems are investigated when the samples on 

the surface are obtained by observation and are inevitably 

erroneous. Compared to error-free interpolation, smoothing 

problems have more widespread uses. For instance, the 

gravity data on the sea surface obtained via shipborne 

gravimetry are highly noisy that should be smoothed. 

Another important domain is spheroid or an ellipsoid of 

revolution. The physical explanation for its importance can 

be given if one considers the interpolation of gravity data in 

Earth’s gravity field, with its geometry being better defined 

with a spheroid. Earth’s shape is affected by several 

different internal and external forces which make it 

irregular. One can use a sphere to approximate this rough 

surface. However, in the second approximation, 

observations have confirmed the spheroidal shape of the 

Earth. Therefore, having a mathematical framework for 

interpolating this unique surface is highly necessary. 

Although many efforts have been made on the spherical 

(spline) interpolation, the spheroidal case still requires more 

attention. An important work on an outer spheroidal spline, 

namely Abel-Poisson kernel spline, investigated by Akhtar 

et al. (2012) in the context of a Sobolev space. However, 

when the data are given on the surface, the problem has to 

be solved again in a different way. In this paper, by deriving 

the generalized triaxial ellipsoid spline and smoothing 

functions, we derive the surface spheroidal splines as a 

special case, once the data are referenced to the surface of 

the spheroid. To obtain a better framework for interpolation 

and smoothing for gravity data, we need to define triaxial 

ellipsoid splines. This is a generalization of the spherical 

and spheroidal case, which means spherical and spheroidal 

splines are special cases of the ellipsoidal spline. 

This paper studies the spline interpolation and smoothing 

problems in triaxial ellipsoid geometry. Section 2 sets the 

preliminaries and states the minimization problem. Then, 

Section 3 chooses the surface Green’s functions approach 

and derives the Consecutive Iterated surface Green’s 

function. Section 4 defines the spline and smoothing 

functions. We used Green’s functions to find the 

reproducing kernel of the Hilbert space defined on the 

surface of ellipsoid and the spline interpolation, which is 

the solution of the minimization problem. Section 5 

presents an application example to a potential interpolation 

(a case study from Iran). Finally, Section 6 provides the 

concluding remarks. 

2. Preliminaries and minimization problem 

In this paper,  denotes the surface of the triaxial ellipsoid. 

We consider some essential definitions which will be 

necessary throughout the paper. 

Let  x,y,z  be three-dimensional cartesian coordinates of 

an ellipsoid with axes a b c 0   , respectively. Then, 

the ellipsoidal coordinate system  σ,τ,μ  is defined as  

 
       

 

2 2 2 2 2 2 2 2 2 2 2 2
1 1 1 2 2 2

1 2 1 3 2 3

σ e τ e e μ σ e e τ e μστμ
x, y,z , ,      1

e e e e e e

      
 

  
 
 

The linear eccentricities 1e , 2e , and 3e  are determined as 

the following  

 

 2 2 2 2 2 2

1 2 3e a b ,  e a c ,e b c       2     

 

 where  

 2 2 2 2 2

1 3μ e τ e σ                                       3    

  

Note that 0σ σ  where σ0 being an arbitrary constant 

with the same role as a sphere’s radius that represents . 
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Let (here  ) be a differentiable manifold, of 

dimension r  with a Metric Tensor whose elements and 

determinant are, respectively, ijg ,i, j 1,..., r .  and  The 

Iterated Beltrami-Laplace operator on  is defined as  

 v v 1 1

v v 1 1

v v 1 1

i j i jv

B i j i j

i j i j

g g1 1
Δ ... ...    4

g gg g

    
        

        
  

 For the case v 1 , which is called the Beltrami-Laplace 

operator, we simply have  

     

       

2 2 2
2 2 2 2 2 2 20

B 1 2 1 22 2 2

2 2 2
2 2 2 2 2 2 20

1 2 1 22 2 2

σ μ
Δ τ e τ e τ 2τ e e

μ τ τ τ

σ τ
  μ e μ e τ 2μ e e    5

τ μ μ μ

   
      

   

   
      

   
The i-th Helmholtz operator is defined as the sum of the 

Beltrami-Laplace operator and the negative of its i-th 

eigenvalue i,mp , i.e.,  

    

    

i

2 2 2
2 2 2 2 2 2 20

H 1 2 1 22 2 2

2 2 2
2 2 2 2 2 2 20

1 2 1 2 i,m2 2 2

σ μ
Δ τ e τ e τ 2τ e e

μ τ τ τ

σ τ
μ e μ e τ 2μ e e p

τ μ
)

μ
(6

μ

   
       

   

   
      

   
 

Remark 2.1  The solution of the homogeneous Helmholtz 

equation (6) in ellipsoidal geometry leads to the surface 

Lame′ functions of the first kind i,mY  where

 
iH i,mΔ Y 0,     i 0,1,2, ,m 1, ,2i 1          7   

 

 Based on Lame’ numbers i,ml , eigenvalue i,mp  can be 

obtained by  

     2 2 2

i,m 1 2 i,m 0p e e l n n 1 σ                               8   

  

In this paper, surface Lame’ functions of the first kind play 

the most important role in the definition of Green’s 

functions and the spline interpolation.  

Regarding Beltrami-Laplace operator, we consider the 

following operators and Hilbert space  

• The i-th Iterated Helmholtz operator of degree v  is 

defined as  

 
i

v v

H B i,mΔ (Δ p )                                                           9 

  

 • The Consecutive Iterated Helmholtz operator to degree 

v , with its i-th element acting iq  times, is defined as  

 v1

C 0 vq ,...,q0 v

qq

H H HΔ Δ ...Δ                                                    10

  

 • The semi-Hilbert space of all infinitely differentiable 

functions for the operator  of the form (5), (6), (9) and 

(10) is defined as  

       2{F | F C and F L }    11  

  

Definition 2.1 The linearly independent evaluation 

functionals  j j 1,...,n  constitute a unisolvent system 

if for an arbitrary function  f ,  the following 

condition holds for the Gramian determinant  

   i j i, j 1, ,n| [ f ξ ] | 0                                                   12 

  

The goal is to find the solution to a minimization problem. 

It is often performed for the norm of a differentiated 

function (i.e., a differential operator has acted on it), as in 

the spherical case (see Baramidze et al. (2006)).  

Definition 2.2  S  is called a spline interpolant if it 

is the solution to the following minimization problem  

 v1

20 v

qq

H H
L ( )f ( )

S(ξ) arg( min Δ ...Δ f )                   13




  
As an interpolation problem, it is needed to consider a given 

set   with  measure 0  and the cardinality 

condition  card  . E.g., i
{η | i 1, ,J}    

so that the spline interpolant S  satisfies  

   i i i
S η u ,     i 1, , J                                          14 

where iu ,i 1, ,J,   are given. 

Smoothing splines are the functions in which the 

observations get the specific values in Eq. (14). This means 
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that stochastic errors are inevitably included in them. 

Hence, we have a random-error with normal distribution 

i{ | i 1, ,J}  that are included in the value observed as 

ui, namely,  

   i i i iS η u ,     i 1, ,J                                  15  

  

 Using the least square method, a smoothing spline is the 

solution of the following minimization problem  

 
 

 
J

2

i i
f

i 1

S ξ arg( min ‍( f η U )




  

 
 v1

20 v

qq

H H
L

λ Δ ...Δ f )                                                  16  

 where λ  denotes the smoothing parameter. 

To obtain the reproducing kernel, one has to consider the 

Hilbert space  0
 in the following definition.  

Definition 2.3 The Hilbert space  0
 is the set of all 

infinitely differentiable functions with the homogeneous 

discrete conditions as the following  

     0 i i{W | W η 0, 1, , i J      17                                                         

  

Remark 2.2 From the known results about 
2L  semi-norm 

(see Davis (1975), Freeden (1981), and Kreyszig (1978) for 

more details) as well as specific conditions in (14), the 

existence and uniqueness of the solution of problem (13) 

are guaranteed. We emphasize that the uniqueness of 

solution (16) depends on the smoothing parameter λ .  

3. Surface Green’s functions 

In order to define reproducing kernels, a proposed approach 

is to find surface Green’s functions (see for example 

Freeden (1982) and Freeden (1981)). According to the 

definition of the reproducing kernel, for a function 

   0f ξ   and a differential operator  of the form 

(5), (6), (9) and (10), it is proven that  

         
0

f ξ  ‍f η ξ,η dη                              18∬
  
where later we introduce the reproducing kernel 

 0

. 

Acting  on both sides (18) and taking into account the 

general theory of Green’s functions (see Freeden (2009), 

Freeden (1981), and Szmytkowski (2006)) leads to the 

differential equation for the reproducing kernels and 

Green’s functions  

         i i

i

G ξ,η δ ξ η ‍ ξ η                      19   

  

where  i{ | i 1,2, }    is a basis for the null 

space of the applied operator . 

In this section, we derive the surface Green’s function for 

the Consecutive Iterated Helmholtz differential operator. 

For this purpose, we use the general method of eigenvalue 

expansion (which is described fully in Greenberg (2015)). 

To use this method, one has to find the orthonomalized 

eigenfunctions of the differential operator. In order to 

orthonormalize Lame′ functions in (7), we have the 

following proposition.  

Proposition 3.1  The norm of the suface Lame’ function is  

 

    
    

2 2

i,m i,m

2 2 2 2 2 2 2 2

0 0

2 2 2 2 2 2 2 2

1 2 1 2

1 1
| Y | ‍(Y τ,μ )

4 μτ

τ μ τ σ μ σ μ τ
dτdμ

τ e τ e μ e μ e

 

   

   

∬
  20  

  

The corresponding orthonormalized Lame′ function i,mQ  

is  

 i,m

i,m

i,m

Y
Q                                                                    21

Y


Based on these orthonormalized functions, we have the 

following definition of the generalized surface Green’s 

function.  

Definition 3.1  If ξ  and η  are two points on , the 

generalized surface Green’s function for Consecutive 

Iterated Helmholtz operator, according to the theory of 

generalized Green’s functions (Szmytkowski (2006)) is 

defined as  

   
C Cq ,...,q q ,...,q0 v 0 v

H HΔ G ξ,η δ ξ η    

      
v 2k 1

k,m k,m

k 0 m 1

‍‍ ‍Q ξ Q η                                 22


 

  
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According to Hilbert’s general theory of Green’s functions 

(Freeden (2009)), the following convolution holds  

       
C C vq ,...,q q ,...,q0 v 0 v 1

H H H ζ

E

G ξ,η G‍ ξ,ζ G ζ,η dS                                  23


∬
  

where 
vHG  is Green’s function of v-th degree Helmholtz 

operator that it is defined as  

   
v vH HΔ G ξ,η δ ξ η    

     
2v 1

v,m v,m

m 1

‍Q ξ Q η                                                   24





Using the eigenvalue expansion procedure in Freeden 

(2009) and the convolution form (23), one gets the 

generalized surface Green’s function representation formula 

in the following lemma.  

Lemma 3.1 The generalized surface Green’s function 

representation formula reads as 

 
Cq ,...,q0 v

HG ξ,η 

   

           0 v

2k 1
k,m k,m

q q2 2 2 2 2 2
1 2 k,m 0 1 2 v,m k,m 0k v 1m 1

Q ξ Q η
‍( )

( e e l k k 1 σ ) ...( e e l l v v 1 k k 1 σ )

 

  
        



                                                                                25  

4. Spline smoothing and interpolant functions 

We have derived the surface Green’s function for the 

generalized Helmholtz operator. This Green’s function 

will be used in the definition of the reproducing kernel for 

the Hilbert space   . According to Freeden (1982), 

Freeden (1984), and Freeden (1981), we have the following 

definitions:  

Definition 4.1  For a unisolvent system of functionals i ,

i 1,...,J , regrding the specific conditions in (14), the 

unique orthonormal Lagrange basis kB
,
k 1,...,J , 

satisfies (see Davis (1975))  

   k i k,iB η δ     k,i 1,...,J                                       26    

where δ  denotes the Kronecker symbol.  

Definition 4.2  In the Hilbert space  0 .  and for the 

unisolvent system of functionals i ( i 1,...,J ), the 

reproducing kernel for the conditions (14) is  

         
C C0 q , ,q q , ,q0 i 0 i

J
i i

H H j j

j 1

ξ,η G ξ,η ‍G ξ,η B η
 



 

     
Cq ,...,q0 i

J J
i

j H j i i

j 1 i 1

‍‍‍ B ξ G η ,η B η                                    (27)   
 



 

                         

 

Following the remarkable results given in Freeden (1984) 

and Wahba (1981), the definition of the smoothing spline 

reads as 

        
1

0

1

J J
η

j j j j

j 1 j J 1

S ξ ‍c B ξ ‍c ξ,η   28
  

     

where 1J  is the number of first elements of points that 

constitute a unisolvent system. The proof of uniqueness is 

the same as that of spherical splines in Freeden (1981). 

Remark 4.1  One special case of (25) is the Iterated 

Beltrami-Laplace operator, achieved by setting v 0  and 

q  as the iteration number, as the following  

 

 
   

   
 

2k 1
k,m k,mq

B 2 2 2 q
k 1 m 1 1 2 k,m 0

Q ξ Q η
G ξ,η ‍‍‍ ‍‍‍‍‍‍‍‍ 29

( e e l k k 1 σ )

 

 


  

  

Under Mercer’s reproducing kernel theorem and direct sum 

decomposition of    in the form of (see Wahba 

(1990))  

       1 1                                                  30 

we have the following definition for the smoothing and 

spline functions on the ellipsoid.  

Definition 4.3  In the Hilbert space   , the function of 

the following form, with the constants being determined by 

the given data on  (using the methods for finding the 

suitable smoothing parameter, such as Generalized Cross-

Validation method) is called a smoothing spline  

  0S ξ c 

 

   
 

ηJ 2k 1
k,m j

j 2 2 2 q
j 1 k 1 m 1 1 2 k,m 0

Q ξ
‍c ‍‍‍ ‍‍‍‍‍‍ 31

( e e l k k 1 σ )

 

     
   

 where  q

B
G ξ,η  is used as the reproducing kernel.  

Ithe following lemma, we have derived the second-degree 

approximation of the surface spline and smoothing 
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functions for the Iterated Beltrami-Laplace operator of 

degree q.  

Lemma 4.1  The spline interpolant and smoothing 

functions explicit representation is as follows  

 
 

J
j j0

j 2 2 2 q
j 1 1,1 1 2 0

j j j j

2 2 q 2 2 q

1,2 2 0 1,3 1 0

Ac
‍c

4π Y ( e e 2σ )

B C

Y (e 2σ ) Y (e 2σ )

s 


  
 


 


  

 
j j j j

2 q 2 q

2,1 2,1 0 2,2 2,2 0

D E

Y (l 6σ ) Y (l 6σ )
 

 
 

 

     j j j j j j j j j

2 q 2 q 2 q

2,3 2,3 0 2,4 2,4 0 2,5 2,5 0

A B A C B C
  

Y (l 6σ ) Y (l 6σ ) Y (l 6σ )

  
  

  

 32  

where    

 
j jξ η ξ ηA τ τ μ μ                                                                33                           

 
j j
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 
j j

2 2 2 2 2 2 2 2
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D τ τ

3 3 3 3

    
       
  
  

  

j

4 2 2 4 2 22 2 2 2
2 23 1 2 3 1 21 2 1 2
ξ η

e e e e e ee e e e
μ μ

3 3 3 3

    
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2,4 1 2l 4e e                                                          41   
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 
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3 e
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2,1 3 1 2 1 1 1

16π
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15
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   43

 
4 2 22 2
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1

e e ee e
z a                                         44

3 3


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 
4 2 22 2
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2
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z a                                        46

3 3


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 2 2 2 2

2,6 i 1 2 3 i

14π
Y e e e e ,i 1,2,3                           47

5
    

 with the condition  

   1

J
η

j j 0
j 1

‍c Q η 0                                               48


       

Proof. The norm of the surface Lam e'  functions and the 

second separation constants are given in Dassios (2012) and 

Dassios et al. (2012). The above formulae are obtained 

using the relation given in (31) and regarding Freeden 

(1984). 
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5. Application in potential interpolation: a case study for 

Iran 

In this section, we present an application of the results 

obtained in the previous sections. One of the most 

important applications of interpolation problems on 

spherical and ellipsoidal surfaces is in the gravity field 

interpolation. Many references and papers such as Freeden 

(2009) and Kiani et al. (2019) have used the spline 

interpolant to interpolate gravity data globally. However, 

the application of spline interpolant is not confined to the 

gravity field. In Keller et al. (2019), the proposed method 

for spherical thin-plate spline interpolation is used to 

interpolate the Total Electron Content (TEC) and the 

location of GRACE satellites. The scattered data 

interpolation by spherical splines for geopotential values by 

satellite CHAMP is given in Baramidze et al. (2006). In this 

section, we use the EGM2008 global geopotential model to 

calculate the potential on the surface of the reference 

ellipsoid, which is a symmetrical ellipsoid ( e2 e3 0  ), 

in a rectangular 1 1  grid. Then, the data are interpolated 

on this grid to produce a denser, 0.5 0.5  grid and the 

result is compared with the actual 0.5 0.5  grid, derived 

from the potential analytical formula, to infer the accuracy 

of interpolation. In order to compare the spherical and 

ellipsoidal splines, steps (a1)–(a5) are performed.  

(a1) The potential values are computed from the EGM2008 

geopotential model, from degree n 2 , by converting the 

coefficients from the spherical to ellipsoidal mode, using 

the relations in Jekeli (1988). These values are shown in 

Figure 1.  

 

 

Figure 1: Potential values over Iran from degree n 2  in ellipsoidal harmonic expansion formula for potential values, 1 1 -

grid 

 

 

 

 

(a2) According to the requirement in (17), the mean value 

of this grid is subtracted from the values from a1. These 

"residual" values are shown in Figure 2.  
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Figure 2: Residual potential values over Iran, 1 1 -grid 

 

(a3) The data in step (a2)  are interpolated using the spline 

interpolant in (32) to produce a  grid, and then 

the removed mean is added. Figure 3 shows these 

interpolated values. 

 

 

  

 

Figure 3: Potential over Iran, interpolated by spline interpolation in (32), -grid 

 

 

   

(a4) Subtract the interpolated values from those derived 

from the actual grid by the potential formula. The 

differences are shown in Figure 4.  

  

0.5 0.5

0.5 0.5
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Figure 4: Difference between actual grid, produced by ellipsoidal potential formula, and those derived from interpolation of 

potential values, -grid

(a5) Steps a1-a4 are repeated for the spherical spline 

interpolation to compare spherical and ellipsoidal splines. 

Figure 4 shows the final result of the difference between the 

values from the actual grid and those interpolated by the 

spherical spline. 

 

 

 

 

 

 

Figure 5: Difference between actual grid, produced by ellipsoidal potential formula, and those derived from the interpolation of 

potential values by spherical splines, 0.5 0.5 -grid

   

 

 

 

 

  

 

 

 

 

0.5 0.5
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Table 1 shows the RMSE of the differences between 

spherical and ellipsoidal splines 

  Table 1: Analysis of the difference between the actual grid 

values and those interpolated by ellipsoidal and spherical 

splines  

Method RMSE(

2

2

m

s
) 

Ellipsoidal splines 12.4631 

Spherical splines 12.4847 

 
Table 1 conveys that ellipsoidal splines are more accurate 

than spherical splines. The improvement value is 0.0216 

2

2

m

s
 . 

6. Conclusions 

This paper provided an introduction of ellipsoidal spline 

and smoothing functions for a set of linearly independent 

evaluation functionals. The minimization of a given 

differential operator was performed. Surface Green’s 

functions for different operators in the (semi - ) Hilbert space 

of all indefinitely differentiable functions play a crucial role 

in defining the reproducing kernels. Spline and smoothing 

functions were defined based on the minimization problem 

and the corresponding reproducing kernel. This work is a 

generalization of the spherical and spheroidal cases, i.e., 

tending some or all of the linear eccentricities to zero. We 

recovered the spheroidal or spherical spline functions. An 

application of potential interpolation over Iran was 

presented in t his paper. In this application, a 1 1 .  grid of 

potentials was interpolated to produce a 0.5 0.5  grid, for 

which both the spherical and ellipsoidal splines were used. 

The ellipsoidal splines were revealed to be more accurate 

than the spherical splines since their RMSE is 0.0216 

2

2

m

s
 

smaller than that of the spherical splines. This work can be 

used in different study areas, including Earth’s gravity field, 

where the geometrical structure of the Earth is better 

modeled with an ellipsoid. In future research works, we 

intend to extend the concept of spline functions to other 

manifold s, deal with numerical calculations, and use the 

results in modeling Earth’s gravity field.  
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