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ABSTRACT 

for anyestimated parametersoptimallyneedsof remote sensing imagesEfficient segmentation

segmentation algorithm. These optimal parameters help algorithms avoid both over- and under- 

segmentation of image data and provide high-quality inputs for further processing. Recently, the super-

pixels method has been introduced as a powerful tool to over-segment the images and replace the pixels 

with higher-level inputs. Automatic aggregation of super-pixels with image segments is a challenge in the 

remote sensing and computer programming community. In this paper, a new automated segmentation 

method, namely density-based super-pixel aggregation (DBSPA), is proposed. This method is based on 

the spatial clustering algorithm for integrating the obtained super-pixels from the Simple Linear Iterative 

Clustering (SLIC). The DBSPA algorithm uses a Normalized Difference Vegetation Index (NDVI) and a 

normalized Digital Surface Model (nDSM) to form core segments and defines the primary structure of 

geographic features in an image scene. Then, the box-whisker plot was used to analyze the statistical 

similarity of super-pixels to each core-segment, and spatially cluster all super-pixels. In our experiments, 

two ultra-high-resolution datasets selected from ISPRS semantic labelling challenge were used. As for the 

Vaihingen dataset, the overall accuracy was 83.7%, 84.8%, and 89.6% for pixel-based, object-based, and 

the proposed method respectively. The values for the Potsdam dataset are 85.2%, 85.6%, and 86.4%. The 

evaluation of results revealed an overall accuracy improvement in Random Forest classification results, 

while the number of image objects reduced by about 4%. 
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1. Introduction 

Producing optimal image segments or decomposing an 

image into homogeneous regions is a critical and challenging 

task in most remote sensing applications. This process, 

namely image segmentation, is a significant step in 

geographic object-based image analysis (GEOBIA) of 

remote sensing data (Aplin, 2014). In GEOBIA, the image 

segments are considered as processing units. Accordingly, 

their quality directly affects further processing of different 

object recognition such as building (Belgiu and Drǎguţ, 

2014), roads (Maboudi et al., 2018), land cover (Antonarakis 

et al., 2008), and land use mapping (Gholoobi et al., 2010). 

Each image segment must include similar pixels with 

 

 

 

minimum similarity  to neighboring segments (Pal  and  Pal, 
1993).  Several  image  segmentation  techniques  have  been 
introduced  in  the  literature,  including  thresholding 
techniques, edge-based methods, region-based methods, and 
hybrid  methods  which  are  the  combination  of  different

techniques (Shih and Cheng, 2005).

  One  of  the  most  critical  and  essential  parameters  in  the 
segmentation  process  is  the  scale  parameter (Liu  et  al., 
2017). The scale parameter is directly related to the size of 
image  segments.  In  urban  areas,  there  are  features  with

different  sizes  such  as  buildings  and  trees  whose  sizes  are

entirely  different  from  those  of  roads  and  pavements.  An 
optimized  scale  parameter  should  prevent  merging  various
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geographic features into a segment, e.g., under-

segmentation, and also dividing a feature into several image 

segments, e.g., over-segmentation, (Rao and Dempster, 

2002). While estimating a single scale parameter for the 

whole image scene has been the goal of several types of 

research, the high variation of geographic features size and 

high diversity of their spectral properties prevent obtaining 

the best possible results, and consequently, over- or under-

segmentation are inevitable. 

Recently, a new strategy has been developed to optimally 

segment an image by adding an intermediate layer between 

image pixels and segments, namely super-pixels (Achanta et 

al., 2012). Super-pixels are a small group of pixels sharing 

common properties in the local vicinity. Super-pixels are 

potent means to deal with local variations in gray values and 

contextual image information. As a result, their borders are 

in good coincidence with edges of geographic features in the 

image scene (Hadavand et al., 2017b). 

The super-pixels layer may be considered as a higher-level 

input, rather than merely pixels, in different algorithms, e.g., 

multi-resolution image segmentation (Csillik, 2017). 

However, grouping the pixels into super-pixels impressively 

reduces the complexity and computational cost of further 

processing and are rarely investigated by researchers. In 

remote sensing applications, super-pixels are used to reduce 

the effect of noises compared to pixel-level processing of 

optical (Guangyun Zhang et al., 2015) and RADAR (Qin et 

al., 2015) image data. 

To the best of our knowledge, super-pixels have been 

rarely used in GEOBIA. This is mostly because super-pixels 

do not possess the properties of image objects as required in 

GEOBIA. In order to solve such a gap between super-pixels 

and image objects, super-pixels should be merged. Merging 

super-pixels necessitates careful defining of several criteria 

and tune-required parameters. The proposed algorithm in this 

paper generates image objects using super-pixels. A novel 

spatial clustering methodology is proposed for merging 

super-pixels. The parameters used in the algorithm were 

mostly tuned adaptively through statistical analysis of values 

prepared in the dataset. 

In this paper, in order to investigate the potential of super-

pixels in the segmentation of ultra-high resolution (UHR) 

imagery, an automated method was proposed to integrate 

super-pixels and to automatically segment the images 

merely. The method, which is named density-based super-

pixel aggregation (DBSPA), uses statistical analysis of 

normalized difference vegetation index (NDVI) and 

normalized digital surface model (nDSM) values, as well as 

spatial clustering paradigm to merge super-pixels and 

generate ideal image objects.  

In the DBSPA method, the simple linear iterative 

clustering (SLIC) algorithm was selected to generate super-

pixels. SLIC is known for its performance and simplicity 

(Achanta et al., 2012). Then, a novel algorithm inspired by 

density-based spatial clustering of application with noise 

(DBSCAN) was developed and implemented to integrate 

super-pixels. To avoid tuning parameters, all parameters 

were adaptively selected based on statistical analysis of data 

using the box-whisker plot and Otsu’s thresholding. Finally, 

the results were evaluated using an unsupervised image 

segmentation evaluation criterion and also based on its 

accuracy in creating an object-based land cover map. 

 

2. Density-based super-pixel aggregation 

Figure 1 presents the DBSPA methodology, which consists 

of four main steps. These steps are including super-pixel 

generation, spatial clustering of super-pixels, segmenting 

non-core areas, and classification. Each of the steps will be 

discussed in details in the following sections. 

 

 
 

Figure 1. Flowchart of the DBSPA method 
 

 Super-pixel generation 

The first step is to create super-pixels using the SLIC 

algorithm. SLIC is a well-known algorithm whose 

performance has been proven in different research areas 

(Achanta et al., 2012; Hadavand et al., 2017b; Kavzoglu and 

Tonbul, 2018). From the operation point of view, it is similar 
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to the k-means clustering algorithm with some 

modifications. In the k-means algorithm, each pixel is 

compared to all cluster centers in the dataset, while in SLIC, 

merely, a local window around the pixels is considered to 

calculate the similarity. In other words, a combination of 

spatial and spectral distance is used to compute the similarity 

between each pixel and super-pixel center. The result of this 

step is an over-segmentation of the image, as presented in 

Figure 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Spatial clustering of super-pixels 

The DBSPA method is inspired by the DBSCAN algorithm 

(Ester et al., 1996). The DBSCAN algorithm was initially 

developed for datasets with spatial distribution in 2-

dimensional space. The algorithm begins with finding core 

points that have at least a predefined number of points within 

an ϵ-distance neighborhood of a specific radius. The points 

within the ϵ-distance of core points are called density 

 

 
Figure 2.   An overview of the over-segmentation process for aerial images used in experiments 
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reachable, and those in an ϵ-distance from density reachable

points  are  called  connected  density  points.  Disconnected 
points considered as outliers  or noises and the core points,

together with density reachable and connected density points 
construct the clusters.

In this paper, we presented a modification to the DBSCAN 
algorithm  to  deal  with  super-pixels  with  two-dimensional 
distributions in the image space. The first difference between

the  two  methods  is  the  definition  of  core  super-pixels.  In 
order  to  find  core  super-pixels,  we  used  both  NDVI  and 
nDSM  information.  Otsu’s  thresholding (Otsu,  1979) was 
used  to  convert  super-pixels  into  four  classes,  including 
vegetated,  non-vegetated,  elevated  and  non-elevated

(Hadavand  et  al.,  2017a).  Consequently,  each  super-pixel 
gets  two  labels  that  define  its  elevation  and  vegetation 
situation. For each super-pixel, if all of its neighbors are in 
the same situation with the central super-pixel, it is labelled 
as a core super-pixel. Connected core super-pixels form core

image  segments.  Due  to  the  variations  in  gray  values  and 
heights in the image, the core image segments fail to reach 
the borders of the terrestrial image object. Therefore, a loop 
was  designed  to  find  and  merge  density  reachable  super- 
pixels into the proper core segment. In this loop, the non-core

super-pixels  that  have a  mutual  border  with  each  core- 
segment were then selected.

Afterwards, the box-whisker plot (Tukey, 1977) was used to

make the decision whether a non-core super-pixel is a density 
connected super-pixel and could be merged into the current

core-segment.  This  decision  is  ultimately  made  based  on 
statistical analysis of nDSM, NDVI, and gray values image. 
Box-whisker  plot  is  an  efficient  outlier  detection  method 
used  in  statistical  analysis  of  different  types  of  data.  The 
structure of the plot is shown in Figure . This method works

based on data quartiles. The low, median, and lower quartiles 
of  data,  divide  it  into  four  equal  groups.  The  distance 
between  the  lower  and  upper  quartiles  are  called  the 
interquartile range (IQR). The interval between Q1-1.5×IQR 
and Q3+1.5×IQR  is  called  an  inner  fence,  and  the  interval

between Q1-3×IQR and Q3+3×IQR is called an outer fence. 
In this method, the data out of the inner fence are known as 
mild outliers, and the data out of the outer fence are known 
as extreme outliers. In order to determine whether the super- 
pixel is similar to the core-segment, we compared each non-

core super-pixel and core-segment based on gray values and 
nDSM.

 

 
  

 

 

  

 

 

  

  

 

 

 

 

 

Figure 3. An overview of the box-whisker plot (Chunsen

Zhang et al., 2018)

 Segmenting non-core areas

Next, the main structure of geographic features in the image

scene  is  segmented  without  setting  any  parameters. 
However, some  heterogeneous parts remain un-segmented. 
In  the  next  step,  these  parts  are  separated  from  the  core- 
segments and in each local area, un-segmented super-pixels

are merged as a group of super-pixels. In order to deal with 
the  heterogeneity  in  a  group,  the  Otsu’s  thresholding  was 
employed,  and  the  super-pixels  were  segmented  based  on 
vegetation  and  height  classification.  Then,  the  small 
segments with the area of a single super-pixel were selected,

and based on their NDVI and nDSM contrast to neighboring 
segments,  they  remain  individual  or  are  merged  by  other 
segments.

 Classification

In the final step, the land cover map is produced using the

random forest classifier (Breiman, 2001).

3. Experiments

3.1. Remote sensing data

  The  proposed  method  was  applied  to  two  datasets, 
captured  over  urban  districts  in  Vaihingen,  and  Potsdam, 
provided  by  the  International  Society  for  Photogrammetry 
and  Remote  Sensing  (ISPRS).  This  data  includes  near-

infrared  (NIR),  red  (R)  and  green  (G)  spectral  bands,  and 
DSM generated through dense stereo image matching. The 
nDSM  is  generated  using  a  morphological  reconstruction 
method described in (Arefi and Hahn, 2005).

The datasets are prepared in several patches and consist of

ground  truth  for  the  most  common  land  cover  classes, 
including  impervious  surfaces,  buildings,  low  vegetation, 
trees,  cars,  and  clutter. As  shown  in  Figure  4,  in  our 
experiments,  two  patches  were  selected  from  each  dataset. 
The  first  patch,  from  Vaihingen  dataset,  contains  2336  by

1281  pixels  with  a  GSD  of  9  cm.  The  second  patch  from 
Potsdam consists of 2500 by  3000 pixels   with  a  GSD of 

5 cm. 
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Figure 4. Image and DSM data used in the experiments 

3.2. Results 

The SLIC algorithm with hexagonal super-pixels with an 

area of one square meter was employed in the first step to 

generate the super-pixels. The size of super-pixel is selected 

based on our previous experiments (Hadavand et al., 2017b), 

and it fulfils the detection of all objects in urban areas. Then, 

the super- DBSCANbased on thepixels were merged

were iterativelycore segmentsthis end,Toalgorithm.

generated, and then the neighboring super-pixels with 

spectral and nDSM values within inner fence obtained from 

statistical analysis of pixel values of the core segment, were 

merged to grow the core segments. Then, the NDVI and 

nDSM values of the un-segmented super-pixels were 

statistically analyzed to segment the remained areas. Finally, 

the small segments with the area less than one square meter 

were merged with the most similar neighboring segments. 

Figure 5 shows an overview of the core segments, the result 

of spatial clustering to grow core segments, and the ultimate 

segments created by the DBSPA algorithm in each dataset.  

 

Figure 5. Core segments, the result of DBSCAN on core segments and the final segmentation result for Vaihingen (a-c) and Potsdam (e-g) 
dataset  

Visual inspection of the results shows the ability of the 

proposed method to detect the main structure of geographic 

features in an image scene (Figures 5a and 5e). Also, after 

running the proposed DBSCAN algorithm on the core 

segments, most of the image areas are segmented. At the end 

of this step, unsegmented parts of images include geographic 

features with high gray values and height difference with 

core segments in a local neighborhood. These areas, which 

contain less proportion of image area, are segmented by 

taking the NDVI and nDSM values into account. The final 

segmentation result also looks to coincide well with the 

borders of geographic features. 

Unsupervised evaluation measures were used to demonstrate 

the quality of the proposed method. Figure 6 shows the result 

of a quantitative comparison of the proposed method and the 

estimation of scale parameter (ESP), the well-known 

automatic segmentation method. EPS is based on optimizing 

the local variance of gray (Drǎguţ et al., 2010). Weighted 

variance values show the inherent variation of gray values in 

each segment, with respect to the size of the segment. 

Moran’s I index computes how an image segment differs 

from its neighboring segments. Therefore, lower weighted 

variance (WV) values and higher Moran’s I indexes show the 

superiority of a segmentation method compared to the other. 

The result presented in Figure 6 shows the achievement of 

the proposed method. Only in the case of DSM values in 

Potsdam dataset, the ESP method shows better performance; 

however, the difference is negligence. 
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Figure 6. Comparing WV and Moran’s I index for both datasets 

 

The number of segments is an essential and straightforward 

criterion in the evaluation of results. The ideal number of 

image segments is the smallest number of segments that 

avoid under-segmentation or the most significant number 

that prevents over-segmentation. In the final step of the 

proposed method, the image objects are evaluated based on 

their ability to generate land cover maps. The Random Forest 

classifier was trained using 5000 samples in each class, and 

the results of assessing the land cover map obtained for 

different segmentation methods are evaluated based on the 

overall accuracy and the kappa coefficient. The number of 

segments and results of a classification in pixel level, ESP 

objects, and objects created by the proposed method is 

presented in Table 1. In Vaihingen dataset, the OA improved 

from %84.8 to %89.6, and for Potsdam dataset, from %85.6 

to %86.4. These improvements were achieved concurrently 

with decreasing the number of image segments. As the 

results showed, the number of image segments have been 

decreased by %4 for both datasets.  

Finally, using the F1 score, the classification results were 

evaluated for each class. The results are shown in Figure 7. 

The F1 score is the harmonic mean of precision and recall 

(Sasaki, 2007). This measure varies between 0 and 1, where 

higher values mean better classification results. The 

evaluation results using the F1 score shows the superiority of 

the DBSPA method to detect trees much better compared to 

other classes. Trees are complex features with respect to 

height information and spectral variations. 

 
 

 

Table 1. Comparing the number of segments and the 

accuracy of land cover mapping 
Potsdam dataset Vaihingen dataset 

 
k OA (%) 

# of 

segmen

ts 

k 
OA 

(%) 

# of 

segm

ents 

0.8

0 
85.2 - 0.77 83.7 - 

Pixel-

based 

0.8 85.6 842 0.78 84.8 992 
ESP 

objects 

0.8

1 
86.4 806 0.85 89.6 954 DBSPA 

 

Moreover, the objects generated by the DBSPA led in 

more successful detection of clutter/background class in 

Potsdam dataset. The information in this class seems to be 

mixed with other classes. Consequently, ESP’s objects or 

pixels might be misclassified. 

Moreover, for car class, better results were obtained at 

pixel level. As mentioned before, this occurred due to 
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shadows and low contrast of cars and road asphalt. There is 

a straightforward connection between spatial resolution and 

car detection capability. The F1 score of this class was 

increased significantly for Potsdam dataset with 5 cm GSD, 

compared to Vaihingen dataset with 9 cm GSD. 

 

 

Figure 7. Results of per-class accuracy assessment  

4. Discussion  

The need for higher-level image information is increasing 

due to the rapid development and application of image data. 

Compared to pixels, super-pixels provide more information, 

but the result is over-segmented, and the image objects are 

not fully detected. In this paper, an automatic algorithm was 

proposed to integrate the super-pixels and create image 

segments for GEOBIA applications. 

statisticallyThe method segmented an image by

integrating the SLIC super-pixels. Spatial clustering 

paradigm is the processing core of the proposed method. 

Moreover, the parameters were statistically adapted from the 

dataset itself to decide on forming spatial clusters and their 

integration. 

The results of two UHR imagery shows visually satisfying 

results. As the super-pixel algorithms search locally for 

similar pixels, the result matches the local borders of objects 

in the image scene. The quantitive evaluations also represent 

the success of the method in generating homogenous image 

objects. Also, the quality of the land-cover map shows the 

superiority of the proposed method for finding land cover 

patches in the study area. Referring to Table 1, in Vaihingen 

dataset, the OA improved from %84.8 to %89.6, and for 

Potsdam dataset, from %85.6 to %86.4. It seems that the 

success of the proposed method in creating a higher quality 

land cover map is mainly due to the power of super-pixels in 

detecting the borders of different objects. 

One notable achievement of the proposed method is 

reducing the number of objects compared to the ESP method. 

The lower number of objects and maintaining accuracy 

means that the method is capable of avoiding over-

segmentation. This is very important when a high volume of 

image data and a lower number of objects are processed, 

which consequently reduce the memory requirements and 

processing costs. 
 

5. Conclusion  

Applications o superf - remoteinincreasingarepixels

sensing and computer programming community. The 

proposed method introduced a new strategy simplifying the 

use of super-pixels in GEOBIA. The results of the proposed 

method on two ultra-high-resolution urban remote sensing 

datasets demonstrated the relative superiority of the proposed 

method. Unsupervised segmentation evaluation and 

classification accuracy measures were used to evaluate the 

efficiency of the method. 

The experiments revealed the quality of image segments 

from both the intra- and inter-segment heterogeneity point of 

view. Besides, the use of image objects provided by the 

proposed method resulted in a more accurate land cover map. 

Furthermore, using a lower number of image objects could 

reduce the processing time and cost. In order to improve the 

proposed method and move toward optimal image 

segmentation approaches and more advanced image features, 

the relational features of classes should be also considered in 

the future works. 
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