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ABSTRACT KEYWORDS

The existence of both ifposedness anaverparameterization phenomena in the rational function mode RationalFunction Models
(RFM), makes it difficult to determine rational polynomial coefficients (RPCs). In this regard; Met; (RFMs)

heuristic algorithms have been widely used. Despite the extensive efforts in this feedilithallenging Particle Swarm

to find optimum structures of RFM due to the abowventioned phenomena. The existing rdetaristic Optimization (PSO)
methods focus on overparameterization and try to remove some unnecessary RPCs using binary par
Although solving overparameterizah can automatically address thepthsedness phenomenon, reta
heuristics do not achieve desired results by solely focusing on overparameterization. Therefore, it st
necessary to consider bothibsedness and overparameterization phenomena to ecriesptimum Multi-objective optimization
structure of the RFM. Accordingly, in this study, aodhbjective particle swarm optimization (PSO)

algorithm, namely BOPS®FM, is proposed to determine the optimum RFM structure. This method h:

two objective functions that should be minimizd) the Root Mean Square Error (RMSE) over some of

the ground control points (GCPs), and 2) the maximum Pearson correlation coefficient between

columns of the design matrix, each of which corresponding to one of RPCs. While binatyennéstic

algaithms mostly address the overparameterization phenomenon by considering binary particles

calculating the RMSE over some GCPs, the added objective function tries to addpessdtess.

Experiments conducted on three higisolution datasets show ttlae proposed method has led to average

improvements of 95% and 29% in terms of accuracy and RMSE values and 99% and 76% improven

in terms of stability, over weknown PSORFO and the staibthe-art PSOKFCV method, respectively.

Moreover, the ana$js of the final design matrix obtained from the final RFM structure revealed that tf

average of condition numbers corresponding to the BORBR results had been 1.14e+9 and 7.39e+4

times lower than those of PSORFO and RSECV.

[l -posedness and over
parameterization phenomena

1. Introduction apply imageto-earth mapping and vice versa. These models
are independent of the sensor type and arecaspatible
Obtaining accurate spatial information from satellite with any coordinate and projection systdimo & Hu,

images is very important for a wide range of remote sensing 2007). In addition, since there is no explicit relationship
applications that requires the use of appropriate models for between the RFM parameters, known as Rational

mapping betweenimage and earth spacesln this regard, Polynomial Coefficients (RPCs), and sensor orbital
Rational Function Model&RFMs) are widely used in remote information, this information will be confidential using RFM
sensing communities for georeferencing of satellite images. (Valadan Zoegt al., 2007.

Thesemodelsuse polynomials, usually of order three, to The RFMs are divided into two main categories: terrain
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independent models and terralapendent models. In
terrainindependent models, vendprovided RPCs that are
obtained using GPS, INS information, and stellar cameras
mounted on thesensor(Alizadeh Naeini et al., 20)7are
available to satellite images users. In terd@pendent
models, which is the main focus of this study, RPCs are
determined using some ground contnabints (GCPs).
Existing a lot of unnecessary and highly correlated RPCs,
estimating accurate RPCs in the latter models encounters
with two overparameterization andggbsedness phenomena
(Long et al., 2015Alizadeh Moghaddam et al., 2018a;
Gholinejad et al., 2099 Finding the optimum number of
parameters allows for solving these two problems
simultaneously. A wide range of regularizatioased
methods have been presented in the literature to dubge t
problems. These methods can be categoiiged,, o, and

;1 regularized approaches.

The ,-regularization methods try to reduce the effect of
ill -posedness of the design matrix in determining the RPC
coefficients. In the procedure of estimating RPCs through the
leastsquares method, the values of RPCs are enlarged
unreasonably due to the-plosedness of the design matrix.
Hence, in the methods mentioned earlier, thaorm of
RPCs is imposed on the main RFM problem to handle the
enlargement of RPCs. The most important methods available
in this category are-curve based ridge estimati¢vivan &
Lin, 2008, the LevenbergMarquardt (LM) algorithn{Zhou
et al., 201}, and a combinatorial method based on LM and
QR factorization with element pivoting/u & Ming, 2016.

As previously mentioned, RFM contains a large number of

structurgLi-ping et al., 200y, the use of scatter matrices and
the elimnation transformation to detect optimum
coefficients(Zhang et al., 200)2the nested regressidrased
optimal selection methodiTengfei et al., 2014 t-student
based statistical modeldlizadeh Moghaddam et al., 2017
and their improved versions, and finally the uncorrelated and
statistically significant RFM (USRFM) methods.

Metaheuristic algorithms are naturmspired methods,
dealing with nonconvex, nonlinear,and multimodal
problems subject to linear or nonlinear constraints with
continuous, discrete, or binary decision varialfiesevas et
al., 2019. These algorithms are of great attention among
researchrs in different sciences because they are capable of
obtaining results close to a global optimum. These
algorithms are essentially applied in problems with high
computational complexities. Accordingly, they can be useful
in determining optimum RPCs in tHeFM structure. The
binary version of metheuristic algorithms, especially
genetic algorithm (GA)Sastry et al., 20Q5and particle
swarm optimization (PSQXennedy, 201)) are the widely
used form in the RFM literature. A wide range ofthosls
have been presented for RFM optimization based on GA
(Valadan Zoej et al., 2003annati & Valadan Zoej, 2015;
Jannati et al., 20)7and PSQYavari et al., 2013Alizadeh
Moghaddam et al.,, 2018bGholinejad et al., 2019
algorithms.

In all of the metaheuristic methods used foRFM
optimization, each agent contains 78 bits (equal to the
number of RPCs in the thiokder RFM problem). These bits
are filled with zero and one values, indicating the absence

unnecessary parameters. Consequently, it seems necessary toand presence of the corresponding RPC in the RFM

remove some of the RPCs to improve the RFM structure.
Accordingly, ( regularization based methods, which impose
the o norm of RPCs to the objective function of the RFM
problem, are proposed. Resulting in a sparse solutiony the
norm minimization can indirectly detect and eliminate
unnecessary RPCs. Despite the excellent capability in
detecting optimum RPCs, this minimation problem is a
nortconvex NPhard one. Therefore, it cannot be solved by
computational convex solvers. To solve this problem, one of
the strategies presented is the replacement ofytm®rm
with its relaxation alternative, thg norm, in which he
problem is convex and has many deterministic solitersg

et al., D15. However, in order to directly achieve the
regularization, there are two general categories of methods
in the RFM literature: computational variable selection
methods and metheuristic methodqGholinejad et al.,
2019.

As their name implies the methods that select
computational variables seek to eliminate a number of RPCs
based on computational techniques. The most important
computational variable selection methods include direct
removal of the thirebrder coefficients from an RFM

structure. T h eencalcul®ted vim the leastl u e
squares method. The cost value for that agent is determined
by calculating the root mean squares error (RMSE) over a
group of ground control points (GCPs), called dependent
checkpoints (DCPs). In this way, by focusing on the over
parameterization phenomenon, some unnecessary RPCs are
eliminated during an iterative procedure in rAegaristic
algorithms. Although achieving the optimal number of RPCs
solve the itposedness phenomenon automatically, focusing
just on one of the phenwena, i.e., overparameterization,
cannot lead to the optimal solution. Therefore, it seems
necessary to simultaneously focus on both -over
parameterization and ifposedness phenomena. Therefore,
in this regard, a bbbjective PSO algorithm for RFM
optimizaion, namely BOPSORFM, hasbeen proposed.
This method is an improved version of PSOKFCV
(Gholinejad et al., 2019 algorithm based on MOPSO
(Coello et al., 2004 The first cost function of the proposed
methodis RMSE, which is calculatedin a similar way to
PSO-KFCV. The secondcost function is the maximum
Pearson correlation coefficient (between the columns of
the design matrixThe secondcost function alleviatesthe
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problem ofill-posedness, while the use of binary particles  The flow diagram of theroposed method is shown in Figure
reduces the effect of the overparameterization phenomenon. (1).
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Figurel. Flow diagram of the BOPS@FM.
The remaining of this paper is organized as follows; the where( , ) are normalized image coordinatés, , ) are
basis of the RFM, PSO, and MOPS®®e introduced in normalized ground coordinates, afd, ..., ,) are usually
section 2. In section 3, the details of the BOHSEM are third-order polynomials. There are 20 coefficients in each

presented. Implementation and experimental results are polynomial and 80 RPCs in the RFM structure. Since the
described in section 4. The concluding remarks of this study constant coefficients of the, and , are dependent, their
are presented in section 5. values are considered to be equal to 1, and therefore there
exist B RPCs in the thirebrder RFM.

After linearizing equations (1) and (2) using GCPs, the
final form of the RFM is as follows:

2. Preliminaries
2.1. Rational Function Model (RFM)

RFM is a mathematical model, consisting of two
equations, in which image pixel coordinates are defined as | =Ax € ©)
functions of ground coordinates as follows:

where 278 2 *1 and 2 *1 are design
,o P(X,Y, 2) (1) matrix, observations vector, and residuals vector,
TR(X,Y,2) respectively. Moreover, 7 &% js the vector of RPCs.
RPCs are determined using the lespiares method in the
s=Pa(x.¥.2) @) bellow form:
P,(X.Y, Z) :
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(4)

x:(ATA) FAT

2.2 Particle Swarm Optimization (PSO)

PSO, which is a swarm intelligent computational
algorithm, optimizes a problem by iteratively improving a
candidate solution according to a cost funct{rennedy,
2010. In order to move toward the global optimum solution,
each particle should move according to its best memory
(IBes), the best particle among all particlegBés} and its
current velocity. Mathematically, the new position of each
paticle is calculated as follows:

(5)

Tik+1:-|-ik _Vik 1

where , *! and are respectively current
position, new position, and updated velocity of thk
particle in the th iteration. The *! is calculatedas
follows:

+1

Vit =w vk sgr(lBest TF) grp( gBest 19 (6)
where ; and , are two constant acceleration valugs,
and , are uniform random values, and is the time

varying inertia weight function calculated as:

- K (7)

kmax

W = Whin "( Kax 'rK%)

In equation (7), and are two predefined values,
respectively, for minimum andnaximum values of the
inertia weight Furthermore, is the number oferations
in the PSO algorithm

2.3.Multi-Objective PSO (MOPSO)

The MOPSO algorithm is a generalized form of the PSO
algorithm for multi-objective problems, inspired by the idea
of PESA-II(Corne et al., 2001 In the MOPSO algorithm, a
new concept is introduced, callezpository. This repository
is an archive of non-dominant solutions; in other words, there
is no solution among the extracted ones that is better than the
solutions in the repository. The repository is a limited size
space,and its membersform the Paretofront (i.e., is an
approximation of the Pareto front).

The position and velocity updating equations for MOPSO
particles are similar to those of the PSO. However, the
processdiffers for some of the parametersThe velocity
parameters and the constant acceleration coefficients are the
same. However, the processesof selecting gBest and
updatinglBestare different as well. In this algorithrgBest
is not a constantparticle. Moreover, eachof the particles
choosesone of the repository membersas gBest at the
moment of the movement. In the MOPSO algoritigBest
is known as the leader.

In MOPSO, a region-basedrocessis usedto selecta

leader. Among the solutions in the repository, the solution
that leads to more regularization and more uniform
distributionof points on the Pareto front is more suitable than
the other solutions. In order to find this solution, the MOPSO
algorithm should segment the solution space into several
regions. An inflation rate () is usually used for determining
the size of regiondn the segmentation process. After
segmenting the solution space, the roulette wheel selection
algorithm(Goldberg, 198pis used to select the leader. Since
the roulette wheel selection approach deals with
probabilities, a probability value must be determined for each
solution within the repository.These probabilities are
obtained according to the regions of the solutiosisg the
Boltzmann probability functiofLandau & Lifshitz, 198D

as follows:

PiLeader —e b N (8)

where is the probability value of theh solution
within the repository to be selected as the leadeand
are, respectively, the leader selection pressure and the
number of members in the solution region.

Another point about the MOPSO algorithm is the
repository overflow. Since the sizsf the repository is
limited, some nosdominant responses should be removed
when the repository space is fullimilarly, to determining
the leader, the solutions that increase the regularization and
uniform distribution of the Pareto front are preferainide
maintained. Therefore, their deletion probabilities should be
lower than those of others. Then, the Boltzmann probability
function is reapplied to calculate the deletion probabilities
of the solutions within the repository as follows:

pp Deletion _ - °N (9)
where is the deletion probability of theth
solution and is the deletion selection pressure.

For updating théBestvalue, among the updated position
of the particles and the previoilgest the one that dominates
another is assigned as the niest If none of them are
dominant, one of them is randomly selected as thelRest

3. Bi-Objective PSO for RFM Optimization

Meta-heuristic algorithms are used to determine the
numberand compositionof RPCsin the RFM structure.
Accordingly, binary particles with 78 bits are embedded in
these algorithms. Each bits of the particles corresponds to an
RPC. The particles are fillagith 0 and 1 values, in which 0
meansremoving the correspondingRPC from the RFM
structureand 1 meanskeepingit. After determiningthe
removedRPCs,the designmatrix is formed basedon the
remaining RPCs and some control points, called train control
points (TCPs). Then, the remainedRPCs are determined
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using equation (4). Thegre evaluated using the control
points, called DCPs. DCPs are either initially separated from
TCPs or, as in the PSRFCV method(Gholinejad et al.,
2019, they can be part of the TCPs. RMSE commonly
evaluates the particles. In other words, the obtained RMSE
values are the costs of the particles. During an iterative
procedure, the algorithm tends to the particle with the lowest
cost value. Finally, some control pointalled independent
checkpoints (ICPs), are applied to the final evaluation of the
metaheuristic algorithm.

In such RPC determination approaches, the main goal is to
deal with the problem of overparameterization. However, a
sole focus on this problem aaot lead to desirable results.
Accordingly, this paper proposes a BORREM method. In
this method, the structure of the particles is the same as those
of traditional methods. However, in the proposed method,
two cost functions are used: 1) RMSE over DGipsl 2) the
maximum value between the design matrix columns. These
two functions are not compatible, i.e., minimizing the first
function dominates the minimization of the second one.
Therefore, one has to consider these two functions separately
in different objective functions.

In the proposed method, for a particle, the RMSE value is
exactly calculated as what was conducted in the-RBOV.

To calculate the second cost value, after the formation of the
design matrix with the remaining RPCs correspontiinie
particle, the values are calculated between their columns.
The maximum value is considered as the second cost value.
After completing the algorithm and forming the Pareto front,
the nondominant solutions are determined. In the last step
of the algorithm, the difference between RMSE ana@lues

is not significant. Therefore, the total cost of the -nhon
dominant solutions is the sum of RMSE andvalues.
Finally, among the nedominant solutions, the solution with
the minimum total cost is cBen as the final solution.

4. Experimental Results

In this study, the experimentsonductedon three high-
resolutiondatasetsywhosedetailsare providedin Table 1.
Thesedatasetswvere acquiredby different high-resolution
satellite imageries over the Isfahan province, Iran.

The well-known PSORFQ@Yavari et al., 201Band state-
of-the-art PSO-KFCV (Gholinejad et al., 2019 methods
were considered as the competing methods for evaluating the
proposed BOPSO-RFM. PSORFO was the first PSO-based
method presentedn the RFM literature,in which binary
particles were used to determine the presence or absence of
the RPCs in the RFM structure. Before PSORFO, GA based
methods were applied for RFM optimization. PSORFO
showed the superiority of PSO against GA in both accuracy
and the computationalload. Since PSO-basedlgorithms
were significantly sensitiveto the initial valuesand GCPs
distribution, PSO-KFCV has been recently usedmprove

Tablel. Details of Datasets used in this study.

Data set Sensor GSD (m) No. of GCPs
GeclISF GeoEyel 0.5 70
PL-ISF Pleiades 0.5 70
WV-ISF  WorldView-3 0.41 65

Table2. Parameters of theompeting and proposed
methods.

Population Size 30
-3
Vv
3
0.02
1
Number of Iterations 200
1 15
) 1.5
Repository Size 100
Inflation Rate () 0.1
Leader Selection Pressure) ( 2
Deletion Selection Pressure)( 2

the accuracyand stability of the PSO-basedlgorithm. Its
results showed that it is more reliable than other previously
proposed PSO-basedethodssuchas PSORFOand FCA-
PSO(Alizadeh Moghaddam et al., 2018b

The parameterof the competingmethodsare listed in
Table (2). A number of these parameters are applied in all
methods, but some of them are specific to the BOPSO-RFM
method, including, ,and .

The RMSE metric was usedto evaluatethe results of
different methods. Since the meta-heuristic algorithms have
different resultsin different repetitions,eachexperimental
methodwas executedl0 times. The averageRMSE value
(Avg-RMSE) of these ten repetitions was calculated as the
accuracycriterion, and the standarddeviation (Std-RMSE)
was calculated as the stability criterion for each algorithm. In
the experiments, conducted on each dataset, 10, 15 and 20
well-distributed GCPs were used for training (i.e., as
TPCs+DCPs)and the rest as ICPs. The distributions of
training GCPs,along with ICPs for different datasetsare
shownin Figure (2). In eachexperiment,80% of training
GCPs have been considered as TCPs and the rest as DCPs.

The results obtained from the implementation of different
algorithms on different datasets are shown in Table (3). In
terms of accuracy,a focus on the Avg-RMSE values
demonstrates the poor performance of the PSORFO method.
The PSO-KFCV and BOPSO-RFMhethodsreported high
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accuracies. In most cases, BORBBEM reported higher and almost negligible. The overall analysis of ARNISE
accuracies compared to PEBCV (6 out of 9 cases). In all valuesshows average improvements of 95% and 29% in
cases, the BOPSRFM method reported less than 2 pixels. BOPSORFM results compared to those o tARSORFO and

In cases that PSRFCV outperformed BOPS®FM, the PSGKFCV methods, respectively.

differences between their AM@MSE valuesvere very low

32391071

32038'557]

(b)

(©)

Figure2. Distribution of training GCPs (TCPs+DCPs) and ICPs on Gokgieh images for different datase:
Green markers indicate training GCPs, while red ones represent ICBegEF data set, (b) RLSF
data set and (Q)VV-ISF data set

Table2. Result obtained from the implementation of different methods on different datasets.

Training Avg-RMSE Std-RMSE Condition Number
Data Set
GCPSICPs PSG BOPSO PSG BOPSQ PSO BOPSG
PSOR® KFCV  RFM PSORFO KFCV  RFM PSORFO KFCV RFM

1060 28.1096 3.0294 1.3428 | 37.3389 2.2885 0.5476 |1.76E+11 1.77E+11 5.82E+04
GeolISF| 1555 17.3729 2.0247 1.1046 | 20.5941 1.0473 0.2715 | 4.65E+12 7.20E+09 3.37E+04
20\50 7.7916 0.7912 0.7823 | 6.5033 0.1823 0.1590 | 6.95E+12 1.16E+06 6.66E+04
1060 135.5845 1.6768 1.9274 |247.8914 0.5867 0.4907 | 4.82E+12 1.04E+11 5.59E+04
PL-ISF 1555 2.1587 0.9858 1.1745 | 0.9658 0.1300 0.3397 | 5.65E+09 4.32E+09 3.93E+04
20\50 18.7525 1.3520 1.2378 | 26.4801 0.5356 0.5791 |3.61E+11 9.84E+06 2.86E+06
1055 17.4745 3.4616 1.4122 | 19.7434 7.3195 0.1859 | 2.33E+11 5.64E+08 9.38E+04
WV-ISF| 1550 15.0276 1.2757 0.9898 | 34.4586 0.7553 0.1725 | 4.48E+15 1.32E+06 1.15E+05
2045 25.4278 1.0506 1.1113 | 22.1870 0.2878 0.3401 | 6.82E+12 9.13E+05 6.43E+05
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From the stability viewpoint, as for accuracy analysis, = matrix. The cbser this value to one is, the lower the degree
PSORFO had poor performance compared to the other two of ill-posedness will be. As shown in Table (3), the BOPSO

methods. Howver, the PSE&KFCV and BOPSGCERFM

RFM method succeeded in reducing the amounts of

methods both produced proper results, and in most cases, condition numbers of the final design matrix to a large extent.

reported SteRMSE valuedess than 1 pixel. These values In other words, BOPS®FM successfull alleviated the i
indicate the high stability of these two methods against the posedness phenomenon compared to PSORFM and PSO
initial values. In two cases, i.e., GEF with 10 training KFCV. In general, the average of condition numbers of

GCPs and WMSF with 10 training GCPs, PSRFCV
reported almost high SE@MSE values, while BOPSBFM

BOPSORFM was 1.14e+9 and 7.39e+4 times lower than
those of PSORFO and PSCOFCV.

provided StdRMSE values less than 0.6 pixels in all cases Furthermore, Figure (3) illustrates the maximuwalues
indicating the high stability of this algorithm to initial values. between the columns of the final design matrices, which
Finally, ageneral analysis of the SRMSE values showed correspond to the final solutions of the different methods. As

that BOPSGRFM led to an average improvement of 76% shown in the figure, there were 10 repetitions per experiment.
compared to the PSRFCV method.
The third part of the experiments was assigned to condition a metricof ill-posedness of the final design matrix. As seen
number analysis. A condition number, which is the ratio of  in Figure (3), in most cases, the maximumalue for the
the largest Eigenvalue of a matrix to the smallest one, is a BOPSGRFM method was better than that of the other two

Same as the condition number, the maximuwalue is also

parameter that represents the degree -giodledness of that competing methods.
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Figure3. The maximum values obtained from different iterations in the experiments of a)ISealata

4.Conclusions

The existence of two overparameterizationand ill-

set, b) PLISF data set, and c) WASF data set. The first, second, and third rows of each col
are dedicated to the experiments with 10, 15, and 20 GCPs, respectively.

been widely considered for finding the optimum structure of
the RFM method.The presentedmethodsin the literature

posednesphenomendn the RFM problemssignificantly mainly focus on solving overparameterization by
affects the accuracy of the georeferencing process of satellite  consideringbinary versionsof meta-heuristicalgorithms.
images.Thesetwo phenomenare highly dependentsuch Although these methods have been somewhat successful in
that solving an overparameterizatioproblemresolvesthe removing some unnecessary RPCs, as the condition numbers
ill-posednessphenomenorautomatically.In recentyears, and maximum correlationanalysisof PSORFOand PSO-
meta-heuristicalgorithms, especially GA and PSO, have KFCV have shown, the problemf ill-posedness stillexists
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in RFM problems. Tiese two methods are considered as two
powerful tools for RFM optimization.

Regarding the problem mentioned above, -®Hbjective
PSGObased RFM optimizatiomethod, called BOPS@FM,
was presented in this study to alleviate thepdsedness
phenomenon in RFM
implies, two objective functions were used in this method:
RMSE over DCPs and the maximum cdat®n between the
columns of the final design matrix. While the first objective
function is common between different mdsauristic based
methods, the second objective function solely focuses on the
ill-posedness to reduce the impact of this phenomenon.

The experiments were conducted on three “négtolution
satellite datasets from three different sensors. The condition
numbers of the final design matrices, formed by extracted
particles of different methods, showed that the BORREM
method was significaly effective in alleviating the il
posedness problem in the RFM optimization compared to the
PSORFO and PS®FCV methods. Moreover, involving
both overparameterization andflbsedness phenomena, the
BOPSORFM method provided higher accuracies, whose
results were closer to the global optimum. Furthermore, the

results demonstrated that the proposed method was more

stable and reliable than the PSORFO and HR&EOV
methods.

Although the proposed method could somewhat overcome
the problem of optimization ithe RFM optimization and
increase the accuracy of final results, its reported condition
numbers were still far from the ideal condition number, i.e.,
the condition number equal to 1. Accordingly, in the future
works, one should focus on incorporating otlseiitable
objective functions or other optimization procedures into the
RFM optimization problem to further reduce the- ill

posedness, and subsequently, increase the accuracy of the

RFM optimization results.
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