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ABSTRACT 

Earthquakes are known as one of the deadliest natural disasters that have caused many fatalities and 

homelessness through history. Due to the unpredictability of earthquakes, quick provision of buildings 

damage maps for reducing the number of losses after an earthquake has become an essential topic in 

Photogrammetry and Remote Sensing. Low-accuracy building damage maps waste the time that is 

required to rescue the people in destructed areas by wrongly deploying the rescue teams toward 

undamaged areas. In this research, an object-based algorithm based on combining LiDAR raster data and 

high-resolution satellite imagery (HRSI) was developed for buildings damage detection to improve the 

relief operation. This algorithm combines classification results of both LiDAR raster data and high-

resolution satellite imagery (HRSI) for categorizing the area into three classes of “Undamaged,” “Probably 

Damaged,” and “Surely Damaged” based on the object-level analysis. The proposed method was tested 

using Worldview II satellite image and LiDAR data of the Port-au-Prince, Haiti, acquired after the 2010 

earthquake. The reported overall accuracy of 92% demonstrated the high ability of the proposed method 

for post-earthquake damaged building detection. 
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1. Introduction 

Natural disasters such as floods, cyclones, hurricanes, 

landslides, forest fire, and earthquake have deadly effects 

when they occur in populated areas. Among these natural 

disasters, earthquakes, with the most significant number of 

fatalities and also posing severe threats to urban areas, are 

considered as the most destructive events (Bartels & 

VanRooyen, 2012; Ranjbar et al., 2018).  

After an earthquake, rapid assessment of damaged areas 

through quick damage identification and determining the 

amount of collapsed buildings in affected areas provides 

essential information for initiating emergency response 

actions and reconstruction (Schweier et al., 2004; Vetrivel et 

al., 2015). The assessment process is practical through 

applying geospatial data such as high-resolution 

satellite/aerial images, LiDAR point clouds, or existing 

vector maps, which are available for almost all cities. In this 

case, wide-coverage, rapid access, and improved spatial 

resolution of satellite images have made this kind of data the 

primary data source for damage assessment. Therefore, 

various methods have been developed for damage detection 

based on multi-temporal satellite images which confirm the 

effectiveness of Remote Sensing techniques in damage 

assessment (Corbane et al., 2011; Yamazaki et al., 2004). 

Many types of researches are conducted on both pre- and 

post-event satellite images based on categorizing the 

differences in the state of a building, by observing at different 

times. In this case, most of the studies have used 

classification techniques such as Fuzzy Decision Making 

System, Artificial Neural Network (ANN), support vector 

machine (SVM), etc. (Moya et al., 2019; Ranjbar et al., 2018; 

Endo et al., 2018; Janalipour & Taleai, 2017; H Rastiveis et 

al., 2013; Janalipour & Mohammadzadeh, 2016; Chini et al., 

2011; Li et al., 2009). Moreover, some of the studies have 

used other methods such as edge information, image 

rationing, image differences, principal component analysis, 
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etc. (Xiao et al., 2016; Miura et al., 2011; Ma & Qin, 2012; 

Sirmacek & Unsalan, 2009).  

Multi-spectral images present shadows, building 

displacement problems, and also the reference pre-event 

images may not always be available (Vu et al., 2004). 

Therefore, many studies work on building damage 

assessment based on only post-event data. LiDAR data, 

which provides information of height, has also been 

recommended in many studies to resolve these problems 

(Meng et al., 2009; Moya et al., 2018; Tran et al., 2018; 

Vetrivel et al., 2015). Although LiDAR is capable of 

providing precise height information in poor illumination, or 

through clouds and smoke, it is challenging to interpret 

damaged buildings from post-earthquake LiDAR data alone 

without 3D building information from GIS databases or 

spectral information of satellite images.  

Auxiliary data, such as building vector maps, has been used 

besides the LiDAR data as a priori knowledge in many 

studies to identify the disappeared damage in LiDAR data 

and to improve the accuracy of building damage detection 

(Rodríguez et al., 2019; Vu et al., 2004; Janalipour & 

Mohammadzadeh, 2018; H. Rastiveis et al., 2018). However, 

this data is not always available, or it may be outdated, so 

most of the studies integrate the LiDAR data and images by 

employing the spectral information of satellite images as 

well as the height information of LiDAR data for detecting 

the collapsed buildings (Huang et al., 2007; Dong & Guo, 

2012; Trinder & Salah, 2012; Zhou et al., 2018). It is 

providewouldcombinationexpected that this  more 

indetectionpromising results in building damage

 comparison to merely using one dataset.

  Based  on  previous  studies,  researchers  widely  used  both 
pre-event and post-event data for building damage detection.

However,  pre-event  data  may  not  always  be available  or

updated. For this reason, some of the studies used only post-

event data such as LiDAR data or SAR image, but the 

reported accuracies were not high. Therefore, the main 

objective of this study is specifying the damaged buildings 

with high accuracy based on decision level fusion of post-

event satellite image and post-event LiDAR data. This 

approach uses the geometrical analysis besides the textural 

and spectral analysis. Also, the damaged buildings are 

detected by combining the classification results of satellite 

image and LiDAR data. Finally, the damaged area is divided 

into two classes of “Surely Damaged” and “Probably 

Damaged” to determine where the first responders and 

rescue team should be sent.  According to this categorization, 

the first responders or rescuers will be sent to “Surely 

Damaged” regions.  

T thefour sections. Afterintoorganizedhis paper is

introduction, a description of the proposed method for 

building damage detection is given in Section 2. Then, the 

experimental area and data are explained in Section 3. After 

presenting and discussing the implementation results in 

Section 4, finally, Section 5 concludes the paper.  
 

2. Proposed method  

The flowchart of the proposed method is summarized in 

Figure 1. As shown in this figure, in order to prepare the input 

data for building damage detection, the acquired LiDAR data 

and high-resolution satellite imagery (HRSI) of the post-

earthquake are pre-processed and analyzed. Then, both of 

them are divided into several homogeneous segments using 

the multi-resolution segmentation technique. After that, two 

segmented datasets are classified based on the appropriate 

features and selected training samples. Finally, the 

classification results are compared, and building damage 

map is achieved in three classes of “Surely Damaged” and 

“Probably Damaged”, and “Undamaged”. 

 
Figure 1.  Flowchart of the proposed method for buildings damage detection after an earthquake, based on the combination of 

LiDAR data and high-resolution satellite imagery
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2.1. Pre-processing 

In the pre-processing step, first, the LiDAR point cloud is 

converted into image format based on the height information 

of these points. This process can be performed using an 

interpolation technique such as nearest neighbor or bilinear. 

This image, which is usually called the Digital Surface 

Model (DSM), should be registered to the satellite image 

using multiple control points. Moreover, histogram 

equalization of the HRSI should be performed to contrast the 

adjustment of both images. 

 

2.2. Segmentation 

The target of segmentation is to generate meaningful 

objects as an image analysis unit. This step is one of accurate 

steps in object-based building damage detection, which is 

mostly used in the field of pattern recognition  (Haralick & 

Shanmugam, 1973; Ivits & Koch, 2002). There are several 

groups such as point-based, edge-based, and region-based 

segmentation techniques that can be applied in this step (Ivits 

& Koch, 2002). However, due to the high ability of multi-

resolution segmentation, this method is applied in the 

proposed algorithm.  

Multi-resolution segmentation is a bottom-up segmentation 

algorithm based on a pairwise region-merging technique, 

which minimizes the average heterogeneity for a given 

number of image-objects, and maximizes their 

corresponding homogeneity. It starts with a one-pixel object 

and merges each pair wisely with neighboring objects to 

form larger objects until the homogeneity thresholds are 

reached. These homogeneity thresholds are controlled by the 

scale parameter, which influences the size of output 

segments (Benz et al., 2004; Definiens, 2012). Other 

segmentation parameters including color/shape and 

smoothness/compactness should carefully be detected. In 

this paper, the mathematical background and details of the 

multi-reolution segmentation are not discussed, and  readers 

are referred to (Benz et al., 2004) for more additional 

information. 

 

2.3. Feature extraction 

In image analysis, features or descriptors are meaningful 

information which describes the image, and usually include 

statistical, textural, and structural characteristics of image-

objects (Definiens, 2012). Since selecting features may lead 

to different classification results, it is a critical step in the 

damage detection process. Therefore, any nonfeasance in 

feature selection may cause unfavorable errors in the final 

results (Rezaeian, 2010; H Rastiveis et al., 2013).  

In addition to the spectral information as a feature vector, 

many studies have applied textural features to separate 

damaged areas (Janalipour & Mohammadzadeh, 2016; H 

Rastiveis et al., 2013). In pixel-based image analysis, 

spectral and textural features are popular; however, 

geometrical features are also useful in object-based image 

analysis. Therefore, in the proposed method, textural, 

geometrical, and spectral features are applied for damage 

assessment. Here, a good feature is the one that draws a clear 

distinction between undamaged and damaged image-objects. 

For this purpose, several features are extracted for all image-

objects on both DSM and HRSI through the numerical 

interpretation of several features. It should be considered that 

numerical interpretation for each image-object is performed 

using the equation of features shown in Table 1. 

 

Textural Features: There is no absolute definition of 

textural features, but in general, it investigates the 

coarseness, smoothness, uniformity, or density of the image. 

A simple and popular method for texture analysis is the 

computation of Gray-Level Co-occurrence Matrices 

(GLCM). GLCM is a matrix that contains the number of each 

grey level pairs, which are located at distance d and direction 

θ from each other (Haralick & Shanmugam, 1973). 

Calculating this matrix provides several measures such as 

Homogeneity, Entropy, Correlation, etc. as textural features. 

Table 1 illustrates seven implemented GLCM-based textural 

features in this study.  

 

Geometrical features: These features are calculated based 

on the geometrical properties and the shape of the extracted 

image objects (Definiens, 2012). Various geometrical 

features can be extracted for each image object. In this study, 

Density, Compactness, and Asymmetry are three applied 

geometrical features for damage map generation. 

 

Spectral features: Spectral features can be measured from 

the grey value of the pixels inside each image object 

(Definiens, 2012). In this study, Brightness is applied as the 

only spectral feature, which is shown along with other 

textural and geometrical features in Table 1. In this table, i,j 

are the row and column number; Pi,j is the normalized value 

in the cell i,j; N is the number of rows or columns; μi,j is the 

GLCM mean; σi,j is the GLCM standard deviation; B

Kw is the 

brightness weight of image layer k; K is the number of image 

layers k used for calculation; ( )Kc v is the mean intensity of 

image layer k of image-object v; 
1,2,3 is eigenvalue 1, 2 and 

3 of a 3D image object v; and Vv is the volume of image 

object.  

Although various features can be extracted and used for 

damage assessment, however, the abovementioned features 

have been selected by studying, observing, and choosing a 

wide range of different features in object-oriented image 

classification. 
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Table 1. Applied textural, geometrical, and spectral features 

in the proposed method for building damage detection. 

Num. Feature Equation 
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2.4. Classification  

This is a critical phase in building damage detection 

process and can be affected by many factors such as the 

algorithm, pre-processing, appropriate training samples or 

feature extraction (Bai et al., 2017; Bakhary et al., 2007). 

Given that the main objective of this research is to provide 

an efficient method to integrate the classification results, 

different classification methods can be used in this step. 

However, the supervised k-nearest neighbor (K-NN) 

classification algorithm, due to its simplicity, popularity, and 

effectivity, is implemented on both segmented images.  

The K-NN is a non-parametric classifier widely used for 

classification and regression (Ivits & Koch, 2002), and rules 

by a majority vote of its k nearest (in Euclidean distance) 

neighbors (Duda, 2001). In this study, the sample image-

objects (training data), described by extracted features from 

the previous step, are sorted and labeled into four classes of 

“Building,” “Debris,” “Tree,” and “Ground” on both HRSI 

and DSM. In the next step, the Euclidean distances from all 

samples to the unlabeled image-object are computed, and k 

closest samples are selected. Finally, by considering the 

unlabeled image-objects into the particular class with the 

maximum number of nearest neighbors, each image-object is 

labeled as “Building,” “Debris,” “Tree,” or “Ground”. In the 

next step, the resulting classified maps are compared to 

generate the final damage maps.  
 

2.5. Damage Assessment 

In this step, by comparing two independent classified 

images in the previous step, damaged buildings are detected. 

Due to many limitations of each classified image, here, a 

pixel-by-pixel comparison of two classified images is 

performed to achieve a more promising result. In this case, a 

pixel would be labeled as “Surely Damaged”, if its label on 

both of the classified images is “Debris”. On the other hand, 

if only one of the classified images labels the pixel as 

“Debris”, that pixel would be “Probably Damaged”. In other 

case, the pixel would be known as “Undamaged”. 
 

3. Study Area 

The study area is located in Port-au-Prince, city, Haiti, 

which was damaged by a catastrophic earthquake on January 

12th, 2010. In this study, Worldview II satellite imagery and 

LiDAR DSM acquired on January 16th 2011 are used to 

evaluate the proposed method. The satellite image consists 

of four multi-spectral bands with a resolution of 2 m and one 

high-resolution panchromatic band with 0.5 m resolution. 

Four high-resolution colored bands are used in this 

algorithm, through integrating the multi-spectral and 

panchromatic bands. From the dataset, 1 km2 study area 

equal to 1000×1000 pixels in the HRSI and 500×500 pixels 

in the DSM were selected, which are depicted in Figure 2.  
 

 
(a) 

 
 (b)

Figure 2. The selected area from the dataset as a test

area. a) Post-event HRSI. b) Post-event LiDAR DSM 
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4. Implementation and Results 

After data pre-processing, segmentation of both images 

was performed through multi-resolution segmentation 

algorithm in eCognition Developer 9. In this case, the most 

important parameters including scale, shape, and 

compactness were considered to 17, 0.4, and 0.7 for the post-

event image, and 20, 0.3, and 0.7 for the DSM. The results 

of this step for both image and DSM are shown in Figure 3. 

As seen, the number of obtained image objects from DSM is 

more than the segments on the HRSI. 
 

 
(a) 

 
(b) 

Figure 3. Extracted image-objects on post-earthquake 

image and DSM, through multi-resolution segmentation 

algorithm. a) Post-event image. b) LiDAR DSM. 
 

After image-object generation, geometrical, textural, and 

spectral features were extracted for all the image-objects on 

both of the datasets. Table 2 shows the obtained features of 

the damaged area for two sample image-objects on both input 

valuedatasets. The high  andCorrelation,of Entropy,

Contrast shows ofvalueslowandthe Heterogeneity

Homogeneity and Angular 2nd Moment features show the 

Homogeneity.  

Table 2. Obtained features of damaged area for two sample 

segments on both image and DSM. 

 LiDAR HRSI 
#1 #2 #1 #2 

GLCM-Contrast 0.59 0.73 0.66 0.72 

GLCM-Homogeneity 0.55 0.46 0.11 0.14 

Geometry-Asymmetry 0.87 0.40 0.58 0.55 

Geometry-Density 0.14 0.63 0.77 0.79 

GLCM-Correlation 0.08 0.02 0.83 0.72 

GLCM-Std. Dev 0.30 0.16 0.11 0.08 

GLCM-Ang. 2nd. 0.01 0. 12 0.00 0.00 

GLCM-Entropy 0.72 0.54 0.89 0.84 
Geometry-Compactness 0.56 0.18 0.14 0.08 

Brightness 0.35 0.22 0.21 0.20 

 

In the following, the selected image-objects for training the 

classification algorithm are shown in Figure 4. This figure 

demonstrates the total number of training samples, including 

the “Building,” “Debris,” “Tree,” and “Ground” polygons, 

which manually selected from the study area.  
 

 

(a) 

 
 

 
(b)

Figure 4. Selected samples on the post-event HRSI and

DSM. a) Training data on the post-event HRSI. b)

Training data on the DSM. 

 

 

Building 

Debris 

Ground 

Tree 

±

Building 

Debris 

Ground 

Tree 

±
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From Figure 5, it can be observed that completely eroded 

buildings with healthy roofs are well detected by the DSM 

data and could not be detected by satellite image. In contrast, 

the debris deployed on the road could not be detected by 

DSM, while the satellite image has easily recognized it. Also, 

most of the trees and grounds have been detected with high 

accuracy through the LiDAR data, while in some cases, 

satellite image has wrongly classified the ground as a 

building, and the shadow of a tree as a tree. 

 

 

                                   (a) 

 

                                     (b) 

Figure 5. The Classified maps using the K-NN method. 

(a) The post-event HRSI. (b) The LiDAR DSM. 

 

Generally, using only LiDAR or image cannot be an 

accurate result for building damage detection. Dividing the 

building damage areas into three classes of “Surely 

Damaged,” “Probably Damaged,” and “Undamaged” 

through combination process can be an appropriate way to 

determine where the first responders and rescue team should 

be sent and how to prioritize their efforts. In this way, relief 

will first be carried out in areas known as “Surely Damaged” 

by this algorithm. The integrating results of two classified 

images in three classes of “Surely Damaged,” “Probably 

Damaged,” and “Undamaged” are shown in Figure 6.  

  

Figure 6. The result of combining the classification 

results of LiDAR-based DSM and post-event HRSI. 
 

 

 

 

 

 

 

 

The result of the three segments in the classification step for 
both datasets are shown in Figure 7. As shown, in samples 2 
and  3,  the  eroded  buildings  with  healthy  roofs  are  well 
detected by the DSM data while they could not be detected 
by  satellite images. Conversely, from Section 1, the debris

deployed on the road is not detectable by the DSM data while 
the satellite image has easily recognized it. These show the

integration necessity to achieve more accurate results.

  To  evaluate  the  obtained  damage  map,  the  results  were 
compared  with  the  real  ground  damage  map,  which  was

manually  collected  using  the  post-event  HRSI,  and  a/the 
confusion  matrix  was  obtained.  Table  3  illustrates  the 
confusion  matrix  in  three  cases  of  1)  merely  applying  the 
LiDAR  DSM  data,  2) merely  using  the  HRSI,  and  3)  by 
combining the LiDAR DSM and HRSI satellite imagery.

According to Table 3, a total of 162,946 pixels of damaged 
buildings  were  correctly  detected  by  integrating  the 
classification results; however, this number was 161,227 and 
160,826 when DSM  and  HRSI  satellite imagery  was  used, 
respectively.  As  for  the  accuracies,  the  proposed

combination approach has achieved higher overall accuracy, 
precision,  recall,  and  F1-score,  while  building  damage

detection results based on only LIDAR or HRSI  has lower 
accuracy assessment parameters. These results indicate that 
the  proposed  method  would  be  able  to  detect  most  of  the

damaged  buildings.  Moreover,  all  the  pixels of  “Surely 
Damaged”  were  correctly  labeled  as  damaged  buildings, 
which improves the first relief operations.

  In order to better evaluate the proposed method, the overall 
accuracy of some other damage assessment methods in the

Haiti dataset are shown in Table 4. According to the table,

the  proposed  method  has  much  higher  accuracy  than  the 
studies that use only post-event datasets. This is because of

integrating post-event LiDAR data and post-event HRSI.     

Building 

Debris 

Ground 

Tree 

Surely Damaged 

Probably Damaged  

Undamaged 

 

Building 

Debris 

Ground 

Tree 
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LiDAR-DSM HRSI LiDAR-Class HRSI-Class Combination 

     

     

     
Figure 7. The result of the three segments in the classification step for both datasets. The five columns (left to right) include: (1) 

selected area on post-event LiDAR-DSM; (2) selected area on post-event image; (3) classification result based on LiDAR DSM; 

(4) Classification result based on satellite image; (5) building damage map by combining the classification results. 

Table 3. The confusion matrix in three cases of merely applying the DSM data, merely using the post-event HRSI, and 

by combining the DSM and post-event HRSI 

F1-score 

(%) 

Recall 

(%) 

Precision 

(%) 

Accuracy 

(%) 

Undamaged Damaged  Data 

Source 

 

74 

 

61 

 

96 

 

89 

101,030 161,227 Damaged  

LiDAR 
735,024 2,719 Undamaged 

 

76 

 

63 

 

97 

 

91 

91,943 160826 Damaged  

HRSI 
744,111 3,120 Undamaged 

 

82 

 

70 

 

99 

 

92 

 Probably  Surely   LiDAR 

+ 

HRSI 

70,448 113,925 49,021 Damaged 

765,606 1000 0 Undamaged 

Furthermore, the proposed method has higher accuracy than 

those studies that use both pre- and post-earthquake datasets. 

This is because of selecting the appropriate features and 

training samples, performing the geometrical features 

besides the spectral and textural features, using object-based 

image analysis, and most importantly combining the 

classification results of DSM and HRSI. 

 

Table 4. The overall accuracy of some existing methods 

for damage assessment in Haiti. 

Reference Test Data OA (%) 

Ji et al. (2018) QuickBird 78 

Miura et al. (2016) TSX 75 

Cooner et al. (2016) WorldView, QuickBird 77 

He et al. (2016) LiDAR , GIS data, DEM 87.3 

Rastiveis et al. (2015) LiDAR data, vector map 91 

Pham et al. (2014) VHR, LiDAR data 79 

Uprety et al. (2013) SAR 73.8 

Miura et al. (2012) QuickBird, worldview 70 

Miura et al. (2012) QuickBird 81.4 

Labiak et al. (2011) LiDAR data 73.4 

5. Conclusion 

  

 

  In this paper, a new method has been proposed for mapping 
the  damaged  buildings  after  an  earthquake  using  both 
LiDAR data and post-event satellite images. In the proposed 
method,  image-objects  were  first  generated  through  the

multi-resolution segmentation algorithm on both Worldview 
II satellite image and LiDAR raster data. Features including 
textural,  geometrical,  and  statistical  were  applied  for

classifying  both  data  through  k-nearest  neighbor 
classification  algorithm.  Finally,  both  classification  results

were  integrated  to  create  a  final  damage  map  with  three 
classes  of  “Surely  Damaged,”  “Probably  Damaged,”  and

“Undamaged”.  The  calculated  accuracy  assessment 
parameters  such  as  overall  accuracy,  precision,  recall,  and 
F1-score of respectively 92%, 99%, 70%, 82% showed the

superiority  of  the  proposed  integrated  method  when 
compared to application of only one dataset.

  Comparing  the  proposed  integrated  method  with  other 
damage  assessment  techniques  implemented  on  the  Haiti

dataset show the superiority of the proposed method in the 
case of overall accuracy. In overall, although all the pixels of
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“Surely Damaged” were correctly labeled as damaged 

buildings by the proposed method, the overall accuracy of 

92% is attributed to some mistakes in “Probably Damaged” 

and “Undamaged” classes. 

The extension of this method through developing other 

classification methods, integrating the classification results 

using other decision level fusion techniques, and also 

combining different classification algorithms may lead to 

accomplishing the desired objective of generating 

comprehensive and more accurate damage maps. 
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