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ABSTRACT 

In this paper, we suggest a simple iterative method to find the geodesic path on a surface parameterized by 

orthogonal curvilinear system between two given points based on solving Boundary Value Problem. In this 

supposed method, an iterative algorithm is used for finding the sufficient initial values as the destination 

point agree with the boundary conditions. Geodesic determination between two given points is formulated 

for a general surface, and specially tested for reference ellipsoid which has many applications in 

geosciences and geodesy. Accuracy of the method is independent on the distant between two points on the 

surface. Moreover, it can be used in aviation and sailings for finding the shortest path between start and 

destination points. 
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1. Introduction 

     The problem of determining geodesic curve, shortest 

path between two points on a surface, has attracted much 

attention of many scientists in different fields in the recent 

years.  It is due to many important classic and modern 

applications of geodesics, containing medical imaging, 

robotic movement, satellite orbits, positioning problem in 

geometrical geodesy, industrial application, garment design 

and etc. Geodesics arise in shoe industry for garment 

design. Given a model and size, the characteristic curve 

called girth is usually fixed, and preferably should be a 

reasons (geodesic for manufacturing Sanchez-Reyesa & 

Doradob, 2008; Azariadis & Aspragathos, 2001). A 

satellite's orbit around the attracting  body of revolution on 

a plane orthogonal to the axis of rotation (z-axis) is a 

geodesic curve (Ghafari, 1970). Geodesics could be used 

for optimal trajectory planning in robotic applications 

(Zhange & Zhou, 2007; Zhang et al., 2010). The shortest 

path has some applications in tubular structures extraction 

(in 3D medical images Deschamps & 2001cohen, ). 

analysisin imageintroducedGeodesic distance was

(Lantuéjoul & Beucher, 1980) and applied by other 

scientists in the field of image processing (Kimmel, 1997; 

Lindeberg, 1994). It is also used in computer vision for 

object segmentation (Caselles et al., 1997; Cohen & 

Kimmel, 1997; Kimmel et al., 2000).  

     The geodesic, the shortest surface distance between two 

points on the ellipsoid or spheroid, is a well known problem 

in geodesy (Bessel 1825; Rainsford 1955; Baeschlin 1948; 

Heitz 1988; Grafarend & Syffus 1995; Sjöberg 2006). 

Almost, all of the methods in the ellipsoidal geodesy have 

been focused on finding the end point of a geodesic given 

start point, length and azimuth (direct problem) or 

computing the length and azimuth of the geodesic between 

two given points (inverse problem) (Thomas & 

Featherstone, 2005; Bermejo-Solera & Otero, 2010; 

Karney, 2012).  

https://eoge.ut.ac.ir/
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     In general, the approaches for geodesic curve 

determination can be divided into the analytical and 

numerical methods (Kasap et al., 2005). The analytical 

approaches; represented by Carmo (1976) are more 

complex and cannot be used in general case. Nevertheless, 

the numerical approaches; represented by Patrikalakis & Ko 

(2003) are classified as initial-value problem (IVP), four 

boundary conditions are given at one point, and the 

boundary-value problem (BVP), four boundary conditions 

are specified at two distinct points. The boundary value 

problem in geodesics could be solved by an easy but 

unstable method (shooting method) which is based on a 

finite difference approximation and more complex but 

stable method (relaxation method) which uses Newton 

method (Patrikalakis & Ko, 2003).  

     In this paper, we introduce a new method for finding the 

geodesic path between two given points i.e., the distance 

and azimuth on an orthogonal curvilinear surface, in 

particular the geodesic path on the rotational ellipsoid, 

using a simple and stable approach in the BVP mode. This 

approach uses iterative algorithm for adjusting the initial 

values in a way that the curve passes through the 

destination point. 

2. Formulation of a geodesic curve 

     A surface represented by two independent curvilinear 

parameters (𝑢, 𝑣) is equivalent to a surface in a 3D 

Cartesian space. Therefore, each point on an arbitrary 

surface could be expressed by the two independent 

curvilinear parameters. The position vector in the Cartesian 

orthogonal system (𝑋1, 𝑋2, 𝑋3 ) is a function of curvilinear 

parameters as follow: 

(1)  

1

2

3

( , )

( , ) ( , )

( , )

X u v

R u v X u v

X u v

 
 


 
  

 

The curvilinear parameters are state as functions of an 

independent parameter t . Any arbitrary curve 𝛼(𝑡) on the 

surface can be represented as:  

(2)  ( ) ( ( ), ( ))t R u t v t   

)(t is a geodesic curve if and only if, )(tu and )(tv

satisfy the following equations (Lipschutz, 1969): 

(3)  

2
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where 
i

jk are the Christoffel symbols defined as 

(Patrikalakis & Ko, 2003): 
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where E , F , and G are the coefficient of first fundamental 

form of the surface. 
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     If )(tu and )(tv are orthogonal, F and their derivatives 

will be zeros. Then, the geodesic equations will have a 

simpler form: 

(6)  

2 2
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      We have two second-order differential equations or 

equally four first-order differential equations. It can be 

achieved by defining the state vector )(ts  as: 

(7)  

( )

( )
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where (𝑢′(𝑡), 𝑣 ′(𝑡)) are the first order derivatives of the 

(𝑢, 𝑣) with respect to the independent variable 𝑡. The 

geodesic curve second-order differential equations (Eq. 6) 

are recast into the classical form of an initial value problem: 

(8)  o o( ) ( , ( )) ( )s t f t s t s t s  
 

where os  contains position of the origin ),( oo vu and its 

first-order derivative or the so-called velocity at the origin

),( oo vu  . In the formulation of geodesic problem passing 

through two given points, position of the origin and 

destination points are given. However, velocity at the initial 

point is unknown. Therefore, the geodesic curve 

determination problem cannot be solved using the classical 



Earth Observation and Geomatics Engineering 2(1) (2018) 26–35 

 

72 
 

methods i.e., numerical integrators. Moreover, velocity at 

the origin is directly inestimable due to the nonlinearity of 

the system equations ( f ). The problem should be solved 

using an iterative scheme. The solution process is stared 

with an initial guess of velocity at the origin ),( o0o0 vu  . 

Solving Eq. (8) with this initial guess yields a geodesic 

curve which might not passes through the destination point

),( ff vu . The initial value should be iteratively improved 

in a way that the resulting geodesic curve passes through 

the destination point. Taking this idea into account, the 

given initial state vector is assumed as an approximate 

value and the correction vector sdˆ in the following form is 

sought:  

(9)  
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It shows that the correction vector only contains correction 

to the initial velocity.  

     Numerically, the problem can be expressed as an 

optimization problem. The aim is to find the correction to 

the initial velocity in a way that the deviation of the 

geodesic curve at the destination with respect to the given 

position is minimized. Theoretically, the deviation should 

be zero but it can be a very small negligible number from 

the computational point of view. In mathematical notation it 

reads: 

(10)  
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where ),( ff vu  are the differences between the given 

and the estimated position of the destination point. Assume 

the sought-after correction is small enough such that the 

linearization yields accurate approximation:  

 

(11)  
 

o o0 oo o

o oo oo0

f f f f

f f

ˆ( , ) ( , ) ˆ ˆ[ ( ), ( )]

ˆ( , ) ,( , )

u t s u t s uu s v s

v t s vu vv t s

     
             

 

 

Inserting the linearized form into Eq. (10) yields: 

(12)  
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or equivalently,  
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where d  is the misfit vector and the design matrix and the 

misclosure vector are denoted by 𝐴 and dl  respectively. If 

the misfit vector will be zeros, applying the iterative 

method yields:   
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Eq. (15) can be rewritten in more detail as follows: 

 

(16)  

 

 

f o ( 1)

1o o f

o o f( ) ( 1)

f o ( 1)

,

,

n

n n

n

u t s

u u u
A

v v v

v t s









  
  

                          
    

 

where 
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     Computation procedure will be complete if the design 

matrix is calculated. The design matrix A is expressed as a 

product of partial derivative using the chain rule as:  
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     Replacing the partial derivative of the state vector with 

respect to the velocity vector and using the state transition 

matrix definition (Φ) yields:
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(19)  
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where 
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The transition matrix in numerical determination of 

geodesic curve is obtained by:  
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     Eq. (21) represents the general form of the transition 

matrix for numerical computation of geodesic curve on an 

arbitrary two-dimensional surface. To derive Φ(𝑡, 𝑡0), one 

can use the Taylor expansion of the state vector in terms of 

the initial state. The expansion up to the second-order gives: 
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     Both the position and velocity vectors are written in 

terms of the initial position and velocity vectors. Entries of 

the transition matrix are derived as follow:  
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Eq. (24) could be constricted in a new form: 
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At final, we have 
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     The term needed for computing transition matrix is 

Jacobian matrix 00

0

vu

s


 . More detail on the computation of 

the partial derivatives appeared in Eqs. (43) and (44) are 

given in Appendix 1. It should be mentioned that the Eq. 

(22) are used for determination of a geodesic curve in terms 

of dynamic process and concept of the state transition 

matrix. Eq. (6) can also be solved using ODE routines e.g. 

ODE113 in MATLAB, with error control of about 10-14 and 

automated step size (Shampine & Reichelt, 1997).  
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3. Case Study: Geodesic curve on the rotational 

Ellipsoid surface  

     A reference ellipsoid, an ellipsoid of rotation, is a 

suitable approximation of the shape of the Earth (Vanichek 

& krawinsky, 1986). Reference ellipsoid is a rotational one 

that formulated using two the size and shape parameters, 

i.e., semi-major axis and the eccentricity ( , )a e of the 

ellipsoid. The geometry of ellipsoid is fully explained using 

the size and shape parameters. Therefore, all the 

geometrical computation (point positioning, area and 

volume calculation and etc.) is formulated using the size 

and shape parameters. The position vector of a point located 

on the surface of the reference ellipsoid in terms of the 

curvilinear coordinates (the geodetic latitude 𝜑 and 

geodetic longitude 𝜆 ) is  expressed as (Jekeli, 2006): 
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( ) 1 sin( )

N

R N

N e

  

    

 

 
 

  
 

                         

 
1/2

2 2
( )

1 sin ( )

a
N

e
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
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 where ( )N   is the prime vertical radius of curvature. The 

coefficients of the first fundamental form of the ellipsoid 

required for the geodesic equations are: 
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where ( )M   is the meridian radius of curvature 

(Krakiwsky & Thomson, 1978):   
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By substituting E and G of ellipsoid surface into Eq. (6) 

and after some manipulation, the geodesic differential 

equations for ellipsoid surface have final form: 
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2 tan( )

1 sin ( )

e

e

e

e

 
  



   


 
     

 

 
    

 

 

The transition matrix needed for geodesic determination is 

derived as follow:  

(31)    0 0

0

2

2

0

0
1 0 0 2

0 1 0
, 0

0 0 1 0 2

00 0 0 1

0

s

dt

dt

dt dt
t t

dt

dt

  

 
  
  
       
  
  
 
 

 

where Jacobian matrix components are: 

(32)  

 

 

2 2 2 2

2 2

2
2 2

2

2

2 2

2cos(2 ) 1 sin( ) sin(2 )3

2 1 sin( )

cos(2 )

0

sin(2 )
3

1 sin( )

sin(2 )

e e
e

e

e

e

  


 

 





 


 


 



      
  
 








  
   

  


 



 

 

And 

 

(33)  

 

 

2

2 2 2 2

2
2 2

2

2 2

2

2 2

2(1 )

(1 tan( ) ) 1 sin( ) sin(2 ) tan( )

1 sin( )

0

1
2 tan( )

1 sin( )

1
2 tan( )

1 sin( )

e

e e

e

e

e

e

e





   
 








 

 


 

 


  



   
   
 
 






   
  

  

   
  

  

 

 

     As shown, we need an initial value for the first 

derivatives of the curvilinear coordinates ( , )   at the start 

point. The initial value is calculated using the coordinates 

of the start and destination points based on a spherical 

approximation of the ellipsoid. Based on the spherical 

approximation, the azimuth and the length of geodesic 

curve are (Harris and Stocker, 1998):  

(34)  

1

1 2

1 2 2 1

cos (sin( )sin( )

cos( )cos( )cos( ))

  

   

 

  

1 2 2 1
1

cos( )sin( )
sin ( )

sin( )
Az

  



 
  

 

     Based on ellipsoidal geometry, a differential line 

element of an arbitrary curve on the ellipsoid (Figure 1) is 
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decomposed into the orthogonal latitudinal and longitudinal 

elements as: 

 
Figure 1. Line elements of curve on surface of the Earth 

 

(35)  
1 1 1

1 1

( )cos( ) sin( )

( ) cos( )

N d d Az

M d d Az

   

  




 

 

where 

 

(36)  
0

lim

t

d
t




 





 

     In this equation t  is an independent parameter, it could 

be considered as the time needed for traveling a virtual 

moving particle from the start point to the destination point 

on the ellipsoid. The computation is not highly dependent to

t , but it should be considered small enough in such a way 

that the nonlinearity error can be ignored. d
 
and d  in 

the start point is the initial values for 
1

and 


1 when 

0 or equivalently 0t . Then, initial values for 

unknown parameters are:  

(37)  

10 1

1

10 1

1 1

cos( )
( )

sin( )
( )cos( )

d
Az

M

d
Az

N









 

 

 

 

     The geodesic curve on the ellipsoid could be determined 

by applying the algorithm described in pervious section. 

Having the geodesic curve as a set mesh points with any 

arbitrary density, the differential element of the length and 

azimuth of a differential element on the geodesic curve is 

computed by: 

(38)  2 2 2 2 2cos ( )d N d M d      

(39)  

 

1 cos( )
tan

N d
Az

Md

 



  
  

 
 

 

Geodesics computed using this approach is represented in 

the next section.  

 

4. Results and discussion 

     For the accuracy evaluation of the geodesic determined 

by Eq. (22), the length of geodesic curve derived from the 

proposed formulation is compared with that of the directly 

computed by solving differential equation. The evaluation 

is carried out for the following cases: 

Case 1) Two points on a single meridian  

The length of geodesic curve 𝜓 is determined as: 

(40)  

2

1

2

1

2 2 2 2 2( )cos ( ) ( )

d

N d M d









 

    

 







 

Since ,0d  the Eq. (33) takes the following simple 

form: 

(41)  

2

1

( )M d





     

     In addition to approximate closed form relation 

represented for solving this integral (Krakiwsky & 

Thomson, 1978), it could be accurately solved using 

computing routines e.g. ODE113 in MATLAB. In Table 1, 

the solution of Eq. (41) is compared by that of the Eq. (22).  

The comparison is carried out for the pole-to-pole meridian 

arc length. The efficiency of the method represented for 

geodesic curve determination is tested on the surface of 

ellipsoid WGS84 (World Geodetic Datum 1984). A sub-

millimeter level of accuracy in the computed geodesic 

curve length is considered for the maximum error tolerance. 

It is equal to 0.00001" in longitudinal and latitudinal 

differences, i.e., the maximum size of misfit vector at the 

end point. The error of each iteration in case pole-to-pole 

geodesic determination is represented in Table 2. 

Case 2) Two points in arbitrary locations  

     Two arbitrary points are located in northern and southern 

hemisphere, see Figure 2. 

Case 3) A nearly trans-polar geodesic curve 

     Consider two points which are approximately 180° apart 

in longitudinal direction. It is clear that the route pass along 

the meridian is shorter than the pass along the parallel due 

to the meridian minimum radius curvature. Figure 3 shows 

an example case of such points where the geodesic is a 

nearly trans-polar curve. It is the shortest path and could be 

a proposed one for plane traveling between two points by 

these properties.  
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Table 1. Comparison of the pole-to-pole meridian arc length error 

𝝍(𝐤𝐦) Error 

(mm) 

Number of 

iteration 

Computation 

Time (sec) 

start point destination point 

( )   )(  ( )   )(  

20003931.458625 1.001 3 3.001 -90 0 90 0 

 

 

Table 2. The error of each iteration in case pole-to-pole geodesic determination 

Iteration Error (m) Error (rad) 

1 98642.60756 0.01546574 

2 10.02431927 1.57E-06 

3 0.001001454 1.57E-10 

4 4.82E-07 7.55E-14 

 

 

 

     It should be mentioned here that the formulation given 

for numerical determination of geodesic curve on a sphere 

and the rotational ellipsoid is singular for the antipodes.   

Case 4) Geodesic between the points with equal latitude 

     A more illustrative example of geodesic curve is the 

shortest pass between two points on the rotational ellipsoid 

with equal latitude. In the case of sphere the connecting 

parallel is the geodesic. However, it is different for the 

ellipsoid. Two arbitrarily selected points on a parallel are 

depicted in Figure 4. As shown, the geodesic curve tends 

towards the pole to minimize the arc length between the 

points. 

 

 

 

 

 
Figure 2. The geodesic curve on the ellipsoid for the plotted points: 

1 1

2 1

35 42 39 , 51 30 06  

10 58 44 , 310 21 24

 

 

      

         

 

Start point 

Reference 

Meridian 

End point 

4212310,448510

 600315,932453

12

11







 

Geodesic curve 
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Figure 3. A nearly transpolar geodesic curve on the 

ellipsoid 1 1

2 1

30 , 115

55 , 290

 

 

   

     

 

 
Figure 4. The geodesic curve along the parallel on the ellipsoid  

1 1

2 1

30 , 30

30 , 90

 

 

   

   
 

5. Conclusion and recommendations 

     In this paper, a new approach is proposed for numerical 

solution of the geodesic curve determination boundary 

value problem. It is formulated for any arbitrary surface in 

general and the Earth’s reference ellipsoid i.e., the 

rotational ellipsoid in particular. The efficiency of this 

approach in tested in few examples for the pair of points 

placed on the surface of the Earth. The new approach can 

be used for reformulation of geometrical computation in 

Geosciences and Geodesy applications.    

It should be mentioned here that the formulation given for 

numerical determination of geodesic curve on a sphere and 

the rotational ellipsoid is singular for the antipodes. More 

investigation is required for removing formulation 

singularity in the trans-polar geodesic curve.  
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Appendix 1 

The transition matrix for geodesic determination 

 in orthogonal curvilinear system ( 0u vR R  ) are:  

 

 

(42)    0 0

0

2

2

0

0
1 0 0 2

0 1 0
, 0

0 0 1 0 2

00 0 0 1

0

u v

s

dt

dt

dt dt
t t

dt

dt

 

 
  
  
       
  
  
 
 

 

where the elements of Jacobian matrix, 00

0

vu

s


 , needed for 

transition matrix computation are: 

 

(43)  

2
2 2

2
2 2

1

2

1

2

u u v u u
uu uv uu

u v v u v
uv vv uv

E E E G Eu
E u E u v G v

u E E E E

E E E G Eu
E u E u v G v

v E E E E

       
                

      

       
               

      
 

2

2

u v

v u

E Eu
u v

u E E

E Gu
u v

v E E


    




   
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and 

(44)  

2
2 2

2
2 2

1

2

1

2

v u u u v
uv uu uv

v v u v v
vv uv vv

E G G G Gv
E u G u v G v

u G G G G

E G G G Gv
E u G u v G v

v G G G G

       
               

      

       
               

       
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v u

u v

E Gv
u v

u G G

G Gv
u v

v G G


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


   
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