
Earth Observation and Geomatics Engineering 2(1) (2018) 9–25 

__________ 

 

   

* Corresponding author

E-mail addresses: hasanlou@ut.ac.ir (M. Hasanlou); seydi.teymoor@ut.ac.ir (S.T. Seydi)

DOI: 10.22059/eoge.2018.238510.1010

 

9 

ABSTRACT 

Wetlands are one of the important types of ecosystems that play a fundamental role in the environment and 

provide significant benefits due to the resources that they contain. Therefore, it is necessary to monitor the 

changes in these ecosystems. The alterations in Earth’s ecosystems caused by the natural activities, such as 

drought, as well as human activities and population growth has been affecting the wetlands and waterbodies 

area. Therefore, for achieving a better detection of these changes over time, it is important to generate 

descriptive location maps based on the characteristics of wetlands. Hyperspectral images have shown 

potential use in many applications due to their high spectral resolution, and consequently, their high 

informative value. This study presents a hybrid procedure for automatic detection of changes in wetlands 

using a new approach which can provide more details about the changes with high accuracy. The hybrid 

proposed method is based on incorporating chronochrome, Z-score analysis, Otsu algorithm, simplex via 

split augmented lagrangian (SISAL), Harsanyi–Farrand–Chang (HFC), Pearson correlation coefficient 

(PCC), and support vector machine (SVM) to detect changes using hyperspectral imagery. The proposed 

method in the first step, produce a training data for tuning SVM and kernel parameters. The second step, 

predicted change areas based on a chronochrome algorithm and binary change map obtained using SVM 

classifier. The third step, the amplitude of changes is created by Z-Score analysis and binary change mask. 

Finally, the multiple change map is produced based on the estimation of number and extraction of 

endmembers and similarity measure. The proposed method evaluated and compared the performances with 

other common hyperspectral change detection methods using three real-world datasets of multi-temporal 

hyperspectral imagery. The empirical results reveal the superiority of the proposed hybrid method in 

extracting the change map with an overall accuracy of nearly 96% and a kappa coefficient of 0.89 while 

other hyperspectral change detection methods have the overall accuracy lower than 93% and kappa 

coefficient 0.80. In addition, this hybrid method can provide ‘multiple changes’ as well as the magnitude of 

extracted changes. 
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1. Introduction 

   Wetlands are one of the most influential ecosystems in 

the natural environment for which it is very difficult to find 

an alternative (White et al.,2015). There are many definitions 

of wetlands. The U.S. Army Corps of Engineers defined 

wetlands as “Those areas that are inundated or saturated by 

surface or groundwater at a frequency and duration sufficient 

to support, and that under normal circumstances do support, 

a prevalence of vegetation typically adapted for life in 

saturated soil conditions”. Wetlands cover nearby %6-%7 of 

Earth surface (Keramitsoglou et al., 2015; Mereta et al., 

2012) and provide many vital benefits for the environment 

such as: improving the quality of water, controlling the soil 

erosion, recharging underground water tables, sustaining 
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against flooding, filtering toxic material and sediments, 

providing a defense mechanism against sandstorms, and 

providing food and habitat for wildlife (Jiang et al.,2014; 

Romshoo & Rashid, 2014; Whiteside & Bartolo, 2015).  

The earth’s ecosystems are continuously changing due to 

human activities and natural phenomena (Gibbes, et al., 

2009). Such changes on wetlands are usually caused by 

reasons such as dry seasons, alterations in groundwater, and 

habitat heterogeneity (Rapinel et al., 2015; Romshoo & 

Rashid, 2014; Taminskasa, Petro\liusa et al., 2013). Remote 

sensing is a tool that can play a very beneficial role in 

monitoring and studying of the changes in the environment, 

especially in wetlands, on local and global scales (Mabwoga 

& Thukral, 2014; McCarthy et al., 2015). In fact, remote 

sensing can provide data from the environment in large scale 

and real-time with minimum cost and time-consumption 

(Bovolo & Bruzzone, 2015; Gomez, 2001). These properties 

have made remote sensing a very effective approach in the 

fields of earth and environment sciences, especially in 

change detection applications (Hasanlou & Seydi, 2018; 

Huang et al., 2017; S. Liu, 2015a; Storey et al., 2017). 

Change detection is a process that aims to measure the 

difference between two objects at different times (Li et al., 

2011; Lu et al., 2011; Singh, 1989). One benefit of change 

detection is to help manage a system more efficiently by 

using temporal data (Thonfeld et al., 2016). Also, detection 

of changes can help us create accurate change models based 

on the past information to avoid disastrous events (Hegazy & 

Kaloop, 2015; Thonfeld et al., 2016). With the development 

of remote sensing systems, it is possible to obtain data from 

objects in the high spectral resolution which is known as 

hyperspectral imagery (George et al., 2014). The high 

spectral resolution of the data helps with distinguishing 

objects that seem very similar (Barrett, 2013; S. T. Seydi & 

Hasanlou, 2018; Smith, 2012; Yuen & Richardson, 2010).  

During the recent years, the most relevant studies on 

change detection in wetlands have been using remote sensing 

data. Sica et al. (2016a) study on Paraná River Delta located 

in Argentina, where change analysis was performed based on 

post-classification via the supervised method and SVM 

classifier. Also,  Seydi & Hasanlou (2016a) studied the 

Shadegan wetlands located in Iran. This research proposed a 

new hybrid method for detecting changes which used a semi-

supervised method based on iteratively reweighted 

multivariate alteration detection (IR-MAD) algorithms, Z-

score analysis, and Otsu algorithm. They also used 

hyperspectral image data-sets. In an older study, Ghobadi et 

al. (2015) studied the Al Hawizeh wetlands located in the 

southwest region of Iran. For change analysis, they used 

maximum likelihood as the post-classification methods and 

classifier on the Landsat datasets (OLI, MSS, and ETM). 

Mousazadeh et al. (2015) studied Anzali wetlands in Iran, 

where their approach integrated supervised classification 

using maximum likelihood classifier, and zonal and object-

oriented image analyses. Also, in their study, Landsat-8 and 

digital topographic maps dataset were used. In another work, 

Yang & Yan (2016) conducted a change analysis study on 

Poyang Lake wetland in China where they used supervised 

classification procedures using error correcting output code 

(ECOC) and SVM algorithm. Also in their study, the 

hydrological data and remotely sensed data contained: TM, 

ETM, OLI, and TIRS. Gunawardena et al. (2014) monitored 

the eastern river basin region in Sri Lanka using supervised 

classification methods and Landsat datasets including 

ETM+, ALOS-AVNIR2, and ALOS-PALSAR images. 

Zanotta et al. (2013) studied central portion of South 

American areas, specifically the Brazilian Pantanal. In their 

work, they proposed automatic hybrid methods based on 

expectation maximization (EM), Bayes theorem, and image 

difference detection. Also, their method showed 

improvements in change detection efficiency by 

incorporating morphology operators using Landsat dataset 

for change analysis. Kayastha et al. (2012) analyzed an area 

in northern Virginia for change detection using Z-score and 

the tasseled cap algorithm. In their paper, threshold selection 

was performed based on time series analysis of Landsat ETM 

data-sets. 

Wu et al. (2012a) studied the Poyang Lake in China for 

change analysis using supervised methods based on adaptive 

coherence/cosine estimator (ACE) detector on stacks of 

hyperspectral datasets. In another study, Dronova et al. 

(2011) measured the duration of the low water period at 

Poyang Lake in China for change analysis. They 

incorporated supervised post-classification methods based 

on a fuzzy method to perform a semi-automated selection of 

training objects on Landsat TM dataset. Also, Lee (2011) 

studied the wetlands in western Canada to extract the change 

map by using post-classification (maximum likelihood 

classifier) on multi-temporal Landsat-7 data-sets. 

Furthermore, Zhao et al. (2010a) analyzed the change map 

on Pearl River estuary, which is located in China, by using a 

post-classification method (decision tree classifier) on the 

Landsat MSS, ETM+ and TM dataset. 

     By considering both the change detection methods and the 

employed data-sets in related literature, it can be observed 

that there are several challenges in change detection on 

wetland regions. First, we can see that the most frequently 

used procedure for change detection is the post-classification 

method. Secondly, most wildly used image datasets for 

application of change detection in wetland areas are different 

types of Landsat imagery. Therefore, there is a lack of 

research based on hyperspectral images for change detection 

applications. On the other hands, hyperspectral imagery has 

displayed high potential for many applications such as 

classification and change detection. Also, several studies 

have been conducted about this type of imagery (Hasanlou et 

al., 2015; Kumar & Sinha, 2014) which can be considered to 

be applied in monitoring changes in the wetlands and 
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waterbodies areas. 

     The change detection methods using remote sensing 

imagery can be divided into five groups. The first group 

includes post-classification comparison-based procedures 

(Castellana et al., 2007). In this group, the post-classification 

comparisons are widely used for detecting changes based on 

comparing classified images in a pixel by pixel class label 

manner (Dronova et al., 2011; Lee, 2011; Zhao et al., 2010b). 

This group provides ‘multiple-change’ or ‘from-to’ 

information and is not affected by the atmospheric conditions 

and sensor differences in the acquisitions data. However, 

prior knowledge for training set is necessary for this group, 

which is a big challenge for supervised methods due to the 

fact that acquiring training sets in multi-temporal data sets 

can be very difficult (S. Liu, 2015a; Shah-Hosseini, et al., 

2015a). When using hyperspectral imagery, it is inevitable to 

use dimension reduction procedures due to Hughes 

phenomenon (Samadzadegan et al., 2012). Also, for 

unsupervised methods, it is necessary to label the classes to 

be able to analyze the change map (Shah-Hosseini et al., 

2015a). The accuracies of both supervised and unsupervised 

change detection methods depend on the performance of the 

utilized classifier algorithm (S. Liu, 2015a; Shah-Hosseini et 

al., 2015a). The common supervised post-classification 

comparison-based methods are maximum likelihood (ML) 

(Lee, 2011; Mousazadeh et al., 2015; Yang & Yan, 2016), 

SVM (Sica et al., 2016b; Yang & Yan, 2016), and Random 

Forest (RF) classifiers (Franklin et al., 2015). Also, the 

common unsupervised methods are ISODATA classifier 

(Omo-Irabor, 2016), Fuzzy C-means (FCM) (Ghosh et al., 

2011), and K-means (KM) (Fröjse, 2011). The second group 

of change detection methods that use hyperspectral imagery 

uses direct multi-date classification (DMC) based on using 

one classifier algorithm on stacks of multi-date data-sets 

(Ahlqvist, 2008). In this group, due to the utilization of one 

classifier, the computational cost of classification is low. 

However, this group of methods suffers from drawbacks 

such as providing little knowledge about the ‘from-to’ 

information, and the fact that for supervised methods it is 

necessary to have training-sets (Shah-Hosseini et al., 2015b; 

Yuan et al., 2005). The third group of methods includes 

similarity-based methods where the spectral signature of 

objects is measured (Adar et al., 2012). Advantages of these 

methods include the simplicity of implementing them and 

their low computational cost. Nevertheless, they can be 

affected by noise and atmospheric conditions (S. Liu, 2015b; 

Shah-Hosseini et al., 2015b). The fourth group is the 

transformation-based methods where the dataset is 

transformed from image space to feature space (Pieper et al., 

2015; Shah-Hosseini et al., 2015b; K. M. Vongsy, 2007a). 

These methods have high potential in processing data with 

high dimensionality, and thus, high capability in change 

detection. The common transformation-based methods 

including principal component analysis (PCA) (K. Vongsy et 

al., 2009), multivariate alternative detection (MAD) 

(Nielsena & Müllerb, 2003a), Chronochrome (CC) (Michael 

et al., 2008a), and cross equalization (CE) (Michael T. 

Eismann et al., 2008a). The fifth group is hybrid based 

procedures that combine couples of previous methods in 

order to achieve new automatic or unsupervised methods 

(Bovolo et al., 2012; Shah-Hosseini et al., 2015b). 

     We described five change detection groups and briefly 

investigated their pros and cons. Generally, there are many 

challenges in hyperspectral change detection (HCD) 

including (1) the outputs of many segment-based threshold 

selection procedures are not perfect, therefore these methods 

require clear histograms of change and no-change areas. 

Also, some change detection methods require hyper-

parameter tuning, which is necessary to be performed based 

on experimental knowledge (Shah-Hosseini et al.,  2015c), 

(2) Many of the automatic methods do not provide 

information about of nature of changes, and only provide the 

binary change maps, while multiple change information is 

important for decision making. Moreover, these methods do 

not provide the amplitude of changes (Hussain et al., 2013a; 

Shah-Hosseini et al., 2015c). Also, some of change detection 

methods need to knowledge-based threshold that it is hard to 

set.  (3) However, the post-classification and direct-

classification methods could be provided a multiple-change 

map or ‘from-to’ information but these methods are 

supervised, therefore providing training data is inevitable. 

However, collection of this training data can be very difficult 

and (4) as described in the literature review in the previous 

section, many of the studies used multispectral dataset to 

monitor the wetland regions, therefore, there is a lack of 

research that investigates the capabilities of hyperspectral 

imagery in change detection in wetlands and waterbody 

areas. Nevertheless, the series of spaceborne sensors (e.g., 

EnMAP, PRISMA, and HyspIRI) will be launched on a 

schedule that will increase the availability of hyperspectral 

imagery with improvement in data quality. With this regards, 

it is necessary to utilize data-sets that provide more detail 

about changes. 

Wetlands are very sensitive ecosystems, which implies that 

monitoring of their changes is necessary for protecting them. 

In order to provide a monitoring framework to address this 

issue, we need to focus on informative image data-sets and 

accurate methods. The change detection problem could be 

solved in a simple framework. There are many novel 

algorithms proposed by researchers for detection of changes 

using of hyperspectral imagery that solved change detection 

in a complex framework. Therefore, these novel methods 

improve performance change detection but the change 

detection problems become more complex and hard. So, this 

research proposed a change detection method for 

hyperspectral imagery on wetland and waterbody areas using 

conventional algorithms. The main novelty proposed method 

is simple theme nonetheless preserved accuracy. Addition, 
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the proposed method could be applied in an automatic 

framework and provides more details of nature of changes. 

The main purpose of this paper is to propose a change 

detection hybrid method that addresses the previously 

mentioned change detection issues. In addition, this study has 

a number of minor objectives including (1) sensitivity 

assessment of different kernel functions on hybrid change 

detection (HCD) (2) evaluating the effects of normalization 

steps on input data on the performance of the SVM classifier. 

In fact, the proposed method is a new hybrid change 

detection (HCD) method based on Otsu algorithm, CC, Z-

score, PCC, and SVM, and has three phases including (1) 

global predictor phase, (2) analysis phase, and (3) decision 

phase. More specifically, the global predictor uses CC 

algorithm for highlighting change and no-change area, the 

phases analysis uses the SISAL, HFC and Z-score analysis 

for data analysis, and in the decision phase the SVM 

classifier, Otsu algorithm, and PCC are used to obtain the 

binary change map, amplitude of change map, and the 

‘multiple-change’ information map. The criteria selection 

mentioned methods in proposed framework are simple for 

implementation and robust for the analysis of high 

dimensional. Addition, the source codes these methods are 

available. This hybrid method benefits from several 

advantages that distinguish it from other change detection 

methods including: (1) sensitivity to subtle changes with high 

accuracy and low false alarms rates, (2) providing the 

‘multiple-change’ information and amplitudes of changes in 

addition to binary change map (3) simple implementation 

compared to common HCD methods, (4) low computational 

cost and the ability to process high-dimensional data, (5) no 

need for training set or its unsupervised framework and (6) 

incorporating hyperspectral datasets which have high 

potentials in most applications specially for change detection 

analysis. The rest of this paper is organized as follows: 

section 2 describes the general proposed methodology. The 

details of the proposed method are presented in section 3, and 

section 4 presents the experimental results of this method.  

 

2. Proposed Hybrid Method 

    From the output point of view, each pixel in the multi-

temporal dataset has two states: change or no-change state. 

The flowchart of the proposed method is illustrated in Figure 

1. The proposed hybrid method has three different outputs: 

the first output is a binary change map, the second output is 

the amplitude of changes, and finally, the third output is the 

multiple change map. The next subsection explains these 

outputs in more detail. 

 

2.1 Global predictor phase 

The main purpose of the predictor phase is to distinguish 

the change area from the no-change area. For this purpose, 

CC algorithm was used to transfer the data from the image 

space to the feature space. The output of this phase is a cubic 

form data with dimensions equal to the dimensions of the 

input hyperspectral datasets. 

 

2.2 Analysis phase 

The analysis phase is applied for two purposes, (1) extraction 

and estimation of endmembers on masked stack data which 

is performed using HFC and SISAL algorithms, and (2) the 

output of the CC method is cubic data, therefore to aggregate 

and standardize the output of CC method, the Z-score 

analysis was applied, and then the single band data was 

generated. After extracting and estimating the endmembers, 

 

 
Figure 1. An overview of the proposed method and three blue output boxes   
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the PCC method is applied to generate the ‘multiple-

change’ map. The output of Z-score analysis is used for two 

purposes: (1) the Z-score analysis is used in combination 

with the Otsu algorithm in order to generate unsupervised 

training data, and (2) this method combines binary change 

maps for extracting the amplitude of change map as single 

output.  

 

2.3 Decision phase 

The decision phase is used for (1) locating the change and 

no-change pixels (i.e. binary change map), (2) extracting 

‘multiple-change’ information, (3) calculating the amplitude 

of the change map, and (4) automatically generating training 

data. This phase uses three algorithms: the SVM classifier, 

the Otsu algorithm, and the PCC algorithm. 

 

2.3.1 Training data generation 

This part explains the automatic production of training data 

for SVM classifier by incorporating the Otsu algorithm over 

the output of CC and the Z-Score analysis. After pre-

processing of input multi-temporal hyperspectral datasets, 

the first step in the flowchart of the proposed method begins 

with applying CC transformation and the transfer of data 

from the image space to the feature space. The second step 

of the proposed method is to implement the Otsu algorithm 

for producing the initial change map. This initial change map 

contains several change pixels mixed with no-changed pixel 

(i.e. unfavorable change pixels) (Figure 2). Therefore, for the 

initial change map that contains two classes, change, and no-

change, the Otsu algorithm is applied once again for each of 

the previous output classes on the Z-score pixels and the 

three classes are divided according to Figure 1. 

This process causes more isolation and increases the 

reliability of change and no-change pixels. The main reason 

for dividing the three classes is that the first class for no-

change class and third class for change contain many noise 

pixels because the noise has the minimum value and the 

maximum value. Therefore, the first class for no-change and 

the third class for change are eliminated. The third class for 

no-change and first class for change contain mixed pixels of 

change with no-change, therefore these classes are also 

removed. In the next step, the pixels whose locations are 

found via the output of the CC algorithm are selected as the 

training set for the SVM classifier.  

 

2.3.2 Tuning SVM’s Kernel Parameters 

After producing training data, the parameters of the SVM 

classifier, including the optimal kernel parameters, are tuned. 

In this regard, the prepared input datasets are divided into 

two groups: (1) training data (30% of pixels) and (2) testing 

data (70% of pixels). The tuning parameters are based on grid 

search (GS) and evaluation type is cross-validation that a 

range is defined for the parameters of kernel and SVM. The 

SVM classifier is trained using training data based on the 

defined value of in GS then model made evaluated on 

training data used criteria such as overall accuracy. The 

process repeated until are covered all of the range. Finally, 

the best value of accuracy is equal to tune parameters. 

   

2.3.3 Binary Change Map 

In the next step, the SVM classifier (based on obtained tune 

parameters in the previous section) is applied to the output of 

the CC algorithm. The output of this classifier is a binary 

change map (i.e. a map with two classes: change and no-

change pixels). The binary change map is determined by 

assigning each pixel in the image space change or no-change 

values. The values of change pixels are set to one, and the 

no-change pixels are set to zero.  

 

2.3.4 Amplitude of Change  

The amplitude of change map shows the intensity of 

change. Thus, a high-intensity value represents higher 

change. The amplitude of change map is extracted by 

multiplying the final binary change map by Z-Score values, 

as shown in Figure 3. 

 

 
Figure 2. Extraction of training data using of iterative Otsu algorithm 
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3.5 Extracting ‘Multiple-change’ Information  

Retrieving accurate ‘multiple-change’ change information 

is required in many change detection analysis (Hussain et al., 

2013b). In this study, ‘multiple-change’ information is 

created based on estimation and extraction of endmembers in 

the multi-temporal hyperspectral dataset. For this purpose, 

these four steps are required: (1) masking the change area on 

stack hyperspectral dataset using final binary change map, 

(2) estimating endmembers by using HFC methods, (3) 

extracting endmember using SISAL algorithm, and (4) 

assigning a label for each pixel by finding maximum 

similarity between pixels of stacking layers and the extracted 

endmembers by incorporating PCC algorithm. To produce 

the ‘multiple-change’ map, it is necessary to assign a label to 

each endmember. Therefore, the PCC algorithm measures 

the similarity between each endmember and each pixel in 

stacked hyperspectral data. Usually, assigned labels 

correspond to endmembers with the highest similarity value. 

In next step, pixels with high similarity values related to one 

of the endmembers are assigned their corresponding labels 

(Figure 4). 

 

 

 

 
Figure 3. The flowchart of computing amplitude of change 

 

 

 

 
Figure 4. The flowchart retrieving ‘multiple-change’ information 

 

 

 

 

 

 
Figure 5. The output of Z-score analysis has single band 
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3. Methodology 

    As discussed in the previous section, proposed hybrid 

method consists of six main algorithms (Figure 1), (1) 

chronochrome (CC), (2) Z-score analysis, (3) Otsu 

algorithm, (4) the SVM classifier, (5) endmember extraction 

and estimation algorithm, and (6) Pearson correlation 

coefficient (PCC). Also, the proposed method consists of 

three main phases including (a) predictor phase, (b) analysis 

phase, and (c) decision phase. These algorithms and phases 

are described in more detail in this section. 

 
3.1 Chronochrome 

      The Chronochrome approach, proposed by Stocker and 

Schaum, provides a prediction based on the joint second-

order statistics between the reference and test images 

(Michael T. Eismann et al., 2008a; Schaum & Stocker, 

1998). The main purpose of this method is to estimate the 

background in the test image as a linear function of the 

reference image and detect the changes on the resulting 

difference image (Schaum & Stocker, 1998; K. M. Vongsy, 

2007a). For this purpose, given x, a linear predictor is fitted 

for y. The centered covariance and cross-covariance is 

computed before fitting a linear estimation to y-data as a 

function of the x-data (Eq. (1)).  

X=⟨x|xt⟩, Y=⟨y|yt⟩,C=⟨y|xt⟩ (1) 

A linear estimate of the y-data from the x-data is (Eq. (2)): 

 y=Lx (2) 

where L is the optimal vector wiener filter solution that it is 

given by (Eq. (3)): 

E=〈(y-Lx)(y-Lx)
t〉 (3) 

and E is minimized when 𝐿 = 𝐶𝑋−1. Therefore, we have:  

y=Lx=(CX-1)x (4) 

and according to Eqs (3) and (4): 

εcc=(y)- ((CX-1)x) (5) 

where  εcc is a change residual image. As depicted in the 

flowchart of the proposed method in Figure 1, 

Chronochrome is incorporated in the predictor phase on the 

hyperspectral data. 

 

3.2 Z-score Analysis 

The Z-Score provides the magnitude and directions of 

deviation from the mean of the distribution which is 

introduced in the distribution unit of standard deviation. The 

Z-score is defined in (Eq. (6)).  as follows (Cheadle et al., 

2002): 

modified-Z_Score= ∑  

N

i=1

(( xi-meani) stdi⁄ ))
 
 (6) 

In this study, a version of Z-Score value is adopted which 

is, in fact, a normalization that allows us to have the 

amplitude of change as the output of our proposed method. 

As stated in (Eq.(6)), the output of this procedure is a single 

band (Figure 4). The Z-Score analysis is then applied to the 

output of CC method in the analysis phase as depicted in the 

flowchart of a proposed method (Figure 1). 

3.3 Otsu Algorithm 

The Otsu algorithm is a group thresholding algorithm that 

performs image clustering automatically. The idea behind 

this approach is that the threshold value determines the 

weight of the variance within the minimum class value. The 

variance within the class is the variance of the total weight of 

each defined clusters(Ng, 2006; Otsu, 1979). In this study, 

the Otsu algorithm was applied for unsupervised preparation 

of training data for SVM classifier according as shown in the 

flowchart of the proposed method (Figure 1). 

 

3.4 Endmember Extraction 

The common method for producing ‘multiple-change’ 

information is classification, which was discussed in the 

introduction section. However, this paper proposes a new 

procedure for retrieving ‘from-to’ information without 

applying classification. In this regard, the proposed 

procedure uses estimation/extraction endmembers as well as 

the PCC algorithms. On the other hands, many methods are 

developed for estimating the number of endmembers. We 

apply the popular Harsanyi–Farrand–Chang (HFC) method 

which is based on the distribution of the differences of the 

eigenvalues of the correlation and the covariance matrices, 

respectively (Chang & Du, 2004). After estimating the 

number of endmembers, endmember extraction begins. 

Various endmember extraction methods exist in the literature 

including Simplex Identification via Split Augmented 

Lagrangian (SISAL)(Bioucas-Dias, 2009; Keshava & 

Mustard, 2002; Parente & Plaza, 2010). The SISAL 

algorithm is an unsupervised method for endmember 

extraction based on fitting a minimum volume simplex to the 

data subject to series of constraints. However, it is inevitable 

to estimate the number of endmembers before using SISAL 

algorithm(Bioucas-Dias, 2009). In this study, we apply the 

endmember extraction on the output of the CC algorithm as 

it can be observed in the flowchart of the proposed method 

(Figure 1). 

 

3.5 Pearson Correlation Coefficient 

The Pearson correlation coefficient (PCC) is one of the 

most popular measures for calculating the dependency 

between two spectral vectors. This measure is widely used in 

remote sensing applications(Wang, 2013). The PCC between 

spectral random vectors is defined as: 

PCC=
cov(x,y)

σxσy

 (7) 

where and 𝑥 and y represent the target and reference spectra, 

and 𝜎𝑥 and 𝜎𝑦 are the standard deviations of x and y spectral 

vectors respectively. This study utilizes PCC in the decision 

phase for stacking layer data to retrieve the ‘from-to’ 
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information, as depicted in the flowchart of the proposed 

method (Figure 1). 

 

3.6 Support Vector Machine 

     Support vector machine (SVM) is a supervised machine 

learning algorithm which is commonly used for 

classification purposes and is based on the statistical learning 

theory (Vapnik, 2013). SVM has recently been applied in 

classification of multispectral and hyperspectral remote 

sensing datasets successfully (George et al., 2014; Melgani 

& Bruzzone, 2004). The main idea behind SVM is to find a 

hyperplane that maximizes the margin between the two 

classes (Vladimir & Vapnik, 1995). This algorithm has 

several critical parameters including kernel parameters and 

the penalty coefficient (C). The popular kernels incorporated 

in SVM include polynomial, radial bias function, and linear 

kernels(Gaspar et al., 2012; Hasanlou et al., 2015). Different 

types of kernels and parameters for SVM are presented in 

Table 1. 

This study incorporates SVM algorithm, in the decision 

phase, on the output of CC algorithm to make binary changes 

as illustrated in the flowchart of the proposed method (Figure 

1). 

4. Experiments  

     In this section, the experimental data and study area are 

discussed. Also, the results extracted from the proposed 

method evaluated by qualitative and quantitative criteria are 

presented. In addition, the change map results of the 

proposed method are compared with the most common and 

popular change detection algorithms. 

 

4.1 Study Area 

In this study, three different satellite (i.e. EO-1) 

hyperspectral image data sets are used for analyzing changes 

in wetlands and water bodies illustrated in (Figure 6) and 

(Table 2). The utilized two datasets to evaluate the 

performance of the proposed method. These datasets have 

been previously used in many hyperspectral change detection 

papers such as (S. Liu, 2015c; S. T. Seydi & Hasanlou, 2017; 

S. teymoor Seydi & Hasanlou, 2016b; Wu et al.,2012b) and 

they can be considered benchmark datasets. The ground truth 

datasets were developed by the authors through visual 

analysis and interpretation of the above-mentioned 

researches. Additionally, by using High-Resolution image 

datasets from Google Earth, a detailed visual comparison 

was carried out. Details and descriptions of each dataset will 

be presented in the next section. The Hyperion sensor 

contains 242 spectral bands with wavelengths between 0.4 

and 2.5 micrometers and with a spatial resolution 30m and 

bandwidth of 7.5 km. Hyperion data were obtained at two 

separate range images using the push broom technology 

(Jafari & Lewis, 2012a). One of these spectra was a VNIR 

range which includes 70 bands between wavelength 356-

1058 nm and SWIR wavelength consisting of 172 bands 

between wavelength 852-2577nm (“USGS EO-1,” 2017). 

 

4.1.1 Poyang Lake (dataset #1) 

The Poyang lake located in Jiangxi Province is one of 

largest freshwater resource and biggest flood water storage 

wetland areas in China which is located within coordinates 

28˚24′ to 29˚46′N, 115˚49′ to 116˚46′E (Chan & Xu, 2013; 

Yang & Yan, 2016). The extended area of the captured 

region in the hyperspectral dataset is 232×131 pixels. These 

datasets were acquired on 2004-July-16 and 2002-July-27 

(Figure 6-a, b). 

 

4.1.2 Umatilla River (dataset #2) 

     The Umatilla river is a gravel-bed river originating in the 

Blue Mountains of northeastern regions which flow into the 

Columbia River at Umatilla, OR, USA (Hughes, 2006). The 

extended area of the captured region in hyperspectral dataset 

contains 308×241 pixels and was acquired on 2004-May-01 

and 2007-May-08 (Figure 6-c, d). 

 

4.1.3 Shadegan Wetlands (dataset #3) 

     Shadegan wetland is one of the largest wetlands in Iran. 

This wetland is created by the downstream part of the river 

Jarahi and is located at coordinates 30°50´ to 31°00´N and

Table 1. Different type of kernels and parameters in the SVM classifier 

Kernel type Formula Estimation parameters Number parameters 

Linear k(x,y)=xTy C 1 

Polynomial k(x,y)=(γx
T
y+β

0
)
d
 𝑑, 𝛾, 𝛽0, C 4 

Radial basis function k(x,y)=e(-γ ‖x-y‖2 
)
 

 𝛾 , C 2 

Table 2. The characteristic of datasets in different study areas 

Datasets Acquired date # of bands # of pixels spatial resolution (m) spectral resolution (nm) 

Poyang Lake #1 
2002-July-27 

154 232×131 30 10 
2004-July-16 

Umatilla River #2 
2004-May-01 

154 308×241 30 10 
2007-May-08 

Shadegan 

Wetlands 
#3 

2006-June-06 
154 220×123 30 10 

2006-June-29 
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(i) (j) (k) (m) 

Figure 6. The (a) and (b) presented false color composite of the original hyperspectral images acquired in 2002 and 2004 of dataset #1 in 

China respectively, (c) ground truth, and (d) presented geographical location dataset #1. The (e) and (f) presented false color composite of 

the original hyperspectral images acquired in 2004 and 2007 of dataset #2 in USA respectively, (g) ground truth, and (h) presented 

geographical location dataset #2. The (i) and (j) present false color composite of the original hyperspectral images acquired in 2006 and 

2006 of dataset #3 in Iran respectively, (k) ground truth, and (m) presented geographical location dataset #3 

48°20´ to 49°20´E. The northern section of this wetland 

includes freshwater, and the salty water body is located in the 

southern part. Also, this wetland is home to different types 

of plants. The extent of the desired region extracted from EO-

1 Hyperion satellite hyperspectral images was 220×123 

pixels. In this area, we incorporate two multi-temporal data 

sets acquired on June 29th and June 6th of 2006. In Figure 6-

e, f, a false-color composite of hyperspectral Shadegan 

wetland images for two different times is illustrated. 

 

5. Implementation 

     Data pre-processing plays an important role before the 
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beginning of the main process and can be divided into two 

categories(Jafari & Lewis, 2012b): spectral and spatial 

correction. The pre-processing step starts with spectral 

correction processing; then spatial correction is applied. The 

first step of pre-processing consists of omitting no-data 

bands. In this regard, 44 bands (1-7, 58-76 and 225-242) 

were removed from our imagery (Jafari & Lewis, 2012a; 

Scheffler & Karrasch, 2013a). Also, of the 198 initial bands, 

two noisy bands including 77 and 78 as well as a number of 

other bands were removed (Datt et al., 2003; Khurshid et al., 

2006). Therefore, 154 bands were selected in total as the 

input dataset for the proposed change detection method. In 

the second step, pixels in sample 129 and all lines are shifted 

to sample 256 in shortwave infrared (SWIR) spectral bands 

(Goodenough et al., 2003; Jafari & Lewis, 2012b). The third 

step is de-noising, de-striping, and also removing the zero-

line by utilizing means and the global approach (Jafari & 

Lewis, 2012b; Scheffler & Karrasch, 2013b). The fourth pre-

processing step is a radiometric correction. To achieve this 

goal, the digital number (DN) values of pixels are converted 

to physical radiance. The fifth step of the pre-processing is 

an atmospheric correction, which we used the FLAASH 

model. The final step of the pre-processing of the 

hyperspectral dataset is a spatial correction. The accuracy of 

the geometric correction (RMSE) was less of 0.4 pixel for all 

three datasets. 

As already discussed, the outputs of the proposed method 

are (1) binary change map, (2) The amplitude of change map, 

and (3) the ‘multiple-change’ information map. The structure 

and details of the proposed method are illustrated in Figure 

1. This work considered type of kernel which is widely 

utilized in the remote sensing community (Y. Liu & Parhi, 

2016; Ring & Eskofier, 2016; Sakthivel et al., 2016; Shah-

Hosseini et al., 2015c). To tune and select optimized SVM 

parameters (i.e. gamma (𝜸) and penalty coefficient (C)), we 

performed a CV with GS procedures (Gu et al., 2017; Varma 

& Simon, 2006). Also, to have efficient kernel 

normalization, training and testing data were applied. In the 

normalization procedure, the data is mapped to values within 

the [0,1] span. The minimum and maximum values were 

selected based on minimum and maximum of training data. 

Table 3 presents the results obtained from tuning parameters 

for kernel and SVM (i.e. number of support vectors (# of 

SV), penalty coefficient (C) and gamma (𝜸) parameter) for 

three data-sets.  Addition, this table presented the optimum 

valves for SVM and kernels in two scenarios normalize and 

unnormalize. 

 

 

Table 3. The results obtained from tuning SVM classifier and kernels parameters in different hyperspectral datasets 

Datasets Normalize Linear Polynomial Radial Bias Function 

  C # of SV C # of SV γ d β
0
 C # of SV γ 

#1 
Yes 2-8 210 2-3 16 2-7 3 1 2-6 17 2-7 

No 23 54 2-7 5 21: 220 3 1 2-3 48 2-7 

#2 
Yes 2-13 408 2-3 13 2-6 3 1 24 125 2-12 

No 25 206 2-6 6 20: 215 3 1 26 125 2-12 

#3 
Yes 29 5 2-6 608 2-9 3 1 23 65 2-3 

No 25 15 2-9 4 2-9: 29 3 1 25 61 2-5 

Table 4. Performance of SVM classifier using type of kernels in different hyperspectral data-sets 

Datasets  #1 #2 #3 

Kernel Function Normalize Overall Accuracy (%) Kappa Overall Accuracy (%) Kappa Overall Accuracy (%) Kappa 

Linear 
Yes 96.77 0.927 97.16 0.907 92.73 0.756 

No 94.68 0.884 97.05 0.906 92.84 0.760 

Polynomial 
Yes 90.83 0.806 97.10 0.908 96.17 0.885 

No 88.11 0.705 94.75 0.816 89.57 0.628 

Radial Bias 

Function 

Yes 97.40 0.941 97.16 0.908 96.44 0.892 

No 96.65 0.922 9716 0.908 96.34 0.890 

Table 5. The number of endmembers and false alarm probability (Pf) for different datasets 

Datasets # of endmembers Pf 

#1 6 10-3 

#2 4 10-3 

#3 3 10-5 
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The Table 4, presented a performance of SVM classifier 

using a type of kernels in different hyperspectral data-sets. 

The results show the RBF kernel has the best performance 

for three datasets. Also, the normalizing dataset improved the 

accuracy result of the CD. As mentioned in the above 

section, to have ‘multiple-change’ information in this study, 

we used HFC, SISAL and PCC algorithms. In the HFC 

algorithm, false alarm probability (Pf) parameter are 

assigned. A number of endmembers and false alarm 

probability is listed in Table 5. As we already discussed in 

previous sections, it is essential to compare and check the 

performance of the proposed method with common and 

popular CD methods. In this regard, we incorporated ground 

truth data for all three datasets to compute the validation 

criteria. In this paper, both quantitative and qualitative 

criteria were used for comparing the result. The popularly 

employed CD methods are principal component analysis 

(PCA) (Adar et al., 2011; Adar et al., 2014; K. M. Vongsy, 

2007b), cross equalization (CE) (Adar et al., 2011; Michael 

et al.,2008b; Michael et al.,2012), spectral angle mapper 

(SAM) (Adar et al., 2011), subspace based (SSB) (Wu  et al., 

2013), multivariate alternative detection (MAD) (Nielsena & 

Müllerb, 2003b), and iterative reweight-MAD (IR-MAD) 

(Nielsen, 2007; S. teymoor Seydi & Hasanlou, 2016b). All 

of these methods require assigning suitable thresholds. In this 

study, unsupervised segmentation by incorporating Otsu 

algorithm was used to set these thresholds. 

Therefore, by considering the optimum kernel parameters 

(Tables 3) for SVM classification for all datasets (#1, #2 and 

#3) the proposed method begins. Figure 7 shows a visual 

analysis of the proposed method and other CD methods on 

multi-temporal hyperspectral datasets #1. As it is clear in 

Figure 7, the proposed method can detect all changes and 

provide information about the features changes including the 

‘multiple-change’ change map as well as the amplitude of 

changes in the map. This observation empirically proves that 

the proposed method nearly detects all of the change 

compared to the other techniques. In the endmember 

extraction section, we described that the SISAL and HFC 

methods were used to obtain the ‘multiple-change’ map. 

Hence, six classes detected and produced the ‘multiple-

change’ change map (Figure 7-c) for dataset #1. The Figure 

7-b shows the amplitude of changes where the changing 

intensity is clearly highlighted. 

The Same computational approach is applied on dataset 

#2. Figure 8 shows changes of Umatilla River where there 

are many land cover change types in areas that contain 

different agricultural fields. Also, in this figure, there are low 

changes in the edges of the river. In this dataset (#2), 

‘multiple-change’ change map has four classes which are 

detected by proposed method (Figure 8-c).  

 

 

     

(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 7. The results of CD methods for dataset #1. (a) Proposed method-binary change map, (b) Proposed 

method-amplitude of change map, (c) Proposed method-‘from-to’ map, (d) CE, (e) SSB, (f) IR-MAD, (g) MAD, 

(h) PCA, (i) SAM, and (j) Ground truth 
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(a) (b)                                  (c)                             (d)         (e) 

   
  

(f) (g) (h) (i) (j) 

Figure 8. The results of CD methods for dataset #2. (a) Proposed method-binary change map, (b) Proposed method-

amplitude of change map, (c) Proposed method-‘from-to’ map, (d) CE, (e) SSB, (f) IR-MAD, (g) MAD, (h) PCA, (i) SAM, 

and (j) Ground truth 

  

 

   

(a) (b) (c) (d) (e) 

     

(f) (g) (h) (i) (j) 

Figure 9. The results of CD methods for dataset #3. (a) Proposed method-binary change map, (b) Proposed method-

amplitude of change map, (c) Proposed method-‘from-to’ map, (d) CE, (e) SSB, (f) IR-MAD, (g) MAD, (h) PCA, (i) 

SAM, and (j) Ground truth 
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Table 6. Performance of proposed method and other common CD methods for all hyperspectral datasets 

Datasets Indices SAM IR-MAD MAD CE SBB PCA Proposed Method 

#1 
Overall 66.01 67.07 65.76 88.89 73.11 89.58 97.40 

Kappa 0.223 0.038 0.143 0.727 0.299 0.747 0.941 

#2 
Overall 75.53 83.85 67.51 93.70 77.855 93.24 97.16 

Kappa 0.371 0.304 0.159 0.778 0.400 0.756 0.907 

#3 
Overall 52.42 86.06 69.53 83.44 63.86 81.81 96.42 

Kappa 0.111 0.498 0.092 0.527 0.144 0.485 0.890 
 

In Figure 8, some algorithms show a certain level of 

sensitivity to the waterbody area such as the results presented 

in Figure 8-g, e, f. On the other hands, one can clearly 

observe from the results (Figure 8-a, b, c) that the proposed 

method has excellent performance compared to other 

approaches in this area. 

Similarly, Figure 9 presents the results of the CD methods 

on Shadegan wetland (data-set #3). In this region, the main 

changes are originated from seasonal changes in the water 

level. The proposed method can find three different classes 

for change area (Figure 9-c). As it is clear from the Figures, 

the similarity-based methods such as SAM technique are not 

suitable for monitoring the changes due to the extraction of a 

false alarm pixels.  

After the primary observational analysis, we perform the 

numerical evaluation. In this regard, two common measures 

are used for evaluating performance and accuracy of CD 

methods which include overall accuracy, and kappa 

coefficient. All implemented CD methods are supervised and 

their related accuracy is usually computed by examining the 

best threshold value selection. That means each threshold has 

a correlation with the accuracy, and maximum accuracy is 

considered as the final accuracy. Table 6 presents the 

accuracy of the proposed method for RBF kernel and other 

CD techniques. We can clearly observe the superiority of the 

proposed method compared to other methods in all three 

different hyperspectral datasets in Table 5. Also, as presented 

in Table 5, the PCA and CE methods have efficiencies close 

to the proposed method, especially for hyperspectral dataset 

#1 and hyperspectral dataset #2. The IR-MAD algorithm has 

good performance compare to MAD algorithm. The SAM 

and SSB have low performance due to sensitive to noise and 

atmospheric conditions. These methods utilizing continuous 

spectral signatures nevertheless, this issue caused to don’t 

suitable for wetland and waterbody change detection using 

hyperspectral imagery. This paper proposed a new change 

detection method on hyperspectral imagery which included 

observational and numerical analysis and comparison with 

other common HCD methods. The proposed method 

provides three different outputs which provide more detail 

about the changes, and thus helps understanding changes 

while the other CD methods do not give three outputs 

together. The lecture review in introduction section, the type 

of change detection methods in 5 main groups considered. 

The challenges and advantages discussed, the results of CD 

certified this issues of CD methods. Addition, more details 

of visual and numerical analysis show that: (1) the 

hyperspectral imagery has a high capability for CD in 

waterbodies and wetlands, (2) the CE methods provides 

better results among common HCD methods, (3) some 

techniques, such as SSB and SAM, are not suitable for water-

body change detection due to their high sensitivity, (4) the 

proposed method has the highest accuracy for all employed 

datasets, therefore it is efficient for water-body area, and (5) 

finally, the proposed methods provide more detail of changes 

that can help improve the decision making process. 

  

6. Conclusion 

   Wetlands are critical ecosystems where changes occur 

frequently and widely. Therefore, creating a framework for 

monitoring the changes in these ecosystems is essential. In 

this regards, studying methods that are able to perform 

accurate change detection in these areas is crucial. This paper 

presents a new hybrid method for achieving precise and 

informative change maps using hyperspectral imagery 

without requiring prior knowledge of the wetlands and 

water-body area. We first discussed all the issues related to 

CDs using hyperspectral imagery. Therefore, a new change 

detection method was proposed to address these issues. The 

proposed hybrid method uses four groups of CD methods to 

enhance the content and quality of final CD results. The 

experiments were applied on three real hyperspectral datasets 

on wetland and waterbody areas from different regions and 

countries. The output results showed: (1) the hyperspectral 

imagery has high potential to monitoring and assessment of 

wetland and waterbody areas, however, for this purpose need 

to special techniques; (2) the visual and numerical analysis 

proved the excellent performance proposed method for 

hyperspectral change detection compare to other methods; 

(3) superiority of the proposed unsupervised method without 

requiring prior knowledge of changes while some CD 

methods need to training data or setting parameters; (4) the 

fact that this method can provide binary change map as well 

as the information about change structure (‘multiple-change’ 

map) and also the amplitude map; (5) the use of normalize 

data and RBF kernel improved the accuracy CD, 

significantly, and (6) the fact that the implementation of the 

proposed method is simple and has high efficiency in 

comparison to other famous and commonly used CD 

methods like (PCA, CE, IR-MAD, SSB, SAM). 
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