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ABSTRACT 

In this paper, an advanced version of the Lagrange method, F and G series, is proposed for the many 

applications in the celestial mechanics and space science such as initial orbit determination and satellite 

orbit propagation. In this development, the Lagrange coefficients were developed from a gravitational 

field of an inhomogeneous attractive body to all the perturbing accelerations acting on an orbiter. The 

efficiency of the method is tested for the satellite orbit propagation. This assessment is based on the 

comparison between the Lagrange solution and the analytical one for Keplerian motion and numerically 

integrated orbit for non-Keplerian motion. The discrepancy at centimeter and sub-centimeter accuracy 

shows the performance of the developed algorithm for MEO and LEO satellites orbit propagation. The 

results of computational time showed that the Lagrange method is as time-consuming as the multi-step 

methods where it is faster than the single-step methods. Besides the CPU-time, the stability test of the 

Lagrange method shows that it is as stable as the single-step and is more stable than the multi-step 

methods at the equivalent orders. Therefore, the Lagrange method offers the advantages of the single- and 

multi-step methods. 
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1. Introduction 

     The dynamic orbit propagation is still one of the most 

significant discussions in the satellite geodesy and celestial 

mechanics. Dynamic orbit is the solution of the equations of 

motion of satellites or celestial bodies without using any 

observations (Seeber, 2003). In general, different numerical 

methods have been categorized into the single- and multi-

step integrators to solve the Initial Value Problem (IVP) 

such as the equations of motion. As an alternative, the 

Taylor series could be used to solve the IVP. The 

advantages of the Taylor series over other numerical 

methods were demonstrated by Montenbruck (1992). Like 

the multi-step methods, only one function evolution per step 

is required for the series expansion. Then, increasing the 

order (terms of the Taylor series) does not impressively 

change the CPU-time. Like the single-step methods, 

the stability increase andtothe order leadsincreasing

series approach.in the Taylorimprovementsaccuracy

Therefore, the Taylor series method combines all the 

advantages of the single- and multi-step methods with the 

additional freedom to choose the order in accordance with 

the runtime and accuracy requirements (Montenbruck, 

1992). In this paper, we try to solve the orbit propagation 

problem using the Taylor series method. 

     The Taylor series representation of the Lagrange F and 

G functions are called F and G series. The Lagrange method 

is based on the expansion of the solution of the equation of 

motion into F and G series (Beutler, 2004). The Lagrange 

method has been traditionally used for the celestial body 

orbit determination using ground-based observations in the 

classic celestial mechanics based on the hypothesis of the 

Keplerian motion of satellite (Curtis, 2005; Escobal, 1965). 
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The initial orbit determination methods like Gauss and 

Lambert are formulated based on the F and G Taylor series 

(Escobal, 1965, Bem & Szczodrowska-Kozar, 1995). In 

(Sconzo et al., 1965), the expansion series of the F and G 

were symbolically determined in a Keplerian gravitational 

field using FORMAC computer program. A recursive 

formulation of the F and G series was developed for 

Keplerian motion by (Bond, 1985). (Bem & Szczodrowska-

Kozar, 1995) derived expansion coefficients of the F and G 

series up to the degree 20 in the central field. They 

determined the coefficients for the two- and three-body 

problems. The idea was implemented for reduced-dynamic 

orbit determination of the LEO satellites using the GPS-

based observations in (Feng, 2001).  

Very few attempts have been executed for generalizing this 

method from the Keplerian motion to the perturbed motion. 

As a first try, the Lagrange coefficients have been 

developed by (Lin & Xin, 2003) by taking into account the 

Earth’s oblateness. In that research, the Laplace's method of 

the initial orbit determination using the angular 

observations was developed based on the F and G series. 

(M. A. Sharifi & Seif, 2011) have developed the Lagrange 

coefficients from J2 field (the field of the attractive body by 

considering oblateness) to the gravitational field of an 

inhomogeneous attracting body (full gravitational field). 

These coefficients are only restricted to the gravitational 

field of an attractive body and other perturbations have to 

be taken into account. In addition to the satellite orbit 

propagation and initial orbit determination, this method 

could be utilized to solve various problems such as the 3-

body problem (Steffensen, 1956) and N-body problem  

(Broucke, 1971). As another application, the Lagrange 

method could represent the continuous solution for the 

equations of motion over a time-span. It makes the method 

well suited for problems requiring dense output e.g., 

ephemeris calculation (Montenbruck, 1992). The method of 

the Lagrange might be classified as a semi-analytical 

approach based on the terms of the F and G series that we 

could approach into analytical solution by using the highest-

order series. This new semi-analytical formulation could be 

used for the satellite motion analysis (Sharifi et al., 2013). 

Recently, the Lagrange coefficients are extended to solve 

the Stark problem (Pellegrini et al., 2014). In this paper, an 

attempt is made to represent a formulation to include the 

non-static forces (non-Earth gravitational and non-

gravitational perturbations) into the Lagrange coefficients. 

Besides, the stability test of the Lagrange method has been 

carried out and compared with the numerical integrators. To 

analyze the accuracy of the method, the orbit propagated 

using the Lagrange method was compared with the 

numerically integrated one. 

 

2. Methodology  

     This section begins by giving a brief overview of the 

basic formulation of the Lagrange coefficients as a base for 

generalizing the Lagrange method. It continues by 

representing the algorithm of the Lagrange coefficients 

computation. This algorithm is divided into two parts. At 

the first step, the Lagrange coefficients are computed in the 

Earth’s gravitational field and the other perturbations are 

added in the next step.  

2.1 Basic formulation 

     Different approaches have been introduced for solving 

the equations of motion of a satellite. The method of the 

Lagrange coefficients is classically used for orbit 

determination of the planets and celestial bodies. The 

solution of the orbit propagation problem is equivalent to 

the determination of the Lagrange coefficients (Goodyear, 

1965). In general, due to the presence of the non-Keplerian 

terms, the classical representation of the scalar Lagrange 

coefficients is rewritten in a matrix form as follows (M. A. 

Sharifi & Seif, 2011): 
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where )(tF and )(tG are the matrices of the Lagrange 

coefficients reformulated for the orbital motion in a non-

Keplerian gravitational field. 
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And their time-derivatives are: 
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     The single and double dotted variables indicate the first 

and second-time derivatives respectively. For higher order 

time derivatives of order 𝑞, superscript variable in 

parenthesis is used. In general, q-order time derivatives of 

position vector are derived as functions of position and 

velocity vectors at epoch 𝑡0 with linear combination 

coefficients of 
( )qF  and 

( )qG  as follows: 

(4)  )()()()(
)(

)()( trtGtrtF
t

tr
qqq

q





 

By differentiating Eq. (4) with respect to t : 
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As an alternative, the (q+1)-order derivative could be easily 

obtained by advancing the sequence in Eq. (4) as: 
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The comparison between Eq. (4) and Eq. (6) gives the 

recursive coefficients definitions: 
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Eq. (7) is the fundamental formula for computing 
( )qF  and 

( )qG . The initial terms are IF )0(
and OG )0(

, 

where I is identity and O  is zeros matrices. The next 

terms of this sequence could be easily generated from Eq. 

(7), 
(1)F O  and 

(1)G I . To find the next terms of the 

sequence, we need some information about the acceleration 

acting on the orbiter, static and non-static forces. By 

decomposing the perturbing acceleration into position and 

velocity vectors, )2(F and )2(G  could be resulted, e.g. in the 

central gravity field 3

(2) /F GM r  and 
(2)G O  

2.2 Formulation in the static gravitational field 

     The Lagrange method was previously extended to the 

Earth’s gravitational field. However, it needs a little 

development to consider all of the Earth’s Orientation 

Parameters in the orbit propagation process. In this section, 

it has been tried to represent the new formulation for the 

full gravitational field as summary as possible.  

Based on the equation represented in (M. A. Sharifi & Seif 

2011), the Earth’s gravitational acceleration in the Earth-

fixed frame (ECF) could be formulated as: 

(8)  
ECFECF

g rAIbar ])[(  

where I  is identity matrix and A  is a diagonal matrix with 

three different diagonal entries.  
 

(9)   

    The first and second terms in Eq. (8) show the radial and 

out-of-plane components of the gravitational acceleration. 

The unknown coefficients of Eqs. (8) and (9) are expressed 

in terms of the position and the partial derivatives of 

gravitational potential towards the curvilinear coordinates; 

see Appendix A for more details.  It should be noted that 

the Newton’s law used for solving the equations of motion 

is only valid in an inertial reference frame. Therefore, the 

gravitational acceleration of the Earth has to be transferred 

from the Earth-fixed (ECF) to the Earth-centered inertial 

frame (ECI) to solve the equations of motion. According to 

the well-known relationship of these two reference frames, 

one can write (Montenbruck & Gill, 2000, p. 247): 

(10)  
ECFECF

g
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g
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where ( )T t  is the transformation matrix between the 

Earth-fixed and Inertial frames. It is constructed based on 

the Earth’s Orientation Parameters (EOPs), GAST, 

Nutation, Precision and Polar motion (McCarthy & Petit, 

2003).  Similarly, the position vector in the Inertial frame 

could be transformed to the Earth-fixed frame as:  

(11)  
ECIECF

rtTr )( 

For convenience, r
 
is used as position vector in the Inertial 

coordinate system, 
ECI

r . This decision is considered for its 

derivatives gr too. Finally, by substituting Eq. (11) into Eq. 

(10), the Earth’s gravitational acceleration in the Inertial 

frame is: 
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it could be resulted from decomposing Eq. (12) that 
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The terms of Taylor series 
g

qF )(  and 
g

qG )(  are calculated 

based on the recursive Eq. (7) in the static gravitational 

field. Table (1) lists the first five terms of the sequence, 

beginning with q = 0.  

Table 1. The Lagrange coefficients in the full gravitational field  
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 (13) 

Satellites’ motion in the real world is governed by not only 

the static gravitational field but also the non-static 

accelerations e. g., air drag, third body, solid and ocean tide, 

solar radiation  (Seeber, 2003). In the next section, the 

effect of the other perturbations has been considered in the 

F and G series.  

2.3 Non-static forces 

     We divided the acceleration acting on a satellite into two 

parts, the static force (Earth’s gravitational acceleration) 

and non-static forces e.g. solid and ocean tide, third body, 

solar radiation, and air-drag. In this paper, EGM96 was 

applied as the geopotential model (Lemoine et al., 1998). 

The ephemerides of the Moon and Sun are respectively 

calculated using the theory ELP-2000/82 represented by 

(Chapront-Touzé & Chapront, 1983) and analytical 

formulas (Montenbruck, 1989). A dynamic global of the 

Earth’s atmosphere, NRLMSISE-00, was used for the air-

drag force computations (Picone et al., 2002). The solar 

radiation pressure is obtained from the calculation of the 

sunlight percentage (Montenbruck & Gill, 2000). IERS 

formulations are used for solid Earth and ocean tide 

modeling (McCarthy & Petit, 2003). The acceleration 

acting on a satellite is formulated as: 

    (14)  opg rrr   

     where gr is the Earth’s gravitational acceleration and 

opr  is the non-static accelerations acting on a satellite. The 

non-static accelerations acting on a satellite could be 

formulated as: 

 (15)    
ECFECF

g rAIbar ])[(  

 

     The radial, tangential and normal terms of the non-static 

perturbing accelerations have been respectively described 

by the first, second and third terms of the Eq. (15). In order 

to compute the Lagrange coefficients, the 𝑞-th derivatives 

of the position vector should be expanded to the position 

and velocity vector. Then, the out-of plane term should be 

reformulated based on the position and velocity vector.  

The vector cross product also can be expressed with matrix 

multiplication as the product of a skew-symmetric matrix 

and a vector (Liu, 2008):  (Liu, 2008 #341). 
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Finally, by substituting Eq. (16) into Eq. (15), the vector of 

other perturbing accelerations could be rewritten as: 

 op R N Tr I R r r                                                 (18) 

Due to the presence of the non-gravitational accelerations, 

the along-track component, tangential term, of )(tr op
 is 

not zero. By decomposing )(tr op based on Eq. (4) gives: 
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Like the Earth's gravitational acceleration, )()2( tF
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consists of the radial and out-of-plane terms. The first and 

second parts of )()2( tF
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 are, the radial and out-of-plane 

terms of the non-static accelerations, respectively. The time 

derivative of non-static acceleration is 
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     Like the non-static acceleration vector, its time 

derivative could be decomposed into the position and 

velocity vectors too as:  

  rrRIr TNR

op  ~~~
)3(                                        (21) 

Finally, by decomposing )()3( tr
op

based on the initial 

position and velocity vectors, we have: 

RItF NR
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(3) ( )
op

TG t I .                                                                 (22) 

     The higher terms of the 
op

F and 
op

G
 
are neglected due to 

their complexity and negligible contributions of the non-

static perturbations in the orbiter motion with respect to the 

attractive body gravitational acceleration.  The 
)(qF and 
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)(q
G needed for computing the Lagrange coefficients in Eqs. 

(2) and (3) could be evaluated by:  
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     Using 
( )qF and 

( )qG , the matrices of the Lagrange 

coefficients could be computed based on Eqs. (2) and (3). 

Finally, the satellite orbit is propagated using Eq. (1).  The 

accuracy of the satellite orbit obtained from the Lagrange 

method will be assessed in section 4. Similar to another 

numerical solver, the stability of the Lagrange method will 

be administrated in the next sections. 

3. Stability Analysis 

     Like other differential equation, the equations of motion 

have been solved using different numerical approaches. 

These methods are different in the stability. An eligibility 

criterion for analysis of integrators methods is their ability 

to preserve the stability of a stable equilibrium. It is a very 

important property that should be investigated for a satellite 

propagator such as the Lagrange method. Stability region is 

a standard tool for this analysis. A small stability region 

reveals that very small step size is needed (Hairer & 

Wanner, 1991). Stability analysis of an integrator usually is 

performed by considering the most frequently used function 

for this purpose 0, 1,y y y   where   is a constant 

complex number with negative real part (Butcher, 1987).  

The region of stability of an integrator method is that set of 

(complex) values of hz   for which all numerically 

obtained solutions of the test problem will remain bounded 

(Dahlquist & Björk, 1974). Small stability regions indicate 

that very small step sizes might be necessary for numerical 

integration (Hairer & Wanner, 1991). The stability region of 

the Lagrange method truncated up to 4 terms is equivalent 

to the Runge-Kutta of order 4. As it is obvious in Figure 1, 

the Lagrange method is more stable than the multi-step 

methods . 

 

 

 

Figure 1. Stability regions (un-shaded region) of the PECE algorithm of Adams-Bashforth-Moulton integrator and the Lagrange 

method of order 4 

 

4. Numerical Analysis  

     This study set out with the aim of assessing the 

efficiency and precision of the proposed Lagrange method 

by some experimental results for LEO and MEO satellite 

orbit propagation. The best way for testing the accuracy of a 

propagator is comparing the solution of the exact solution 

of the differential system when it is available. The 

analytical solution of the equations of motion of satellites 

and planets is easily computed in the central force field. The 

simplest form of an orbiter motion is called the Keplerian 

motion . At first, we are interested to compare three classes 

of the integrators, single-step, multi-step and Taylor series 

(Lagrange method), in solving the equations of motion. As 

an example, the satellite orbit propagation was carried out 

in a 30-day time span using the Runge-Kutta (RK), Adams-

Bashforth-Moulton (ABM) and Lagrange methods. All 

methods are considered of order 4. The numerical study is 

based on a comparison of a 30-day span of a CHAMP-like 
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satellite orbit (Reiberg et al., 2002) in the central field of the 

Earth. The obtained results are compared with the analytical 

solutions. The Euclidian norm of analytical and numerically 

obtained position vector differences in three dimensions 

(3D-difference) is considered as a criterion for error 

comparison. The computational time demand and the 

propagation error versus time span were compared for the 

methods. Figure 2 shows the logarithm of the propagation 

error versus the CPU time, the logarithm of error vs. time 

span in days, and the CPU time vs. the integration time 

span. 

     As it was expected, the Lagrange method represents 

more accurate result with respect to the ones of the common 

integrators, especially to the multi-step method. From the 

viewpoint of computational time, the F and G series 

approach are almost as time-consuming as ABM4 

integrator, because both methods need just one function 

evaluation in each step.  Compared to the RK4, it is less 

time-consuming due to the relatively lower number of 

elementary operations which is used in the propagation 

process. Unlike the Keplerian motion, in the non-Keplerian 

motion, an exact solution does not exist, since the system is 

non-integrable. Then, the dynamic orbit computed using the 

well-known error controlled numerical integration methods 

has been considered as reference orbit for the efficiency test 

of the Lagrange method. In particular, it was interesting that 

the numerical solution of Lagrange coefficients is compared 

against the classical numerical integration of the equations 

of motion for LEO and MEO satellite orbit propagation.  

The error controlled numerical integration method is used 

as a reference for comparison since it is the most popular 

numerical orbit propagator in the aerospace community.  

     The numerical studies are based on a comparison 

between orbits obtained from the Lagrange method and 

numerical integrators for GRACE A, TOPEX-Poseidon, 

Spot 6 and GPS satellites over one day. Numerically 

integrated orbits have been computed using MATLAB 

routine ODE45, based on an explicit Runge-Kutta (4,5) 

with error control of about 10-16 and automated step size 

(Dormand & Prince, 1978). When error controlled 

integrators are used, the accuracy of integrated orbit could 

be modified by decreasing tolerance of error in integrator 

option, e.g. 10-16. The initial conditions for dynamic orbit 

propagation are listed in table (2) for GRACE A, Spot 6, 

TOPEX-Poseidon and GPS satellites. For all comparisons, 

these values are used as the initial conditions. 

 

 

Figure 2. The comparison of the numerical integrations and Lagrange error versus CPU-time in a one-month span. 
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Table 2. The initial conditions setup in the ECI frame  

Parameters GRACE A TOPEX-Poseidon Spot 6 GPS 01Satellite 

Date 

GPS-Time (Hour, Min, Sec) 

13 Nov 2008 

00:00:00 

19 Jan 2013 

20:23:23 

20 Jan 2013 

10:43:20 

7 Jul 2000 

02:00:00 

r (m) 

-3237459.157 1810698.864 -36966.704 -15230002.91 

-2113675.500 -2601714.005 7076046.367 7143903.358 

-5642313.514 7040607.196 16295.146 20669207.44 

r (m/s) 

5389.603 5286.109 1068.601 -2589.7828 

3250.112 4843.011 -12.405 -2689.171 

-4315.634 431.015 7428.766 -984.0158 

Semi-major axis (m) 6835241.546 7715222.067 7075985.418 26560603.802 

Eccentricity 0.000916 0.0007888 0.0001200 0.003512 

Inclination (degree) 88.8085° 66.0379° 98.1850° 54.7001° 

Right-Ascension of the ascending node 

(degree) 
0.5540° 224.0263° 90.3183° 35.3233° 

Argument of perigee (degree) 1.6981° 274.1652° 102.1214° 270.8742° 

Mean anomaly (degree) 2.4136° 172.0756° 258.0119° 197.3823° 

 

Figure 3. The difference between the reference and Lagrange orbits for GRACE A satellite over one day 

  

 

 

 

Figure 4. The computation time needed for propagating over one day of the GRACE A satellite using ode45, ode113, and the 

Lagrange method 

0

5

10

15

20

25

0 2 5 10 15 20 40 60 80 100 120 140

C
P
U
-T
im

e
(m

in
)

Nmax

ode45 (e=10^-16)

Lagrange method

ode113 (e=10^-16)



 Seif, 2017 

27 

     Figures represented in this section describe the influence 

of the rounding error and truncation one produced by 

truncating infinite Taylor series at the certain terms. This 

certain terms differ for different perturbing accelerations 

because of their different impact effects. As described in the 

previous section, the five terms (q=4) are considered for the 

Earth’s gravity field (static part), q=3 for other 

perturbations in Taylor series of the Lagrange coefficients. 

Based on the analysis carried out in (M. A. Sharifi and Seif, 

2011), the accuracy of the orbit propagation can be 

improved by setting 
)5(

if and 
)5(

ig to the J2 coefficients 

instead of zero. The higher terms of Taylor series could be 

used for the central field acceleration up to q=7 for 

improving the accuracy of the orbit propagation of a LEO 

satellite. Acquired precision at q=7 will be sufficient for 

many applications in satellite geodesy. At first, the accuracy 

of dynamic orbit obtained by the Lagrange method called 

the Lagrange orbit was tested for the satellite GRACE A. 

Figure 3  describes the influence of truncation errors 

produced by truncating infinite Taylor series of the 

Lagrange coefficients for the orbit propagation of the 

GRACE A satellite with dt=5s. Figure 3a, 3b, 3c at the 

radial, along-track, and cross-track directions over 24 hours. 

As shown in Figure 3, the maximum difference between the 

reference and Lagrange orbits for a GRACE-like satellite is 

about 4 cm over one day. 

 

Figure 5. The difference between the reference and Lagrange orbits for Spot 6 satellite with dt=5s over one day 

 

 

Figure 6. The difference between the reference and Lagrange orbits for TOPEX-Poseidon satellite with dt=5s over one day 

 

 

Figure 7. The difference between the reference and Lagrange orbits for GPS 01 satellite with dt=5s over one day 

     It is sufficient and suitable accuracy for many 

applications in the satellite geodesy and celestial mechanics. 

Please note that the obtained accuracy is over one day with 

dt=5s and for more accurate results, the time interval could 

be chosen shorter for the orbit propagation. As an eligibility 

criterion, the CPU-time analysis was carried out for the 

Lagrange method with dt=5s, and two well-known 

MATLAB routines ode45 (as an error controlled single step 
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method), ode113 (as an error controlled multi-step method 

(Shampine, 2005; Shampine & Reichelt, 1997) with error 

control of about 10-16. Figure 4 describes the CPU-time of 

these methods for different Nmax (i.e., the maximum 

degree of the gravity field) for a GRACE-like satellite over 

one day. As it was expected, the Lagrange method is almost 

as time-consuming as ode113, because both methods need 

just one function evaluation in each step.  Compared to the 

ode45, it is less time-consuming due to the relatively lower 

number of elementary operations which is used in the 

propagation process. The number of function evaluations 

for ode45 integrator is about four times larger than the 

Lagrange method at each step of the propagation process. 

For small Nmax, it is nearly doubled and it will be 

increased by a factor of 4 for large Nmax over one day  .In 

addition to GRACE A, the Lagrange method was tested for 

two further LEO satellites launched at higher altitudes inner 

and outer atmosphere of the Earth. This proposed method 

was used for propagating the Spot 6 and TOPEX-Poseidon 

orbits . 

     Figure 5 illustrates the accuracy of the Lagrange 

coefficients for Spot 6 orbit propagation with dt=5s Figure 

5a, 5b, 5c) at radial, along-track, and cross-track directions 

over 24 hours. This analysis was carried out for TOPEX-

Poseidon satellite too. Figure 6 presents the accuracy of the 

Lagrange orbit TOPEX-Poseidon with dt=5s Figure 5a, 5b, 

5c at radial, along-track, and cross-track directions over 24 

hours. The last two Figures show that the difference 

between the Lagrange and integrated orbits remains at 

centimeter level over one day for two different LEO 

satellites, Spot-like and TOPEX-Poseidon-like.  In addition 

to LEO satellite, it was highly interesting to continue this 

section with testing the proposed method for any satellite in 

higher altitude e.g. a MEO satellite. Figure 7 shows the 

differences between the numerically integrated and the 

Lagrange orbits in over one day for a GPS satellite with 

dt=5s, Figure 7a, 7b, 7c at radial, along-track, and cross-

track directions. Besides the advantages of the Lagrange 

method described in the introduction, the high accuracy 

obtained from the Lagrange method in this section proves 

that it is an efficient alternative for the satellite orbit 

integration not only for the MEO but also for the LEO 

satellites. 

 

5. Conclusion 

     In conclusion, this paper is another attempt to apply 

Taylor series method to solve equations of the perturbed 

motion. This paper sets out to develop the Lagrange 

method, F and G series, from a gravitational field of an 

inhomogeneous attractive body to all perturbing 

accelerations. At first, the accuracy of the Lagrange method 

is tested besides other propagators based on the comparison 

with the analytical solution. The results show that the 

Taylor series based method, F, and G series, could obtain a 

more accurate result with respect to the traditional 

numerical integrators at the same situation. The result of the 

CPU-time analysis shows that the Lagrange method is as 

time-consuming as multi-step methods and faster than 

single-step methods. In addition to CPU-time analysis, the 

stability analysis demonstrates that the Lagrange method is 

more stable than the multi-step method and is equal to the 

single-step method in stability property. As it was expected, 

like other Taylor series based methods, the Lagrange 

method combines the advantages of both methods of the 

single- and the multi-step methods.   

     For testing the accuracy of the Lagrange method in the 

non-Keplerian motion, the Lagrange orbit is compared with 

the numerically propagated one computed using the well-

known error-controlled integration methods. This 

comparison is made by considering all perturbing 

accelerations for a few LEO satellites (GRACE A, Spot 6, 

TOPEX-Poseidon) and a MEO-type satellite (GPS). The 

results show that the Lagrange method leads to a nearly 

identical solution to that of the numerical integration with a 

maximum difference of about 0.04 millimeter for GPS 

satellite in one day. It is about 5 centimeters for the GRACE 

A satellite. The Lagrange coefficients yield centimeter 

accuracy in terms of position for the LEO satellite. This 

analysis shows that the accuracy of the Lagrange method is 

under 3 centimeters for Spot 6, and about 3 centimeters for 

TOPEX-Poseidon satellites.  It is highly recommended that 

further studies be undertaken to compute more terms of the 

Lagrange coefficient series for more accuracy. Using 

variable step-size in an error-controlled algorithm could be 

another strategy for increasing the accuracy of the Lagrange 

method.  

Appendix A 

The method of computing the first and second order 

derivatives of , , ,a b e h  and l  is described in the following 

paragraphs.  These scalars are: 

 

                               (24) 

 

All of the scalars ( , , ,a b e h  and l ) have this form: 
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( , , )
( , , ) ( , , )

U r
H x y z K x y z

 







                 (25) 

where H and K are known functions and [ , , ]r   .  The 

first and second order derivatives of H are: 
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By using Einstein’s summation convention: 
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     (27) 

where ix  represents the Cartesian coordinate system in the 

ECF frame. The chain role should be used for computing 

first- and second order time derivatives of
U


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                 (28) 

where i  represent the curvilinear coordinate in ECF frame. 

The value of mixed derivatives is independent of the order 

in which the derivatives are taken for continuous functions, 

based on Schwartz’s theorem about mixed derivatives. For 

example: 
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    (29) 

Like the derivative of K function mentioned above, the 

derivatives of the spherical coordinates are: 
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      (30)  

At last the second derivatives of the spherical coordinates 

are: 
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    (31) 

where ix  represents the Cartesian coordinate in the ECF 

frame.  
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