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Tomographic SAR offers a fuller description of volumetric scattering using voxels
instead of pixels in SAR. The physics-based formulation incorporates multilayer propagation
with Snell refraction and Fresnel transmission, moisture- and frequency-dependent dielectric
behavior and attenuation per Hallikainen, and explicit surface and volume terms via the
integral equation method (IEM) and Rayleigh theory. Data are focused along a sliding sub-
aperture using a kernel that compensates refracted optical path length (OPL) while applying
Fresnel and attenuation weights; an FMCW forward model with matched-filter/back-
projection completes the chain. We evaluate four experiment classes: TP versus SAR, ideal
versus realistic scenes, and controlled sweeps of soil moisture and soil texture. Performance is
quantified by full width at half maximum (FWHM) in range and cross-range, peak sidelobe
ratio (PSLR), and signal-to-background ratio (SBR). Relative to SAR, TP delivers narrower,
more stable peaks and improved PSLR for buried targets. Under realistic conditions, IEM
surface roughness elevates sidelobes and Rayleigh volume scattering raises the depth
background, yet target localization remains stable. Increasing moisture reduces penetration
and contrast, while texture primarily modulates peak width and amplitude through refractive
index n and attenuation o. Overall, TP offers a practical middle ground between SAR and
TomoSAR: with a single scan and appropriate windowing/sub-aperture design, it recovers an
x—z depth profile that mitigates surface/volume ambiguity and improves FWHM, PSLR, and
SBR compared with SAR.
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1. Introduction

Imaging and understanding subsurface features is crucial
for geoscience and archaeology, and exploiting the
penetration capability of microwaves allows the detection of
small targets close to the surface. Although GPR systems
provide depth profiles, they rely on near-surface operation
and slow scanning and are not efficient for large-area
monitoring (Giannakis et al., 2015). In contrast, SAR
systems allow for stand-off and repeatable imaging, but
subsurface imaging suffers from depth ambiguity caused by
the mixture of surface returns, soil volume, and buried
targets (Elsherbini & Sarabandi, 2013; Fornaro et al., 2014,
Fan et al., 2025; Qiao et al., 2023).

For this reason, polarimetric interferometry SAR
(PolInSAR) and tomography have been proposed to provide
vertical discrimination of returns. PolInSAR uses the
polarization dependence of scattering mechanisms to
estimate the phase center and can be generalized to height
retrieval, but it does not directly provide the height
distribution of backscatter within the target volume (Bamler
& Hartl, 1998; Cloude & Papathanassiou, 1998;
Papathanassiou & Cloude, 2001). TomoSAR offers a fuller
description of volumetric scattering using voxels instead of
pixels, but its main challenge is data acquisition: a set of
multi-angle SAR images regularly spaced on a two-
dimensional aperture is required (Fortuny-Guasch & Lopez-
Sanchez, 2001; Fortuny & Sieber, 1999; Lombardini et al.,
2008; Reigber & Moreira, 2000). Polarization coherence
tomography also promises a three-dimensional description
of the target with far fewer images than multi-baseline
TomoSAR, yet its retrieval algorithms are model-based and
rely on assumptions about the scattering pattern (Cloude,
2006, Berenger et al., 2023).

In response to these limitations, tomographic profiling
(TP) offers the opportunity to directly measure the vertical
backscatter through the target volume without the
constraints of multi-angle acquisitions or strong model
assumptions. Using a single-pass acquisition along an
aperture, TP records a wide range of incidence angles and
forms a vertical profile of backscatter through the volume.
Although it does not provide a full 3-D reconstruction like
two-dimensional-aperture tomography, it reduces reliance
on multi-angle data, and a 2-D vertical profile can mitigate
the need to separate volume and surface returns (Fornaro et
al., 2014; Zwieback et al., 2017).

Because the dielectric behavior of moist soil and
amplitude attenuation with frequency/moisture define the
physical framework (Hallikainen et al., 1985), and the IEM
with semi-empirical calibrations is widely used to model
backscattering and effective roughness (Baghdadi et al.,
2015; Lievens et al., 2011), while pore geometry and
inhomogeneity can generate significant volume scattering
(Onier et al., 2010), TP was proposed as a means to extract
the vertical backscatter profile from an artificial aperture
(Morrison & Bennett, 2013). Building on this body of
research, we develop a unified framework based on accurate
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Snell refraction in layers, Hallikainen-style damping, and
surface (IEM) and volume (Rayleigh) components, and
implement it for a S-band FMCW sensor (named UT_GB-
SAR(S)) at the Microwave Remote Sensing Laboratory of
the University of Tehran. We then validate the method and
assess its performance in a simulated environment using a
TP processor.

2. Methods

2.1. Tomographic Profiling

Tomographic profiling (TP) is an imaging technique
designed to provide vertical distribution profiles through
biophysical and geophysical target volumes such as snow,
ice, vegetation cover, and forest canopies.
In conventional side-looking SAR, the antenna boresight is
broadside—perpendicular to the along-track direction. In
TP, the antenna look direction is rotated toward the along-
track plane so that, as the sensor slides along the rail, a
continuum of incidence angles illuminates the scene.

2.2. Imaging algorithm

Figure 1 illustrates a full-aperture scan of length L formed
by K samples with a constant spacing; any N adjacent
samples constitute a sub-aperture. For a stepped-frequency
continuous wave (CW) radar, to reconstruct the pixel at
point P, the distances r1 ... ry corresponding to the chosen
incidence angle i and depth z are computed, and the
contribution of frequency bin m to the image at P is obtained
by summing the echoes over the aperture. Using all
frequency bins, the final image is formed.

L
D
dx
Z :: 
W/l
/4
....."‘..'...d:/.'r'......
Image region

Figure 1- Demonstrate the principle of rubber band
imaging technique TP (Morrison & Bennett, 2013)

A Hamming weighting window is used to reduce sidelobe
ambiguity. To generate a sequence of images at fixed depth
z, the focus function and measured data array are repeatedly
combined; using the convolution theorem and the FFT
makes this operation more efficient. As a result, the
algorithm simultaneously forms the image 1(x) along a line
whose pixel positions are determined by the processing grid.

1) = F7H [ Eha W) FGOIF{ F(—0} ] (1)

Let F and F* denote the Fourier transform and its inverse,
and let G(x) be the measured data; the weighted focus
function is applied in the transform domain. Because the N
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samples represent a sub-aperture of K points composing the
full aperture, a continuous transect image of (K — N + 1)
pixels can be produced by sliding the sub-aperture by one
sample between reconstructions.

2.3. Image resolution

Figure 2 summarizes the available resolutions for TP.
Resolution in the slant-range direction (a) is controlled by
bandwidth; in the direction perpendicular to slant range (b)
it is controlled by the footprint of the synthetic beam. Along
the synthetic beam, slant-range resolution is set by the
transmitted bandwidth. In the direction perpendicular to the
inclined plane, the familiar SAR relation is used.

Here, Ogyn is the synthetic-beamwidth, D is the artificial-
aperture length, i is the off-nadir (incidence) angle for a
horizontal aperture, R is range, A is wavelength, and W is the
window-dependent broadening factor. Possible vertical
discrimination V, on the x—z plane (perpendicular to the
scan path) follows from the combination of range and cross-
range resolutions. In the exact expression, cos(i + Osyn/2)
replaces cos i, but since Osyn/2 is small it is commonly
neglected. The contribution of cross-range versus range to
V. grows with tan i. The along-track (horizontal) resolution
in the rail data Ha is given by the standard relation. In Figure
2 (bottom right), the scene is rotated by 90° to illustrate the
true cross-track beam geometry; the real-beam resolutions
rest and H; depend on the effective transmit/receive
beamwidth @ and on resg. The first term in brackets arises
from wavefront curvature; ®/2 is the half-power beamwidth

and cos i accounts for off-nadir projection. The vertical (V)
and horizontal (H) resolutions at any image point p are then
computed from the corresponding relations.

@
®

V, = respcosi + resysini
H, = resgsini + resy cosi

Figure 2. View Resolution available in the design
(Morrison & Bennett, 2013) TP

2.4. Propagation and scattering in soil layers

This section outlines the concepts used to simulate the
propagation and scattering of signals in soil layers in order
to achieve a high-fidelity testbed for the processor.
Figure 3 shows the simulation flowchart.

1. Parameter setup 2. Define antenna & 3. Soil model 4. Define synthetic
—*| imaging geometry || (Hallikainen) — targets
€ 1(z), € i(z), w(z),
n_soil
5. Ray tracing per 6. Add surface 7. Add volume noise 8. Compute received
target —p| backscatter IEM) | ™ (Rayleigh) —> signal
Snell refraction; path I surface (for each frequency
(r_air, r soil); & position)
attenuation via o

9. Remove DC from signal

10. TP image reconstruction

11. Render x—z depth-profile
image

Figure3. Simulation flowchart
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2.4.1. Propagation in soil layers

Modeling soil as a lossy medium with complex
permittivity € = & — j &;, the emitted signal S at depth z in
soil decays exponentially with an attenuation constant «;
B is the phase constant. With the loss angle 6 defined by
tan & = gj/e,, the standard relations for a and B are used.
In sandy soils, tan & is usually small, hence B ~k v ¢

S(2) = Soexp(=vz) (4

where: S(z) — signal amplitude at depth z; So —
reference amplitude at the surface; y — attenuation
constant; z — depth

& = arctan(e"/€") ®)

where: 6 — loss angle defined as arctan(e"/¢'); €', &" —
real and imaginary parts of complex permittivity

sz\/iz V1 + tan28 + 1 (6)

where: p — phase constant; kK — wavenumber 27t/Ao; &
— relative permittivity; 6 — loss angle

a:k\/’% V1 + tan*26 — 1 ©)]

where: a — attenuation constant; kK — wavenumber; &
— relative permittivity; 6 — loss angle

For a layered medium, the wave path in each layer is
determined by Snell’s law, and the total optical path
length is the sum over all layers. This can be computed
analytically/numerically by solving for the refraction
point on each interface (e.g., in two layers: single
refraction point and two-segment propagation in upper
and lower layers).

2.4.2. Snell refraction and Fresnel coefficients

The refraction point on each boundary is obtained from
Fermat’s principle (minimum optical length) or Snell’s
law. In layered environments, the refraction point is
unknown a priori and must be found from the geometric
solution. These conditions depend only on the refractive
indices of the layers and do not determine
amplitude/phase. Amplitude and phase are specified by
the Fresnel coefficients, which (for a direct path to a point
target) weight the transmitted/reflected waves. They first
scale the energy transmitted between layers (angle- and
polarization-dependent), second introduce phase shifts (in
lossy/dispersive media or near critical angles), and finally
help determine the dominant path (e.g., near the critical or
Brewster angles). In common radar/tomography models,
the refraction-point coordinates are found using
Snell/OPL; then the path amplitude is computed using
Hallikainen volumetric attenuation together with two-way
Fresnel transmission/reflection.

sinf, _ nap
sin 6, nq (8)
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. 4

Figure 4-View of Snell's failure and failure point On the
boundary of layers

k4

(Xrefr~ Xant) . (Xtarg' Xrefr) n, (9)

2 2
\/(Xrefr' Xant)? + Yant \/(Xtarg' Xrefr) + Ytzarg

n n
=1 cos 6; ——2cos 6
K1 H2

=S" 10
2105 6; + 22 cos 0; (10)
H1 Ha

22 cos Hi—ﬂcos O¢
H2 K1

s . = 9 11
22 05 6; + L cos 6; p (1
Hu2 Hi

2.4.3. Damping parameters based on the Hallikainen
model

The attenuation coefficient (Np/m) is a function of g;
and tan d. The model provides the -closed-form
expressions for a and B above. To obtain er and i from
soil texture and volumetric moisture mv, the Hallikainen
polynomial parameterization is used.

& =(@0+alS+a2C)+ (b0+b1lS+b2C)ml+
(c0+c1S+c2C)m? (12)

2.4.4. Surface scattering with the IEM model

For moderately rough surfaces with ks < 1 and k¢ = 1
(s rms height, £ correlation length, k = 2n/A), the general
IEM expression for ¢0 is used, where W(q) is the surface-
height spectrum (Gaussian/exponential), and the kernels
I"(n)_pp combine Fresnel terms and surface gradients
(Long & Ulaby, 2015).
oy (0) =

k? cos? 0

n 2
o exp(—2 k? 6% cos? 9) Z;‘{’ﬂ@ WW ™ (2 k sin 6)
(13)

2.4.5. Volume scattering based on the Rayleigh model
For particles much smaller than the wavelength
(Rayleigh regime), the single-particle scattering cross
section of a sphere of radius a in a background medium of
refractive-index ratio m is used (Long & Ulaby, 2015).
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For a layer of thickness L and number density N, o _v*0
~ N L o with one/two-way transmissivity correction.

81 m2-1
ORayleigh = ? k* a® | mz+z | 2 (14)

2.5. Sensor parameters for simulation
Table 1 shows the sensor parameters for simulation.

Table 1. Sensor & Scene Parameters

Parameter Symbol Value / Setting
Rail length L ~3m
Antenna height Z_air ~1.5m
Band / center S-band / fc ~3.2 GHz
(device-specific)
Sweep bandwidth B 100-600 MHz (tested)
Chirp duration T_chirp 1-5 ms (typical)
Spatial step Ax 0.01-0.03 m
Positions K ~ L/Ax
Sub-aperture D_sa 04-16m
Reconstruction angle | i 0°-15°
Windowing — Rect / Hamming /
Hann / Blackman
Polarization pol VV /VH/HH

3. Experiments and Results

In this section, experiments were designed and
conducted in a simulated environment, and their
descriptions and results are presented.

To validate geometry and establish a performance
baseline, we first consider a free-space configuration in
which three point targets are placed along the rail track
and imaged with a scan length of approximately L = 3 m.
Design relations predict nominal resolutions of ~45.4 cm
in range and =15 cm in cross-range; measured
point-spread widths are 594 cm and 21.8 cm,
respectively, reflecting expected broadening from
windowing and sampling. This experiment confirms the
correctness of the focusing kernel and provides a
calibrated operating point for subsequent comparisons.

Froo-space TP | ResH-15.0 cm, ResV-45.4 cm

Figure 5. Output image of the TP processor in free space

We then compare tomographic profiling (TP) with
classical SAR back-projection for a single buried metal
target located near x t = 0 and z t = 3.40 m. For TP, a
sub-aperture of D_sa =~ 1.5 m is adopted to achieve ~15
cm cross-range resolution. While both methods detect a
peak at the true location, TP exhibits a narrower and more
stable main lobe and markedly lower sidelobe levels.
Aperture partitioning with appropriate frequency/space
windows suppresses coherent sidelobes and stabilizes the
peak position, yielding smaller effective depth FWHM
and improved PSLR relative to SAR; practically, this
translates into clearer detectability and more reliable
localization of shallowly buried objects (Table 2; Figs. 6).

Table 2. Comparison of TP processor vs. SAR processor

Method Az Az_effective | FWHM PSLR
theoretical (m) (m) (approx.,
(m) dB)
SAR — ~0.45 0.50 - -22 ..
0.45 -18
TP 0.15-0.12 ~0.30 0.35- -30 ...
0.28 -25

Next, we contrast an Ideal scene (specular surface, no
volume scattering) with a Real scene that includes IEM
surface roughness and Rayleigh volume scattering at 0°
and 10° incidence. TP maintains target localization across
conditions, even as the Real case exhibits higher
background and slightly broader responses. The similarity
of PSLR between cases indicates that sidelobes are largely
controlled by the processing windows rather than the
scene itself, whereas small variations with incidence angle
match nominal resolution trends. These observations
confirm robustness of the TP reconstruction to realistic
surface/volume clutter (Table 3; Figs7).

Table 3. Quantitative results in the two scenarios

Scenario Target FWHM_CR PSLR Peak @
(cm) (dB) X (cm)
Ideal 0° A 17.7 -3.4 180.0
Ideal 0° B 19.2 -3.1 150.0
Ideal 0° C 20.9 -3.1 120.0
Ideal 10° A 18.0 -3.1 180.0
Ideal 10° B 19.1 -3.1 150.0
Ideal 10° C 20.9 -3.1 121.0
Real 0° A 17.7 -3.4 180.0
Real 0° B 19.2 -3.1 150.0
Real 0° C 20.9 -3.1 120.0
Real 10° A 20.9 -3.0 180.0
Real 10° B 19.0 -3.1 150.0
Real 10° C 20.9 -3.0 121.0

We then examine moisture dependence using five
levels from Dry to Wet. As moisture increases, dielectric
losses rise and near-surface reflections strengthen,
reducing SNR at depth and degrading target contrast.
Although larger ¢’ can slightly sharpen the nominal depth
resolution, attenuation dominates beyond moderate
moisture and FWHM estimates become less reliable.
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Accordingly, the best performance for deeper targets in

this band is obtained at low moisture (Table 4; Figs. 8).

Table 4. Quantitative results vs. moisture

Condition | ResH_th | ResV_th | FWHM_CR | FWHM_R | PSLR_CR | PSLR R
Dry 14.88 33204 | 20525 43217 34505 | -3.0999
Low 14.88 30.808 | 19.833 40.076 3.0471 | -3.0597
Mid 14.88 28461 | 19.122 36.778 32659 | -1.0236
High 14.88 26682 | 18.721 3860.5 33829 | -32.085
Wet 14.88 24903 | 21.352 0 34106 | 1.9287e-
15

SAR (backprojection, free-space)
400 ¢

350

depth below antenna [cm]

-100 0

TP (sub-aperture 1.51 m) | ResH‘hz12.3 cm, Resvmx29.9 cm
0

[dB]

400

350

m]
Now
[+ i=3
o o

200

depth below antenna [ci

Depth profile at target x (normalized)

Figure 6. Free-space comparison between baseline SAR back-projection and tomographic profiling (TP). (a) SAR
back-projection image; axes: x [cm] vs. depth below antenna [cm], color scale in dB. (b) TP image witha 1.51 m
sub-aperture (theoretical resolutions: ResH th = 12.3 ¢cm, ResV_th = 29.9 c¢m); the white dashed line marks the depth slice
used in (¢). (c) Depth profile at the target x (normalized); TP exhibits a narrower —3 dB main-lobe and lower sidelobes than

el 0 deg | 150" | Surface SPEC | Volume:OFF | D=1.28m | Res,, =140

Distarce beow aners [on]

Relatve ampitude [68)

SA

Relatve argitude 6]

e, Res, <200 em | W, ~176.0 cm

[ ——

100 200
Retative horizontal position fem]
(g)

[
[
|
|
|

Horizontal profile @ = 1.95m

100
Relative horizo

Flaai 0 dog | 1=0° | D=1.25m | Rew, <149 om, Ron, <299 em | W, =

200
ontal position em]

(h)

1

Figure 7. Ideal vs. realistic scenes at normal incidence (free-space vs. rough/volume). (a) Ideal scene TP image; (b) Realistic
scene (IEM surface with Rayleigh volume), with estimated FWHM_x annotated on inclusions; (c—) Depth profiles at x =
+0.30, 0.00, and —0.30 m (dashed: ideal; solid: realistic); (f—h) Cross-range (horizontal) cuts at z = 1.30, 1.60, and 1.95 m
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(dashed vertical lines denote the target x).

Dry
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400

300

300

200

o
et

0 100 200 100 200
x [em] x [em)

(a) (b) (€)
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3
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: il . '
K orr
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—
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- —Ao
Depth profile @ x = target-8
) \ f/
3 f
e |
. /]
- |/ all
& — 1,(\[\ |
Low U | A
e |
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Figure 8. Moisture dependence in S-band tomographic profiling (TP).
(a—e) TP x—z reconstructions for Dry, Low, Mid, High, and Wet moisture levels; axes: x [cm] vs. depth below antenna [cm]; color
scale in dB with identical normalization across panels. (f) Cross-range cut at the target depth (normalized). (g) Depth profile at x
= target-B (normalized). Observation: with increasing moisture, dielectric loss and near-surface returns rise, reducing penetration
and contrast; the main lobe slightly broadens and sidelobes increase (lower PSLR), while the target localization remains stable.

Finally, we analyze sensitivity to soil type using Sand,
SandyLoam, Loam, Clay, and GravellySand under
otherwise fixed conditions. Differences are governed
primarily by permittivity and attenuation: higher
refractive index n and loss o in Loam/Clay elongate range
responses and reduce amplitude, whereas cross-range

behavior remains largely controlled by the chosen
sub-aperture. Increased heterogeneity in GravellySand
produces richer sidelobe structure and inferior PSLR.
Overall, TP preserves localization and retains its
FWHM/PSLR advantage relative to SAR across soil types
(Table 5; Figs. 9).

Table 5. Quantitative results vs. soil type

Soil ResH_th | ResV_th | FWHM_CR | FWHM.R | PSLR.CR | PSLR_R
Sand 14.88 29.884 19.546 38.84 -3.1335 -3.2633
SandyLoam 14.88 28.461 19.106 36.938 -3.2827 -3.1468
Loam 14.88 27.167 18.71 35.328 -3.4305 -3.4826
Clay 14.88 25.986 18.378 33.763 -3.5628 -3.2547
GravellySand | 14.88 31.456 20.028 40.95 -3.637 -3.0054
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SandylLoam
w

(a), xlem) (b)

0 100 200 300

d x [em)

Cross-range cut @ target depth

x [em)

GravellySand
L J

Depth profile @ x = target-8

a\

Figure 9. Soil-type sensitivity in S-band tomographic profiling (TP).

(a—e) TP x—z reconstructions for Sand, SandyLoam, Loam, Clay, and GravellySand under identical geometry and processing;
axes: X [cm] vs. depth below antenna [cm]; color scale in dB with identical normalization across panels. (f) Cross-range cut at the
target depth (normalized). (g) Depth profile at x = target-B (normalized). Observation: Loam/Clay (higher refractive index n and
loss a) reduce peak amplitude and broaden the range response; GravellySand exhibits richer sidelobes (worse PSLR); cross-range

shape is largely governed by the chosen sub-aperture, and target localization is preserved

4, Discussion

- Depth resolution and target contrast: In the comparative
experiment, TP provided a smaller depth FWHM for the
buried target than SAR, due to aperture partitioning and
windowing that suppress sidelobes.

- Spatial stability of peaks: TP peak locations were more
consistent with the reference depth—even with
surface/volume clutter—than SAR, which is practically
important for GB-SAR targeting.

- Scenario effects (ldeal/Real): As expected, the Real
scenario had higher background due to IEM/Rayleigh
contributions; PSLR was largely controlled by window
selection.

- Moisture/soil: Higher moisture increased losses and
reduced penetration and contrast; soil-type differences
mainly reflected changes in permittivity and attenuation.

150

In summary, TP is an efficient middle ground between
SAR and TomoSAR: with a single scan and appropriate
processing, it reconstructs an x-z depth profile while
reducing surface/volume ambiguity and improving
FWHM, PSLR, and SBR. This advantage persists in near-
realistic scenarios, with careful windowing, sub-aperture
selection, and soil-parameter calibration.

5. Conclusion

This study introduced and evaluated Tomographic
Profiling (TP) as a single-pass, low-cost method for
retrieving vertical backscatter profiles in the S-band.
Simulations showed that TP, relying on sub-aperture
sliding and controlled look angle, can provide part of the
advantages of TomoSAR with much simpler data
acquisition and reduce the depth ambiguity typical of SAR
processing. The physical framework used—multilayer
propagation with Snell and Fresnel coefficients,
Hallikainen moisture/frequency damping, and surface
(IEM) and volume (Rayleigh) scattering—models
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realistic signal behavior in soil and provides a consistent
basis for analysis.
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