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Tomographic SAR offers a fuller description of volumetric scattering using voxels 

instead of pixels in SAR. The physics-based formulation incorporates multilayer propagation 

with Snell refraction and Fresnel transmission, moisture- and frequency-dependent dielectric 

behavior and attenuation per Hallikainen, and explicit surface and volume terms via the 

integral equation method (IEM) and Rayleigh theory. Data are focused along a sliding sub-

aperture using a kernel that compensates refracted optical path length (OPL) while applying 

Fresnel and attenuation weights; an FMCW forward model with matched-filter/back-

projection completes the chain. We evaluate four experiment classes: TP versus SAR, ideal 

versus realistic scenes, and controlled sweeps of soil moisture and soil texture. Performance 

is quantified by full width at half maximum (FWHM) in range and cross-range, peak sidelobe 

ratio (PSLR), and signal-to-background ratio (SBR). Relative to SAR, TP delivers narrower, 

more stable peaks and improved PSLR for buried targets. Under realistic conditions, IEM 

surface roughness elevates sidelobes and Rayleigh volume scattering raises the depth 

background, yet target localization remains stable. Increasing moisture reduces penetration 

and contrast, while texture primarily modulates peak width and amplitude through refractive 

index n and attenuation α. Overall, TP offers a practical middle ground between SAR and 

TomoSAR: with a single scan and appropriate windowing/sub-aperture design, it recovers an 

x–z depth profile that mitigates surface/volume ambiguity and improves FWHM, PSLR, and 

SBR compared with SAR. 
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1. Introduction 

Imaging and understanding subsurface features is 

crucial for geoscience and archaeology, and exploiting the 

penetration capability of microwaves allows the detection of 

small targets close to the surface. Although GPR systems 

provide depth profiles, they rely on near-surface operation 

and slow scanning and are not efficient for large-area 

monitoring (Giannakis et al., 2015). In contrast, SAR 

systems allow for stand-off and repeatable imaging, but 

subsurface imaging suffers from depth ambiguity caused by 

the mixture of surface returns, soil volume, and buried 

targets (Elsherbini & Sarabandi, 2013; Fornaro et al., 

2014, Fan et al., 2025; Qiao et al., 2023). 

For this reason, polarimetric interferometry SAR 

(PolInSAR) and tomography have been proposed to provide 

vertical discrimination of returns. PolInSAR uses the 

polarization dependence of scattering mechanisms to 

estimate the phase center and can be generalized to height 

retrieval, but it does not directly provide the height 

distribution of backscatter within the target volume (Bamler 

& Hartl, 1998; Cloude & Papathanassiou, 1998; 

Papathanassiou & Cloude, 2001). TomoSAR offers a fuller 

description of volumetric scattering using voxels instead of 

pixels, but its main challenge is data acquisition: a set of 

multi-angle SAR images regularly spaced on a two-

dimensional aperture is required (Fortuny-Guasch & 

Lopez-Sanchez, 2001; Fortuny & Sieber, 1999; Lombardini 

et al., 2008; Reigber & Moreira, 2000). Polarization 

coherence tomography also promises a three-dimensional 

description of the target with far fewer images than multi-

baseline TomoSAR, yet its retrieval algorithms are model-

based and rely on assumptions about the scattering pattern 

(Cloude, 2006, Berenger et al., 2023). 

In response to these limitations, tomographic profiling 

(TP) offers the opportunity to directly measure the vertical 

backscatter through the target volume without the 

constraints of multi-angle acquisitions or strong model 

assumptions. Using a single-pass acquisition along an 

aperture, TP records a wide range of incidence angles and 

forms a vertical profile of backscatter through the volume. 

Although it does not provide a full 3-D reconstruction like 

two-dimensional-aperture tomography, it reduces reliance 

on multi-angle data, and a 2-D vertical profile can mitigate 

the need to separate volume and surface returns (Fornaro et 

al., 2014; Zwieback et al., 2017). 

Because the dielectric behavior of moist soil and 

amplitude attenuation with frequency/moisture define the 

physical framework (Hallikainen et al., 1985), and the IEM 

with semi-empirical calibrations is widely used to model 

backscattering and effective roughness (Baghdadi et al., 

2015; Lievens et al., 2011), while pore geometry and 

inhomogeneity can generate significant volume scattering 

(Onier et al., 2010), TP was proposed as a means to extract 

the vertical backscatter profile from an artificial aperture 

(Morrison & Bennett, 2013). Building on this body of 

research, we develop a unified framework based on 

accurate Snell refraction in layers, Hallikainen-style 

damping, and surface (IEM) and volume (Rayleigh) 

components, and implement it for a S-band FMCW sensor 

(named UT_GB-SAR(S)) at the Microwave Remote Sensing 

Laboratory of the University of Tehran. We then validate the 

method and assess its performance in a simulated 

environment using a TP processor. 

2. Methods 

2.1. Tomographic Profiling 

Tomographic profiling (TP) is an imaging technique 

designed to provide vertical distribution profiles through 

biophysical and geophysical target volumes such as snow, 

ice, vegetation cover, and forest canopies. 

In conventional side-looking SAR, the antenna boresight is 

broadside—perpendicular to the along-track direction. In 

TP, the antenna look direction is rotated toward the along-

track plane so that, as the sensor slides along the rail, a 

continuum of incidence angles illuminates the scene. 

 

2.2. Imaging algorithm 

Figure 1 illustrates a full-aperture scan of length L 

formed by K samples with a constant spacing; any N 

adjacent samples constitute a sub-aperture. For a stepped-

frequency continuous wave (CW) radar, to reconstruct the 

pixel at point P, the distances r1 … rN corresponding to the 

chosen incidence angle i and depth z are computed, and the 

contribution of frequency bin m to the image at P is obtained 

by summing the echoes over the aperture. Using all 

frequency bins, the final image is formed. 

 

Figure 1- Demonstrate the principle of rubber band 

imaging technique TP (Morrison & Bennett, 2013)  

 

A Hamming weighting window is used to reduce sidelobe 

ambiguity. To generate a sequence of images at fixed depth 

z, the focus function and measured data array are repeatedly 

combined; using the convolution theorem and the FFT 

makes this operation more efficient. As a result, the 

algorithm simultaneously forms the image I(x) along a line 

whose pixel positions are determined by the processing grid. 

 

𝐼(𝑥)  =  ℱ−1 [ ∑  𝑊(𝑚) ℱ{𝐺(𝑥)} ℱ{𝑓 𝑓(−𝑥)} 𝑀
𝑚=1  ]      (1) 

 

Let F and F−1 denote the Fourier transform and its 

inverse, and let G(x) be the measured data; the weighted 

focus function is applied in the transform domain. Because 
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the N samples represent a sub-aperture of K points 

composing the full aperture, a continuous transect image of 

(K − N + 1) pixels can be produced by sliding the sub-

aperture by one sample between reconstructions. 

 

2.3. Image resolution 

Figure 2 summarizes the available resolutions for TP. 

Resolution in the slant-range direction (a) is controlled by 

bandwidth; in the direction perpendicular to slant range (b) 

it is controlled by the footprint of the synthetic beam. Along 

the synthetic beam, slant-range resolution is set by the 

transmitted bandwidth. In the direction perpendicular to the 

inclined plane, the familiar SAR relation is used. 

Here, θsyn is the synthetic-beamwidth, D is the artificial-

aperture length, i is the off-nadir (incidence) angle for a 

horizontal aperture, R is range, λ is wavelength, and W is 

the window-dependent broadening factor. Possible vertical 

discrimination Va on the x–z plane (perpendicular to the 

scan path) follows from the combination of range and cross-

range resolutions. In the exact expression, cos(i + θsyn/2) 

replaces cos i, but since θsyn/2 is small it is commonly 

neglected. The contribution of cross-range versus range to 

Va grows with tan i. The along-track (horizontal) resolution 

in the rail data Ha is given by the standard relation. In 

Figure 2 (bottom right), the scene is rotated by 90° to 

illustrate the true cross-track beam geometry; the real-beam 

resolutions resT and Ht depend on the effective 

transmit/receive beamwidth Φ and on resR. The first term in 

brackets arises from wavefront curvature; Φ/2 is the half-

power beamwidth and cos i accounts for off-nadir 

projection. The vertical (V) and horizontal (H) resolutions 

at any image point p are then computed from the 

corresponding relations. 

 

𝑉𝑎  =  𝑟𝑒𝑠𝑅 𝑐𝑜𝑠 𝑖 +  𝑟𝑒𝑠𝑋 𝑠𝑖𝑛 𝑖      (2) 

𝐻𝑎  =  𝑟𝑒𝑠𝑅  𝑠𝑖𝑛 𝑖 + 𝑟𝑒𝑠𝑋 𝑐𝑜𝑠 𝑖      (3) 

 

 

 

Figure 2. View Resolution available in the design 

(Morrison & Bennett, 2013) TP 

 

2.4. Propagation and scattering in soil layers 

This section outlines the concepts used to simulate the 

propagation and scattering of signals in soil layers in order 

to achieve a high-fidelity testbed for the processor. 

 Figure 3 shows the simulation flowchart. 

  

 

Figure3. Simulation flowchart 
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2.4.1. Propagation in soil layers 

  Modeling soil as a lossy medium with complex 

permittivity ε = εr − j εi, the emitted signal S at depth z in 

soil decays exponentially with an attenuation constant α; 

β is the phase constant. With the loss angle δ defined by 

tan δ = εi/εr, the standard relations for α and β are used. 

In sandy soils, tan δ is usually small, hence β ≈ k √ε 

 
𝑆(𝑧)  =  𝑆0 𝑒𝑥𝑝(−𝛾 𝑧)       (4) 

where: S(z) — signal amplitude at depth z; S0 — 

reference amplitude at the surface; γ — attenuation 

constant; z — depth 
 𝛿 =  𝑎𝑟𝑐𝑡𝑎𝑛(𝜀″/𝜀′)         (5) 

where: δ — loss angle defined as arctan(ε″/ε′); ε′, ε″ — 

real and imaginary parts of complex permittivity 

𝛽 =  𝑘 √
𝜀𝑟

2

 
 √√1 +  𝑡𝑎𝑛^2 𝛿

 
 +  1

 
        (6) 

where: β — phase constant; k — wavenumber 2π/λ₀ ; εr 

— relative permittivity; δ — loss angle 

𝛼 =  𝑘 √
𝜀𝑟

2

 
 √√1 +  𝑡𝑎𝑛^2 𝛿

 
 −  1

 
        (7) 

where: α — attenuation constant; k — wavenumber; εr 

— relative permittivity; δ — loss angle 

 

For a layered medium, the wave path in each layer is 

determined by Snell’s law, and the total optical path 

length is the sum over all layers. This can be computed 

analytically/numerically by solving for the refraction 

point on each interface (e.g., in two layers: single 

refraction point and two-segment propagation in upper 

and lower layers). 

 

2.4.2. Snell refraction and Fresnel coefficients 

The refraction point on each boundary is obtained from 

Fermat’s principle (minimum optical length) or Snell’s 

law. In layered environments, the refraction point is 

unknown a priori and must be found from the geometric 

solution. These conditions depend only on the refractive 

indices of the layers and do not determine 

amplitude/phase. Amplitude and phase are specified by 

the Fresnel coefficients, which (for a direct path to a point 

target) weight the transmitted/reflected waves. They first 

scale the energy transmitted between layers (angle- and 

polarization-dependent), second introduce phase shifts 

(in lossy/dispersive media or near critical angles), and 

finally help determine the dominant path (e.g., near the 

critical or Brewster angles). In common 

radar/tomography models, the refraction-point 

coordinates are found using Snell/OPL; then the path 

amplitude is computed using Hallikainen volumetric 

attenuation together with two-way Fresnel 

transmission/reflection. 

 

𝑠𝑖𝑛 𝜃1

𝑠𝑖𝑛 𝜃2
 =

𝑛 2

𝑛 1
           (8) 

Figure 4-View of Snell's failure and failure point On the 

boundary of layers 

 

 

(xrefr- xant)

√(xrefr- xant)2 + yant
2 

 · 
(xtarg- xrefr)

√(xtarg- xrefr)
2

 + ytarg
2 

 = 
𝑛 2

𝑛 1
      (9) 

𝑛 1
𝜇 1

 𝑐𝑜𝑠 𝜃𝑖 − 
𝑛 2
𝜇 2

 𝑐𝑜𝑠 𝜃𝑡

𝑛 1
𝜇 1

 𝑐𝑜𝑠 𝜃𝑖 + 
𝑛 2
𝜇 2

 𝑐𝑜𝑠 𝜃𝑡
 =  𝑆𝑟      (10) 

𝑛 2
𝜇 2

 𝑐𝑜𝑠 𝜃𝑖 − 
𝑛 1
𝜇 1

 𝑐𝑜𝑠 𝜃𝑡

𝑛 2
𝜇 2

 𝑐𝑜𝑠 𝜃𝑖 + 
𝑛 1
𝜇 1

 𝑐𝑜𝑠 𝜃𝑡
 =  𝑝𝑟

       (11) 

2.4.3. Damping parameters based on the Hallikainen 

model 

The attenuation coefficient (Np/m) is a function of εi   

and tan δ. The model provides the closed-form 

expressions for α and β above. To obtain εr and εi from 

soil texture and volumetric moisture mv, the Hallikainen 

polynomial parameterization is used. 

 
𝜀𝑐  =  (𝑎_0 +  𝑎_1 𝑆 +  𝑎_2 𝐶)  + (𝑏_0 +  𝑏_1 𝑆 +  𝑏_2 𝐶) 𝑚𝑣

1  +

 (𝑐_0 +  𝑐_1 𝑆 +  𝑐_2 𝐶) 𝑚𝑣
2         (12) 

2.4.4. Surface scattering with the IEM model 

For moderately rough surfaces with ks ≲ 1 and kℓ ≳ 1 

(s rms height, ℓ correlation length, k = 2π/λ), the general 

IEM expression for σ0 is used, where W(q) is the surface-

height spectrum (Gaussian/exponential), and the kernels 

I^(n)_pp combine Fresnel terms and surface gradients 

(Long & Ulaby, 2015). 
𝜎𝑝𝑝

0 (𝜃)  =

 
𝑘2 𝑐𝑜𝑠2 𝜃

4𝜋
 𝑒𝑥𝑝(−2 𝑘2 𝜎2 𝑐𝑜𝑠2 𝜃) ∑

(𝛹𝑝𝑝
𝑛 (𝜀.𝜃)) 2

𝑛!
 𝑊𝑊(𝑛)(2 𝑘 𝑠𝑖𝑛 𝜃)∞

𝑛=1   

(13) 

2.4.5. Volume scattering based on the Rayleigh model 
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For particles much smaller than the wavelength 

(Rayleigh regime), the single-particle scattering cross 

section of a sphere of radius a in a background medium of 

refractive-index ratio m is used (Long & Ulaby, 2015). 

For a layer of thickness L and number density N, σ_v^0 

≈ N L σ with one/two-way transmissivity correction. 

𝜎𝑅𝑎𝑦𝑙𝑒𝑖𝑔ℎ  =  
8𝜋

3
 𝑘4 𝑎6 | 

𝑚 2 − 1

𝑚 2 + 2
 | 2          (14) 

2.5. Sensor parameters for simulation 

Table 1 shows the sensor parameters for simulation. 

 

Table 1. Sensor & Scene Parameters 

Parameter Symbol Value / Setting 

Rail length L ≈ 3 m 

Antenna height z_air ≈ 1.5 m 

Band / center S- band / fc ≈ 3.2 GHz 

(device- specific) 

Sweep bandwidth B 100–600 MHz (tested) 

Chirp duration T_chirp 1–5 ms (typical) 

Spatial step Δx 0.01–0.03 m 

Positions K ≈ L/Δx 

Sub- aperture D_sa 0.4–1.6 m 

Reconstruction angle i 0°–15° 

Windowing — Rect / Hamming / 

Hann / Blackman 

Polarization pol VV / VH / HH 

 

3. Experiments and Results 

In this section, experiments were designed and 

conducted in a simulated environment, and their 

descriptions and results are presented. 

To validate geometry and establish a performance 

baseline, we first consider a free- space configuration in 

which three point targets are placed along the rail track 

and imaged with a scan length of approximately L ≈ 3 m. 

Design relations predict nominal resolutions of ≈45.4 cm 

in range and ≈15 cm in cross- range; measured 

point- spread widths are 59.4 cm and 21.8 cm, 

respectively, reflecting expected broadening from 

windowing and sampling. This experiment confirms the 

correctness of the focusing kernel and provides a 

calibrated operating point for subsequent comparisons. 

Figure 5. Output image of the TP processor in free space 

We then compare tomographic profiling (TP) with 

classical SAR back- projection for a single buried metal 

target located near x_t ≈ 0 and z_t ≈ 3.40 m. For TP, a 

sub- aperture of D_sa ≈ 1.5 m is adopted to achieve ~15 

cm cross- range resolution. While both methods detect a 

peak at the true location, TP exhibits a narrower and 

more stable main lobe and markedly lower sidelobe 

levels. Aperture partitioning with appropriate 

frequency/space windows suppresses coherent sidelobes 

and stabilizes the peak position, yielding smaller effective 

depth FWHM and improved PSLR relative to SAR; 

practically, this translates into clearer detectability and 

more reliable localization of shallowly buried objects 

(Table 2; Figs. 6). 
 

Table 2. Comparison of TP processor vs. SAR processor 

Method Δz 
theoretical 

(m) 

Δz_effective 
(m) 

FWHM 
(m) 

PSLR 
(approx., 

dB) 
SAR — ≈ 0.45 0.50 – 

0.45 
−22 … 

−18 
TP 0.15 – 0.12 ≈ 0.30 0.35 – 

0.28 
−30 … 

−25 

 

Next, we contrast an Ideal scene (specular surface, no 

volume scattering) with a Real scene that includes IEM 

surface roughness and Rayleigh volume scattering at 0° 

and 10° incidence. TP maintains target localization 

across conditions, even as the Real case exhibits higher 

background and slightly broader responses. The 

similarity of PSLR between cases indicates that sidelobes 

are largely controlled by the processing windows rather 

than the scene itself, whereas small variations with 

incidence angle match nominal resolution trends. These 

observations confirm robustness of the TP reconstruction 

to realistic surface/volume clutter (Table 3; Figs7). 

 

Table 3. Quantitative results in the two scenarios 

Scenario Target FWHM_CR 
(cm) 

PSLR 
(dB) 

Peak @ 
x (cm) 

Ideal 0° A 17.7 -3.4 180.0 
Ideal 0° B 19.2 -3.1 150.0 
Ideal 0° C 20.9 -3.1 120.0 
Ideal 10° A 18.0 -3.1 180.0 
Ideal 10° B 19.1 -3.1 150.0 
Ideal 10° C 20.9 -3.1 121.0 
Real 0° A 17.7 -3.4 180.0 
Real 0° B 19.2 -3.1 150.0 
Real 0° C 20.9 -3.1 120.0 
Real 10° A 20.9 -3.0 180.0 
Real 10° B 19.0 -3.1 150.0 
Real 10° C 20.9 -3.0 121.0 

 

We then examine moisture dependence using five levels 

from Dry to Wet. As moisture increases, dielectric losses 

rise and near- surface reflections strengthen, reducing 

SNR at depth and degrading target contrast. Although 
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larger ε′ can slightly sharpen the nominal depth 

resolution, attenuation dominates beyond moderate 

moisture and FWHM estimates become less reliable. 

Accordingly, the best performance for deeper targets in 

this band is obtained at low moisture (Table 4; Figs. 8). 

 

 

Table 4. Quantitative results vs. moisture 

Condition ResH_th ResV_th FWHM_CR FWHM_R PSLR_CR PSLR_R 

Dry 14.88 33.204 20.525 43.217 -3.4505 -3.0999 

Low 14.88 30.808 19.833 40.076 -3.0471 -3.0597 

Mid 14.88 28.461 19.122 36.778 -3.2659 -1.0236 

High 14.88 26.682 18.721 3860.5 -3.3829 -32.085 

Wet 14.88 24.903 21.352 0 -3.4106 1.9287e-

15 

Figure 6. Free- space comparison between baseline SAR back- projection and tomographic profiling (TP). (a) SAR 

back- projection image; axes: x [cm] vs. depth below antenna [cm], color scale in dB. (b) TP image with a 1.51 m 

sub- aperture (theoretical resolutions: ResH_th ≈ 12.3 cm, ResV_th ≈ 29.9 cm); the white dashed line marks the depth 

slice used in (c). (c) Depth profile at the target x (normalized); TP exhibits a narrower −3 dB main- lobe and lower 

sidelobes than SA 

Figure 7. Ideal vs. realistic scenes at normal incidence (free- space vs. rough/volume). (a) Ideal scene TP image; (b) Realistic 
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scene (IEM surface with Rayleigh volume), with estimated FWHM_x annotated on inclusions; (c–e) Depth profiles at x = 

+0.30, 0.00, and −0.30 m (dashed: ideal; solid: realistic); (f–h) Cross- range (horizontal) cuts at z = 1.30, 1.60, and 1.95 

m (dashed vertical lines denote the target x).

 

Figure 8. Moisture dependence in S-band tomographic profiling (TP). 

(a–e) TP x–z reconstructions for Dry, Low, Mid, High, and Wet moisture levels; axes: x [cm] vs. depth below antenna [cm]; color 

scale in dB with identical normalization across panels. (f) Cross-range cut at the target depth (normalized). (g) Depth profile at x 

= target-B (normalized). Observation: with increasing moisture, dielectric loss and near-surface returns rise, reducing 

penetration and contrast; the main lobe slightly broadens and sidelobes increase (lower PSLR), while the target localization 

remains stable. 

 

Finally, we analyze sensitivity to soil type using Sand, 

SandyLoam, Loam, Clay, and GravellySand under 

otherwise fixed conditions. Differences are governed 

primarily by permittivity and attenuation: higher 

refractive index n and loss α in Loam/Clay elongate range 

responses and reduce amplitude, whereas cross- range 

behavior remains largely controlled by the chosen 

sub- aperture. Increased heterogeneity in GravellySand 

produces richer sidelobe structure and inferior PSLR. 

Overall, TP preserves localization and retains its 

FWHM/PSLR advantage relative to SAR across soil types 

(Table 5; Figs. 9).

 

Table 5. Quantitative results vs. soil type 

Soil ResH_th ResV_th FWHM_CR FWHM_R PSLR_CR PSLR_R 

Sand 14.88 29.884 19.546 38.84 -3.1335 -3.2633 

SandyLoam 14.88 28.461 19.106 36.938 -3.2827 -3.1468 

Loam 14.88 27.167 18.71 35.328 -3.4305 -3.4826 

Clay 14.88 25.986 18.378 33.763 -3.5628 -3.2547 

GravellySand 14.88 31.456 20.028 40.95 -3.637 -3.0054 
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Figure 9. Soil-type sensitivity in S-band tomographic profiling (TP). 

(a–e) TP x–z reconstructions for Sand, SandyLoam, Loam, Clay, and GravellySand under identical geometry and processing; 

axes: x [cm] vs. depth below antenna [cm]; color scale in dB with identical normalization across panels. (f) Cross-range cut at 

the target depth (normalized). (g) Depth profile at x = target-B (normalized). Observation: Loam/Clay (higher refractive index n 

and loss α) reduce peak amplitude and broaden the range response; GravellySand exhibits richer sidelobes (worse PSLR); cross-

range shape is largely governed by the chosen sub-aperture, and target localization is preserved

 

4. Discussion 

- Depth resolution and target contrast: In the comparative 

experiment, TP provided a smaller depth FWHM for the 

buried target than SAR, due to aperture partitioning and 

windowing that suppress sidelobes. 

- Spatial stability of peaks: TP peak locations were more 

consistent with the reference depth—even with 

surface/volume clutter—than SAR, which is practically 

important for GB-SAR targeting. 

- Scenario effects (Ideal/Real): As expected, the Real 

scenario had higher background due to IEM/Rayleigh 

contributions; PSLR was largely controlled by window 

selection. 

- Moisture/soil: Higher moisture increased losses and 

reduced penetration and contrast; soil-type differences 

mainly reflected changes in permittivity and attenuation. 

 

In summary, TP is an efficient middle ground between 

SAR and TomoSAR: with a single scan and appropriate 

processing, it reconstructs an x–z depth profile while 

reducing surface/volume ambiguity and improving 

FWHM, PSLR, and SBR. This advantage persists in near-

realistic scenarios, with careful windowing, sub-aperture 

selection, and soil-parameter calibration. 

 

5. Conclusion 

     This study introduced and evaluated Tomographic 

Profiling (TP) as a single-pass, low-cost method for 

retrieving vertical backscatter profiles in the S-band. 

Simulations showed that TP, relying on sub-aperture 

sliding and controlled look angle, can provide part of the 

advantages of TomoSAR with much simpler data 

acquisition and reduce the depth ambiguity typical of SAR 

processing. The physical framework used—multilayer 

propagation with Snell and Fresnel coefficients, 

Hallikainen moisture/frequency damping, and surface 

(IEM) and volume (Rayleigh) scattering—models realistic 
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signal behavior in soil and provides a consistent basis for 

analysis. 
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