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This study evaluates the effectiveness of Real-ESRGAN, a deep learning-based super-
resolution method, in improving the radiometric and geometric quality of UAV imagery for
urban applications. While UAV photogrammetry facilitates the generation of 3D models and
orthophotos, its limited spatial resolution restricts accuracy in detailed urban analysis. Super-
resolution techniques, particularly those based on deep learning, offer a promising solution
by reconstructing finer spatial details from low-resolution inputs.

High-resolution images were reconstructed from UAV-based aerial photographs using the
Real-ESRGAN model. These outputs were compared against bicubic interpolation and
original datasets to assess visual, radiometric, and geometric improvements.
Photogrammetric products, including orthoimage mosaics and 3D mesh models, were
generated from each image type. Standard quality metrics (e.g., RMSE, ERGAS, SAM,
GRMSE) were used for evaluation.

Real-ESRGAN substantially outperformed bicubic interpolation in radiometric quality,
showing improvements of 57.76% in RMSE, 100% in ERGAS, and 56.59% in SAM. It also
improved geometric accuracy in derived products, as confirmed by the statistical (z-score)
and practical (Cohen’s d) analyses, with the largest practical effect observed in the Z-direction
and 3D RSS of mesh reconstructions, indicating substantial and practically meaningful error
reduction.

The findings demonstrate that Real-ESRGAN can effectively enhance both visual quality and
spatial accuracy of UAV-derived imagery and photogrammetric products. However, slight
geometric inconsistencies in raw SR images suggest a trade-off between perceptual
enhancement and geometric fidelity. Future research should explore geometry-aware super-
resolution models that integrate spatial constraints and training strategies suited for

geospatial applications.

119


mailto:mohammadtavakoli@ut.ac.ir
https://orcid.org/0009-0006-2817-7344
https://orcid.org/0000-0002-7918-3166
https://orcid.org/0000-0002-1805-9559
https://orcid.org/0009-0000-3955-683X

Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024

Cite this article: Tavakoli, M., SaadatSeresht, M., Jamshidpour, N., & Eftekhari, A. (2025). Radiometric and Geometric
Enhancement of UAV-Based Urban Orthophoto Mosaic Using Real-ESRGAN Super-Resolution, Earth Observation
and Geomatics Engineering, Volume 8, Issue 2, Pages 119-132. http//doi.org/10.22059/e0ge.2025.398074.1181

© The Author(s).

Publisher: University of Tehran.

DOI: http//doi.org/10.22059/e0ge.2025.398074.1181

1. Introduction

In recent years, the demand for high-precision spatial
data in urban areas has grown significantly (Yu & Fang,
2023). This demand is driven by the complexity of urban
planning, infrastructure management, and sustainable
development. In particular, detailed spatial analysis is
required to address challenges such as traffic congestion,
environmental pollution, and resource allocation (Rotilio,
2019). As a result, there has been a growing focus on
utilizing advanced technologies and methods that produce
spatial products with higher geometric and radiometric
accuracy (Kovanic et al, 2023). Aerial imagery,
particularly ~ when integrated  with  UAV-based
photogrammetry, has become a key source for generating
high-resolution 3D models, Orthophotomosaics, and maps
that support spatial analyses (Lamsters et al., 2020).

Historically, spatial analysis relied on analog aerial
images, which served as the primary source of geospatial
data for decades (Muhmad Kamarulzaman et al., 2023).
With technological advancements, these analog images
were gradually replaced by digital imagery. In recent years,
the emergence of unmanned aerial vehicles (UAVs) has
transformed urban data acquisition by collecting high-
resolution aerial imagery with greater flexibility and cost-
effectiveness (Hu & Minner, 2023). This advancement in
data collection has improved both the speed of production
and the accuracy of spatial models (Lee et al., 2024).

UAV-based photogrammetry has become particularly
important in the context of smart city development, where
precise spatial information is essential for urban planning,
geographic  analysis, resource  monitoring, and
infrastructure management (Mohamed et al., 2020).

However, one of the main challenges in using UAV-
derived photogrammetric data is the limitations in the
radiometric and geometric quality of the images. Especially
in urban environments with complex features, images
captured by UAVs can suffer from noise, low resolution, and
geometric distortions, which can reduce the accuracy and
reliability of subsequent spatial analyses. Therefore,
improving image quality has become a key research area in
photogrammetry and aerial imaging (Nex et al., 2022).
Traditional methods such as interpolation techniques (e.g.,
nearest neighbor, bilinear, bicubic), noise reduction
algorithms, contrast enhancement, and edge reconstruction
using filters like Gaussian, median, or Laplacian have been
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commonly used. However, these classical approaches face
significant limitations. They often fail to reconstruct fine
details or preserve complex spatial structures, and in many
cases, they lead to blurred, distorted, or artificial results,
ultimately reducing the accuracy of photogrammetric
applications.

Among the various approaches developed for this
purpose, super-resolution techniques have emerged as one
of the most promising (Haris et al., 2017; Matsuoka &
Fukue, 2020; Panagiotopoulou et al., 2023). These methods
aim to reconstruct high-resolution images from low-
resolution inputs, thereby providing more detailed and
clearer data for urban analysis.

Traditionally, super-resolution methods were based on
reconstructing images from a set of images taken with short
time or spatial intervals. However, recent advancements in
deep learning and neural networks have transformed these
techniques, enabling the improvement of image quality from
a single input image. Particularly in the last decade,
Generative Adversarial Networks (GANs) and models like
Enhanced Super-Resolution  Generative  Adversarial
Networks (ESRGAN) have garnered significant attention.
These models, leveraging advanced deep learning
algorithms, allow for the reconstruction of images with
higher precision and detail, which is especially beneficial in
applications where image clarity is crucial, such as urban
planning and 3D modeling.

Implementing these techniques in UAV photogrammetry,
particularly for image enhancement, eliminates the need for
lower flight altitudes often associated with data redundancy
or larger focal lengths, which weaken the network stability.
Ultimately, these methods can help reduce costs and
improve efficiency in data collection. Despite these
advancements, limitations still exist, such as the quality of
UAV sensors and non-ideal conditions that can reduce
image accuracy. In this context, methods like ESRGAN can
significantly mitigate these limitations, leading to higher-
quality products in both radiometric and geometric terms.

This paper aims to evaluate the improvement in the
radiometric and geometric quality of spatial products
derived from UAV photogrammetry using the ESRGAN
method. A comparative analysis will be conducted between
the original images, enhanced images, and the resulting
spatial products such as point clouds, meshes, and
orthophoto mosaics. The main objective of this study is to
assess the impact of this method on improving the accuracy
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and resolution of UAV-based products, as well as reducing
errors in spatial data. The findings of this research could
serve as an effective solution to overcome the challenges of
quality in UAV photogrammetry data in urban areas,
particularly in fields such as urban planning, precise
mapping, and 3D modeling

Image super-resolution (SR) techniques can be
categorized broadly as Single-Image Super-Resolution
(SISR) or Multi-Image Super-Resolution (MISR) methods.
SISR reconstructs high-resolution (HR) images from single
low-resolution (LR) inputs and is widely used in medical
imaging, surveillance, and remote sensing. It is popular
because of its simplicity and ability to be applied to a single
frame. Still, single image super-resolution (SISR) is an ill-
posed problem because high-frequency details are lost,
making their recovery challenging. This enables Al-based
SISR techniques to outperform classical methods (Bee Lim
etal., 2017).

MISR, on the other hand, uses multiple LR images of the
same scene viewed from different angles or at different
points in time. It fuses these images to generate HR outputs
through complementary information, which is applicable in
video super-resolution, astronomy, and photogrammetry.
However, MISR methods require precise image alignment
and are computationally heavy, which restricts their use in
dynamic or noisy environments (Christian Ledig et al.,
2017).

SISR is the main focus of this review, and as such, our
proposed ESRGAN method is included in this category. We
explore classical and Al-based approaches and review the
respective novelties, advantages, and limitations.

A key gap identified in the current body of research is
that most super-resolution studies have focused solely on
improving the visual quality of images, without adequately
evaluating their geometric accuracy and applicability in
geospatial decision-making. Investigations reveal that while
these algorithms may visually enhance images, they can
introduce significant distortions in the geometric structure,
which compromises the reliability of the resulting spatial
products. This becomes critical in high-precision
applications, where minor inaccuracies may lead to
considerable errors in final outputs and spatial analyses.
The present study aims to address this limitation by not only
evaluating visual improvements but also systematically
assessing the geometric integrity of super-resolved UAV
images. The research introduces a novel, application-
oriented approach that integrates deep learning techniques
with photogrammetric principles to propose a new pathway
for improving both the visual and spatial quality of aerial
imagery.

The main scientific contributions of this research can be
summarized as follows, aiming to address current gaps in
the literature and advance the practical application of deep
learning in UAV-based photogrammetry:

— The study evaluates the performance of Real-ESRGAN in
enhancing both the visual and quantitative quality of

UAYV images compared to classical approaches.

— It assesses the effect of image super-resolution on the
positional accuracy of end products using reference
images and a set of low-resolution (LR), bicubic
interpolated (BI) high-resolution, Real-ESRGAN super-
resolution (SR) images.

— The methodology incorporates real and complex urban
models along with precise analytical tools to measure
geometric accuracy and spatial fidelity.

— The research integrates deep learning with rigorous
spatial evaluation to offer a cost-effective, time-efficient,
and accurate approach for enhancing photogrammetric
products.

Paper structure explanation

2. Single Image super-resolution methods

Single Image Super-Resolution (SISR) techniques aim to
reconstruct a high-resolution image from a single low-
resolution input, without relying on additional frames or
viewpoints. These methods have gained significant attention
due to their practicality in real-world scenarios where only
one image is available, such as UAV photogrammetry. Over
the years, SISR approaches have evolved from traditional
interpolation and reconstruction-based algorithms to
advanced deep learning architectures that can recover fine
textures and structural details. This section reviews both
conventional and Al-based SISR methods, highlighting their
principles, strengths, and limitations in the context of spatial
data enhancement.

2.1. Conventional SISR methods

Conventional super-resolution in the days before deep
learning consisted of interpolation-based, reconstruction-
based, and example-based methods. These techniques were
straightforward and intuitive to implement, yet they were
limited in recovering fine details and handling high-
frequency textured content.

2.1.1. Interpolation-based methods

These methods, such as bilinear, bicubic, and nearest-
neighbor interpolation, use neighboring pixel values to
calculate missing high-frequency details by taking an
average. These methods are computationally light and easy
to apply but fail to recreate fine textures, leading to
blurriness and artifacts. Some key studies in this domain
include a systematic review of interpolation techniques from
the University of Malaysia Perlis (Wang et al., 2018), and
a study by HTX's S&COE team comparing interpolation
versus deep learning-based methods (Baghel et al., 2023).
Introductory materials are also available from general
resources such as “Image Scaling” by Wikipedia
contributors (Mei et al., 2020).

2.1.2. Reconstruction-based methods

These methods treat SR as an optimization problem and
impose priors such as smoothness, sparsity, or edge
continuity to constrain the solution space. These methods

121



Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024

are better than interpolation since they also consider
assumptions about image properties, but they perform worse
in complex real-world settings. Notable works include
(Kamasak et al., 2005)'s approach of interpolating and then
estimating sub-pixel shift, and (Protter et al., 2009), who
used self-similarity-based image reconstruction
techniques.(Zhang et al., 2012) showcased progress and
issues with the application of such methods to
heterogeneous datasets.

2.1.3. Example-based methods

These approaches can employ dictionaries of LR-HR
pairs to synthesize the missing high-frequency content. They
utilize prior data to improve resolution and act as an
intermediary between interpolation and learning-based
methods. For instance, (Zhang et al.,, 2011) applied
dictionary learning to medical imaging for CT image
reconstruction. (Wang et al., 2015) offered an extensive
review of dictionary-based and learning-based SR methods.
Additionally, (Bedi & Agarwal, 2015) investigated example-
based methods and highlighted that well-curated
dictionaries are essential for achieving effective SR.

2.2. DL-based SISR methods

The advent of Al-based methods has transformed SISR, as
algorithms can now learn complex LR-to-HR mappings
using vast amounts of data. Such techniques may include
CNN-based, GAN-based, or Transformer-based methods.

2.2.1. CNN-based methods

Many SISR models employ CNNs, which are the
foundation of modern image processing pipelines. One
prominent architecture is the Enhanced Deep Residual
Networks for Single Image Super-Resolution (EDSR) (B.
Lim et al., 2017). EDSR optimized the ResNet structure by
removing batch normalization layers, which improved
performance and reduced computational cost. This yielded
improved spatial information preservation and state-of-the-
art performance on benchmark datasets. However, EDSR
faces challenges in reconstructing fine details in highly
complex images.

2.2.2. GAN-based methods

Recent advances in SISR include the use of GANs, which
have made remarkable progress by focusing on perceptual
quality. SRGAN (C. Ledig et al., 2017) comprises two
principal components: a generator network and a
discriminator network.

2.2.3. Transformer-based methods

Recently, Transformer-based architecture has become
popular in SISR. (Baghel et al, 2023) proposed
SRTransGAN, which combines the long-range dependency
modelling of transformers with the perceptual realism of
GANSs. This method excels at capturing relationships across
the entire image but is computationally expensive and
requires large datasets. (Liang et al., 2021) proposed a
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novel approach, Image Super-Resolution Using Cross-Scale
Non-Local Attention, to model both local and global
dependencies using cross-scale attention mechanisms to
achieve high-quality texture restoration. However,
Transformer-based methods are still computationally
expensive and highly reliant on large-scale datasets despite
their superior performance. requirements and difficulties in
working with heterogeneous datasets.

While progress in SISR techniques is evident, they have not
yet been widely applied to UAV-based photogrammetry.
UAV-derived spatial products, such as orthoimage mosaics
(OIM) and 3D models, introduce challenges like varying
resolutions and noise. Adaptive Al-based SISR techniques
for UAV photogrammetry should be explored in future
research, and their usefulness in improving spatial accuracy
and recovering minute details should be assessed.
Experiments on original images and derived products are
essential to validate their practical utility in remote sensing
and geospatial applications.

3. Methodology

This section outlines the methodology employed to
analyze image data and associated spatial products for
super-resolution improvement. As it is shown in Figure 1,
the process begins with data collection, where raw UAV
images are obtained and their associated spatial products
are generated to serve as the ground truth for our
evaluation. Subsequently, low-resolution images are
generated using bilinear resampling techniques. Then, high-
resolution images are produced through cubic
interpolation. Next, super-resolution images are created
using the REAL-ESRGAN (Enhanced Super-Resolution
Generative Adversarial Network) model. Following that,
spatial products of all three groups of images, including
Orthoimage Mosaic (OIM) and 3D meshes, are generated
to enrich the dataset. Afterward, a comprehensive
comparison is conducted between raw images, OIM, and 3D
meshes against the ground truth. Finally, the quality
assessment is performed to evaluate both the radiometric
and geometric accuracy of the products. This evaluation
employs predefined metrics such as GRMSE, RRMSE,
ERGAS, SAM, UIQI, CC, and PSNR.

3.1. Generating Low-Resolution
Resampling

Images Using Bilinear

To simulate low-resolution images (Low-Resolution or
LR), the high-resolution (High-Resolution or HR) images
were down sampled to a lower resolution using 2D bilinear
interpolation. This method estimates the value of each new

pixel by averaging the weighted values of neighboring

pixels. More precisely, the value of each new pixel I'(x', y")
is calculated using the following equation:

',y =X 1(xy) - wx', x).w(y',y;)



Radiometric and Geometric Enhancement of UAV-Based Urban Orthophoto Mosaic Using Real-ESRGAN ...

@

Here, I(xi,yj) represents the surrounding pixel values, and
w are the weights based on the distance between the
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Figure 1. The proposed framework to comprehensive radiometric and geometric evaluation of associated spatial
products for super-resolution improvement.

target pixel (x', y") and the original pixels. In this study, the
images were down sampled such that their resolution was
reduced by a factor of four, and these low-resolution images
were then used as input for the REAL-ESRGAN neural
network.

3.2. Generating High-Resolution
Interpolation

Images Using Bicubic

To evaluate the performance of the widely used
conventional interpolation technique, cubic interpolation, in
improving image quality and the quality of associated
spatial products, we applied this method to all images in the
dataset. By comparing the results of cubic interpolation with
those obtained using the deep learning Real-ESRGAN
method, we aimed to quantify the effectiveness of each
approach in enhancing image quality and the corresponding
spatial products.

3.3. Image Super-Resolution Using Real-ESRGAN

The evolution of generative adversarial networks (GANS)
for image super-resolution began with the introduction of
SRGAN (Super-Resolution GAN), which was the first to
combine perceptual loss and adversarial learning to
produce high-resolution images from low-resolution inputs.
SRGAN utilized a ResNet-based generator with batch
normalization layers and a standard discriminator network,
enabling it to generate photo-realistic textures. However, it

often introduced unnatural artifacts and failed to preserve
fine details in smooth regions or edges.

To address these limitations, ESRGAN (Enhanced
SRGAN) (Wang et al., 2018), introduced several key
architectural improvements. It replaced standard residual
blocks with Residual-in-Residual Dense Blocks (RRDBS),
removing batch normalization to improve training stability
and image fidelity. ESRGAN also adopted a relativistic
discriminator, which evaluates how much more realistic a
generated image is compared to a real one, rather than
simply classifying it as real or fake. These changes led to
better texture reconstruction, sharper edges, and fewer
artifacts than SRGAN, though ESRGAN still relied on
synthetic LR-HR image pairs and did not generalize well to
real-world degradation patterns.

To overcome this, Real-ESRGAN was developed as a
robust extension of ESRGAN for handling real-world
degradations such as noise, blur, and compression artifacts
(Wang et al., 2021). As shown in Figure 2. it introduces a
U-Net-based discriminator for better perceptual quality
assessment and uses a high-order degradation model to
simulate more realistic low-quality training data.
Furthermore, it can be trained with both synthetic and
unpaired real-world images. This makes Real-ESRGAN
particularly suitable for photogrammetric products like
orthophotos and 3D textured models, where image
sharpness, geometric consistency, and radiometric clarity
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are critical. Its ability to enhance low-quality UAV imagery
while preserving structural detail directly improves the
spatial accuracy and interpretability of derived geospatial
datasets.

A distinctive feature of REAL-ESRGAN is its
incorporation of a perceptual loss function, which leverages
features extracted from pre-trained deep networks. This loss
function helps the network not only optimize traditional
quantitative metrics such as Peak Signal-to-Noise Ratio
(PSNR) but also improve the perceptual quality of the output
images as judged by human observers.

Algorithm 1: REAL-ESRGAN
Input:
Low-resolution image (LR)
Initialize:
— Generator Network G
— Discriminator Network D
1. Define Generator Network G:
— Apply initial convolution to extract basic features from LR
image
For each Residual Dense Block in G:
Apply several convolutional layers
Use dense connections
Use residual connections

End
— Apply Super-Resolution Module to upscale image
2. Define Discriminator Network D:
— Apply convolutional layers to extract texture/detail features
from image
— Apply fully connected layers to compute realism score
4. Define Perceptual Loss:
— Extract high-level features from pre-trained network
— Compute feature similarity between generated HR and
ground truth
5. Adversarial Training Loop:
While until convergence:
— Update Generator G:
Generate HR image from LR input
Compute perceptual loss and adversarial loss
Backpropagate and update G's weights
— Update Discriminator D:
Receive real HR image and generated HR image
Compute loss to distinguish between real and fake
Backpropagate and update D's weights

End
Return High-resolution image (HR) from the Generator

The Real-ESRGAN model was adapted using a two-stage
process: an initial pre-training with the RealESRNet
architecture for pixel-level reconstruction, followed by fine-
tuning with a GAN-based framework incorporating
perceptual loss from VGG19, L1 loss (weight 0.01), and
structural fidelity terms. The training dataset combined

124

synthetically degraded images and real UAV imagery from
urban environments, ensuring both generalized and
domain-specific performance optimization.

3.4. Spatial Products Generation

Following the generation of high-resolution images using
the super-resolution model, these outputs were utilized to
derive key spatial products essential for photogrammetric
and geospatial workflows. One primary application was the
construction of 3D mesh models, where the enhanced spatial
details contributed to the creation of more geometrically
accurate and visually realistic surface representations.
These models provide critical structural context and are
particularly beneficial in urban modeling, topographic
reconstruction, and change detection analyses.

Additionally, orthoimage mosaics (OIMs) were produced
from the super-resolved images. These orthorectified
mosaics offer high radiometric and geometric fidelity,
making them suitable for spatial analysis, thematic
mapping, and land monitoring applications. The use of
enhanced-resolution inputs in generating OIMs ensured
improved sharpness in feature boundaries, better alignment
across overlapping scenes, and greater overall
interpretability. These spatial products also served as a
basis for quantitatively evaluating the benefits of the super-
resolution process in terms of both radiometric
enhancement and geometric precision.

4. Experiment

This section presents the analysis of the results obtained
from evaluating the quality of the reconstructed images. For
a comprehensive assessment, it is necessary not only to
compare the reconstructed images themselves but also to
examine the quality of the derived photogrammetric
products, including 3D mesh models and orthophoto
mosaics. The section begins with a description of the data
collection process.

4.1. Study Area and Imaging Sensor

The study area is in the city of Rafsanjan, situated in
Kerman Province in southeastern Iran, which is shown in
Figure 3. Rafsanjan lies within a semi-arid climate zone,
characterized by clear skies and favorable lighting
conditions, making it an ideal environment for aerial
imaging and photogrammetric analysis. The region’s
geographic and climatic features support high-precision
data acquisition, offering optimal conditions for capturing
high-quality aerial imagery.

The aerial images used in this study were acquired using
a DJI Phantom 4 Pro V2 drone equipped with a 20-
megapixel camera. The images were captured at an altitude
of 90 meters above ground level during the winter of 2021.
The camera’s sensor produced images with a resolution of
5472 x 3648 pixels, providing detailed and high-quality
data suitable for subsequent super-resolution processing



Radiometric and Geometric Enhancement of UAV-Based Urban Orthophoto Mosaic Using Real-ESRGAN ...

and spatial product generation.
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Figure 2. Architecture of the Real-ESRGAN network. (a) Generator; (b) U-net discriminator with spectral normalization
(Wang et al., 2021)

4.2. Data Acquisition and Preparation

In this study, aerial images were acquired using drone-
based imaging under optimal weather and lighting

conditions to ensure high image quality. These high-
resolution images formed the primary dataset for the
super-resolution  and

subsequent
analyses.

photogrammetric

"

.Fiéﬂre 3. The study afeé kRafsaﬁjlsm, Iran). N

As a preprocessing step, the original high-resolution
images were down sampled using bilinear interpolation,

reducing their resolution to one-quarter of the original size.
These down sampled images served as the low-resolution
(LR) inputs for two distinct super-resolution approaches:
(1) a Dbicubic interpolation (BI) model and
(2) the Real-ESRGAN deep neural network model.
Both methods produced enhanced images with a spatial
resolution approximately four times greater than the LR
inputs. As a result, three datasets were prepared: the
original low-resolution set, the Bl-enhanced images, and the
REAL-ESRGAN-enhanced images. These datasets were
subsequently used to generate photogrammetric outputs,
including 3D point clouds, 3D mesh models, and orthoimage
mosaics (OIMs), which served as the basis for evaluating
spatial and radiometric improvements.

Several challenges arose during the data preparation
phase. These included the selection of suitable training
image pairs for the deep learning model, as well as the
tuning and optimization of the REAL-ESRGAN network to
ensure consistent output quality. Moreover,
photogrammetric considerations such as image coverage,
acquisition geometry, and atmospheric clarity played a
crucial role in ensuring accurate data collection. A
particularly important challenge involved the reassignment
of geospatial information to the enhanced images, as the
network processing pipeline did not preserve geotag
metadata. This issue was resolved by integrating the
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original geospatial metadata, thereby ensuring correct
alignment and georeferencing of the final spatial products.

(b)
Figure 4. (a) 45 UAV image dataset for evaluation, (b)
reconstructed city area as ground truth

4.3. Quality Assessment

To evaluate the accuracy and reliability of the generated
outputs, a comprehensive gquality assessment was performed
by comparing the raw images, orthorectified imagery maps
(OIMs), and 3D mesh models against ground truth
references. In all evaluation stages, the original high-
resolution UAV images (OR), acquired under optimal
weather and lighting conditions, served as the ground truth.
Low-resolution (LR) images were generated from the OR
dataset by applying a 4x downsampling using bilinear
interpolation. These LR images were used as inputs for both
bicubic interpolation (Bl) and Real-ESRGAN (SR)
processing. The evaluation framework addressed both
radiometric and geometric characteristics of the datasets,
which are critical in determining the quality and usability of
photogrammetric products. Three categories of analysis,
visual, radiometric, and geometric were applied across all
derived products to ensure robust and holistic assessment.

Radiometric evaluation was conducted using widely
adopted image quality metrics, including Root Mean Square
Error (RMSE), Relative RMSE (RRMSE), Error relative
global dimensionless synthesis (ERGAS), Spectral Angle
Mapper (SAM), Universal Image Quality Index (UIQI),
Correlation Coefficient (CC), and Peak Signal-to-Noise

126

Ratio (PSNR). These metrics were applied to representative
raw images and OlMs, comparing them to the original high-
resolution dataset as the reference. Geometric evaluation
was performed using the Ground Root Mean Square Error
(GRMSE). This metric was applied in 2D for raw images
and OIMs and in 3D for the reconstructed 3D mesh models,
allowing precise assessment of positional accuracy.

Visual inspection was conducted through qualitative
comparison of selected urban features, particularly
buildings, in both raw images and OIMs. This method
provided insights into perceptual improvements, especially
regarding edge sharpness and structural fidelity, resulting
from the super-resolution process. The evaluation was
based on three image sources: low-resolution images,
bicubic-interpolated images, and images enhanced via
Real-ESRGAN super-resolution.

To quantify the comparative performance of the methods,
the percentage improvement (IMP) or degradation in each
quality metric was calculated between SR and Bl methods,
relative to the LR baseline. The improvement metric is
computed as follows:

SR — B1

IMP = (BI — LR) x 100 (2)

For the visual and geometric assessments, representative
urban features were selected, including various types of
residential and commercial buildings, major road networks,
complex intersections, and open spaces. These features were
chosen to capture the structural diversity and varying
spatial complexities of the study area. For the radiometric
assessment, 38 images were selected to cover diverse urban
and semi-urban scenes, ensuring statistical
representativeness.

For geometric assessments of raw images and orthophoto
mosaics, five representative image scenes were chosen to
reflect variations in building density, structural complexity,
and open spaces, with 30 well-distributed corresponding
points measured for each scene. In the 3D mesh analysis,
Cloud-to-Mesh distances were computed from all vertices of
the reconstructed mesh, with measurements averaged
separately for the X, Y, and Z coordinates to ensure
statistically robust and spatially comprehensive accuracy
measurements.

4.4. Raw Image Analysis
4.4.1. Visual assessment

The visual assessment was conducted by five independent
reviewers to minimize bias. The original high-resolution
(OR) images, 4-times down sampled low-resolution (LR)
images, and super-resolved images produced the bilinear
interpolation (BI), and Real-ESRGAN model (SR) were
presented side-by-side for direct comparison. Reviewers
evaluated each image using a standardized scoring form
covering eight quality indicators: sharpness, noise level,
color fidelity, contrast, presence of artifacts, structural
similarity, naturalness, and fine detail preservation. Each
indicator was rated on a five-point scale, ensuring
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(b) patch 2: OR

(a) patch 1: OR
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_(c) patch 1: LR

(d) patch 2: LR

(e) patch 1: BI

(9) patch 1: SR
Figure 5. Visual comparison of two sample patches
from UAV imagery across different processing methods.
(a—b) Original high-resolution images (OR); (c—d) low-
resolution inputs (LR); (e—f) bicubic interpolation
results (Bl); (g—h) super-resolved outputs using Real-
ESRGAN (SR).

(h) patch 2: SR

consistency and comparability across image types. Table 1.
presenting the visual assessment scores for one of the
evaluated images.

As illustrated in Figure 5, the LR image is low quality
which details are missing details. The Bl image has better
quality compared to LR, but there is degradation in the
edges. The SR image is very close to OR and has the best
visual quality.

Table 1. Raw Images Visual Analysis

Criterion LRvsOR | BIvsOR | SRvs OR
Sharpness 1 3 4
Noise 1 3 5
Color Fidelity 2 3 4
Contrast 3 3 5
Artifacts 1 3 5
SSIM 1 2 5
Naturalness 2 3 4
Detail 1 2 3

Avg. 1.5714 2.8571 4.2857

4.4.2. Radiometric assessment

To further analyze the quality of the reconstructed images,
a radiometric evaluation was conducted on 38 images. In
this assessment, the RMSE, ERGAS, SAM, UIQI, CC, and
PSNR metrics were computed to quantify the extent of
quality improvement in the reconstructed images compared
to the original ones. The results of this analysis are
presented in Table 2.

The computed IMP values in Table 2 provide a
quantitative measure of the relative improvement achieved
by the Real-ESRGAN (SR) method over the bicubic
interpolation (BI), with respect to the low-resolution (LR)
baseline. Notably, the SR method consistently outperforms
Bl across all radiometric criteria. For RMSE, ERGAS, and
SAM—which are error-based metrics where lower values
indicate better performance, SR achieves improvements of
57.76%, 100%, and 56.59%, respectively, confirming
substantial reduction in radiometric distortion. For quality-
enhancing metrics such as UIQI, CC, and PSNR, SR again
demonstrates significant gains with IMP values of 90.44%,
62.63%, and 61.12%, respectively. These results clearly
show that Real-ESRGAN is very effective at improving the
accuracy and visual quality of UAV images, performing
much better than traditional interpolation methods.

Table 2. Raw Image Radiometric Analysis

Radiometric

Criteria LR BI SR IMP
RMSE 0.05914 0.05637 0.05477 | 57.76
ERGAS 0.00023 | 0.00022 | 0.00021 | 100.0
SAM 0.10368 | 0.09875 | 0.09596 | 56.59
ulQl 0.95310 | 0.95791 | 0.96226 | 90.43
CcC 0.95608 | 0.95996 | 0.96239 | 62.62
PSNR 72.7070 | 73.1213 | 73.3745 | 61.11

4.4.2. 2D Geometric assessment

In addition to radiometric evaluation, a geometric
accuracy assessment was conducted to analyze the spatial
consistency of the reconstructed images (Table 3). For this
purpose, five pairs of different images were selected, and the
GRMSE (Geometric Root Mean Square Error) was
calculated for each pair. This metric provides a quantitative
measure of geometric deviations by comparing
corresponding spatial points across whole corresponding
images.

Although Real-ESRGAN enhances the visual quality of
UAYV images, GRMSE results show that it does not always
improve geometric accuracy. In some areas, low-resolution
(LR) images actually exhibit lower geometric error than SR
outputs. This reveals that perceptual improvements do not
necessarily correspond to better spatial alignment—an
important limitation in applications requiring high
geometric fidelity. The observed differences are typically
sub-pixel and may seem negligible; however, in high-
precision photogrammetric applications, even such small
discrepancies can impact results.
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The underlying cause is that deep models like Real-
ESRGAN reconstruct images based on learned features,
rather than preserving exact pixel geometry. This can
introduce subtle misalignments, especially in complex or
repetitive structures, increasing GRMSE despite better
visual clarity. Therefore, while super-resolution enhances
visual and radiometric properties, it may come at the cost of
geometric precision, a trade-off that must be considered in
photogrammetric applications.

Table 3. Raw Image 2D Geometric Analysis

Image LR Bl SR
Image 1 0.261 0.269 0.962
Image 2 0.344 0.458 1.231
Image 3 0.266 0.394 1.630
Image 4 0.270 0.588 1.733
Image 5 0.246 0.335 1.454

Avg. 0.2774 0.4088 1.402

4.5. Orthoimage Mosaics (OIM) Analysis
4.5.1. OIM visual assessment

The visual quality of orthoimage mosaics generated from
each image category (OR, LR, BI, SR) was evaluated
through side-by-side comparisons, which are shown in
Figure 6. The assessment focused on visual artifacts in
urban areas, where LR images showed significant blurring
and loss of fine detail, especially in shadowed regions and
complex structures. In contrast, the orthoimage mosaics
generated from SR images displayed clearer textures and
sharper reconstructed details. Visual comparisons revealed
that HRE outputs closely resembled the reference
orthophotos (OR), demonstrating the Real-ESRGAN
model’s effectiveness in enhancing visual fidelity and
preserving structural integrity in photogrammetric
products.

4.5.2. OIM radiometric assessment

Following the visual evaluations on OIMS, the analysis
extended to  radiometric  assessment on  the
orthophotomosaics generated from LR, Bl, and SR images.
These outputs were assessed in comparison with the
reference orthophoto (OR) based on quantitative
radiometric metrics to evaluate the reconstruction quality
and alignment with the ground truth. The given results in
Table 4 indicated that orthophotomosaics generated from
SR images consistently outperformed those from LR and Bl
sources. The SR outputs were closer to the reference in most
metrics, reflecting superior radiometric fidelity.

The numerical results in Table 4 show that the Real-
ESRGAN method outperforms bicubic interpolation across
most radiometric criteria. The most significant
improvements are observed in SAM and RMSE, with IMP
values of 123.47% and 115.584%, respectively, indicating a
notable reduction in spectral and reconstruction errors.
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UIQI also shows a strong improvement of 66.388%,
suggesting

e

(e) patch 1: OIM from BI

(g) patch 1: OIM from SR

(h) patch 2: OIM from SR
Figure 6. Visual comparison of two sample patches from
orthoimage mosaics (OIMs) across different processing
methods. (a—b) Original high-resolution images (OR); (c—d)
low-resolution inputs (LR); (e—f) bicubic interpolation results
(BI); (g—h) super-resolved outputs using Real-ESRGAN (SR).

better structural image quality in the SR results. PSNR
and CC exhibit moderate gains of 28.40% and 19.284%,
respectively, reflecting enhanced signal clarity and
correlation with the original images. The only metric with
no improvement is ERGAS, which remains unchanged at 0%,
indicating equal performance between SR and Bl in this case.
Overall, the numerical trends confirm that Real-ESRGAN
offers substantial radiometric benefits over traditional
interpolation methods in the generation of orthoimage
mosaics.

Table 4. Orthoimage Mosaic (OIM) Radiometric Analysis

Radiometric | = o BI SR IMP
Criteria

RMSE 0.1205 0.1128 0.1039 115.584
ERGAS 0.00044 0.00040 0.00040 0.0000
SAM 0.2075 0.196 0.1818 123.47
uIQl 0.6029 0.6987 0.7623 66.388
CcC 0.6198 0.7121 0.7299 19.284

PSNR 66.596 67.698 68.011 28.40
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4.5.3. OIM 2D geometric assessment

To evaluate the geometric accuracy of the orthoimage
mosaics generated from images with different resolutions, a
2D positional error analysis was conducted. Using 30
corresponding points per image, the pixel-wise Euclidean
distance between the orthoimage from the reference image
(OR) and three other input types, low-resolution (LR),
bicubic-interpolated (BI), and Real-ESRGAN super-
resolved (SR) was calculated. The average errors for five
representative image scenes are reported in Table 5.

Table 5. OIM 2D Geometric Analysis

Image LR Bl SR
Image 1 2.833 3.426 2.641
Image 2 2.674 3.261 2.394
Image 3 3.109 3.448 2.988
Image 4 2.728 3.117 2.543
Image 5 3.291 3.376 3.043

Avg. 2.9270 3.3256 2.7218

The analysis confirms that orthophoto mosaics generated
from LR images suffer from reduced geometric accuracy due
to their lower clarity and radiometric quality. This
limitation results in noticeable positional discrepancies
during the reconstruction of features, particularly in scenes
with complex details. As a consequence, the ability of
photogrammetric algorithms to extract precise locations
and produce geometrically accurate orthophotos is
diminished. In contrast, the mosaics derived from HRE
images—reconstructed using the Real-ESRGAN model—
demonstrate superior geometric fidelity. The numerical
results support this conclusion: the average positional error
for SR images was 2.7218 pixels, lower than that of LR
(2.9270 pixels) and significantly better than Bl (3.3256
pixels). These findings indicate that Real-ESRGAN not only
preserves texture and structural details more effectively but
also enables more accurate extraction of corresponding
points and alignment with the reference image.

4.6. 3D Mesh Analysis
4.6.1. 3D mesh visual assessment

The textured 3D meshes generated from each of the image
sets (OR, LR, BI, and SR) were visually analyzed and placed
side by side using identical views and similar angles to allow
for a precise comparative assessment presented in Figure 7.

This analysis focused on the reconstruction quality of
urban features with fine details, such as building edges, roof
lines, facades, window frames, and height differences
between structural elements.

The results showed that meshes derived from LR images
had relatively flat surfaces, rough textures, and low quality,
with visible fragmentation and poor reconstruction of
structurally diverse areas. These meshes failed to accurately
preserve elevation information. In contrast, the meshes
generated from SR images exhibited higher clarity and
continuity, especially along edges, and showed improved

surface smoothness and coherence compared to LR. They
were also better at reconstructing complex urban structures.
The reference mesh (OR), as expected, demonstrated the
highest accuracy in representing urban features and served
as the main comparison standard. However, the meshes
produced from SR images performed very similarly to the
reference and proved to be effective in visualizing urban
details.

4.6.2. 3D mesh geometric assessment

In contrast to the 2D geometric evaluations, which used a
limited number of corresponding points, the 3D mesh
geometric assessment was carried out using all vertices of
the reconstructed mesh. The distances between each vertex
of the reconstructed mesh and the reference mesh were
calculated in CloudCompare® and averaged separately for
the X, Y, and Z coordinates, ensuring statistically robust and
spatially comprehensive accuracy measurements.

The conducted analysis aimed to evaluate the influence of
input image quality on the geometric accuracy of textured
3D mesh models produced through photogrammetric
processes. Four distinct image types were assessed: original
reference (OR), low-resolution (LR), and super-resolved
high-resolution images enhanced via bicubic interpolation
(Bl) and the Real-ESRGAN method (SR). The geometric
accuracy was quantitatively analyzed using Cloud-to-Mesh
distances, measured separately in the X, Y, and Z directions,
between each reconstructed mesh and the reference mesh.

The results summarized in Table 6 clearly highlight the
performance differences across the tested image resolutions.
The lowest mean errors relative to the reference were
consistently recorded for the SR meshes, indicating
enhanced geometric fidelity achieved by the Real-ESRGAN
method. Specifically, the SR meshes had mean positional
deviations of approximately 0.0023 m in the X direction,
0.0060 m in Y, and 0.1199 m in Z, compared to the
significantly higher errors observed in the Dbicubic-
interpolated BI meshes (X: 0.0038 m, Y: 0.0130 m, Z: 0.1975
m) and LR meshes (X: 0.0037 m, Y: 0.0084 m, Z: 0.3153 m).
Moreover, standard deviation values, indicative of
consistency and stability in mesh reconstruction, further
demonstrate superior performance for SR. For instance, the
standard deviations for SR were considerably lower (e.g.,
0.0830 min X, 0.1199 min Y, 0.2403 m in Z) compared to
the other approaches, confirming greater uniformity in
reconstruction quality.

The last row of Table 6 presents the overall three-
dimensional geometric error magnitude computed using the
Root Sum of Squares (RSS). This metric combines the mean
errors and their standard deviations from the X, Y, and Z
directions into a single, representative measure, providing
a clear comparison among the three methods (LR, BI, and
SR).
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Table 6. 3D Mesh Geometric Error (Avg =+ std)

Direction LR Bl SR
X 0.0037 +0.1204 | 0.0038 +0.0900 | 0.0023 + 0.1203
Y 0.0084 +£0.0993 | 0.0130 +0.1270 | 0.0060 +0.1299
Z 0.1199 +0.3153 | 0.1975 +0.2403 | 0.0051 + 0.1998
3D RSS | 0.1203+0.3518 | 0.1980 +0.2863 | 0.0082 % 0.2670

According to the computed RSS values, the SR method
significantly outperforms both LR and BI. Specifically, the
RSS value for SR (0.0082 + 0.2670) is considerably lower
compared to LR (0.1203 £ 0.3518) and Bl (0.1980 + 0.2863).
This indicates that the SR method achieved the smallest
overall positional deviation and highest geometric accuracy
among the three methods. Additionally, the lower standard
deviation of the SR method reflects greater consistency and
reliability in reconstructing detailed 3D structures.
Conversely, the BI method exhibited the highest mean RSS
value, implying substantial geometric distortion introduced
by bicubic interpolation compared to the original LR images.
These results underscore the superior effectiveness of the
Real-ESRGAN super-resolution method (SR) in enhancing
geometric fidelity in photogrammetrically generated 3D
meshes.

To further investigate the differences in geometric errors
between the evaluated methods, we quantified both
statistical significance and practical significance using two
complementary measures: the z-score test and Cohen’s d
effect size. The z-score measures how many standard errors
separate the means of two groups and is calculated as

X, — X
g =1 72 (3)

2 2
9 L%
n; Ny

Where x; and x, are the sample means, g; and , g, are
the standard deviations, and n, and n, are the sample sizes
for the two groups. Under the null hypothesis of equal means,
|z] > 1.96 indicates statistical significance at the 95%
confidence level (two-tailed). Given the very large number
of samples in this study, comparable to the number of mesh
vertices in the 3D models, it is expected that z-scores can
reach extremely high values even for very small absolute
differences in the means. This means that while the
statistical significance is high for nearly all comparisons,
the practical relevance of these differences must be
interpreted with caution.

To complement the z-score analysis, Cohen’s d was
calculated to assess practical significance, which reflects
the magnitude of the observed differences in a scale-
independent manner. Cohen’s d is given by

X1 — X2
d= —— 4

Sp

with the pooled standard deviation s, defined as
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Cohen’s suggested interpretation thresholds are: small
(0.2 <d <0.5), moderate (0.5 <d < 0.8), and large (d > 0.8).
Unlike the z-score, Cohen’s d is not directly influenced by
sample size, making it a more robust measure of the actual
magnitude of the improvement. Cohen’s suggested
thresholds are: small (0.2 <d < 0.5), medium (0.5 <d <0.8),

and large (d > 0.8).

Table 7. Statistical significance (z-score) and practical significance
(Cohen’s d) for 3D mesh geometric error comparisons

Direction Bl vs. LR SRvs. LR SR vs. Bl
X 0.26 (0.0) 3.19(0.01) 3.87 (0.01)
Y 11.05 (0.04) 5.68 (0.021) 14.92 (0.05)
Z 75.81 (0.28) 119.11 (0.435) 238.44 (0.87)

3D RSS 66.35 (0.24) 98.31 (0.359) 187.77 (0.69)

Table 7 presents the z-scores (outside parentheses) and
Cohen’s d values (inside parentheses) for each pairwise
comparison. The z-scores are extremely large in most cases,
indicating statistical significance at the 95% level. However,
given the very large number of vertices in the 3D mesh (often
exceeding 150,000 points), even minuscule differences in
means can yield large z-scores. This inflates statistical
significance and can be misleading if interpreted alone.

While z-scores are very large across most comparisons,
confirming that improvements are statistically significant,
the majority of Cohen’s d values are in the small range,
indicating that the effect magnitude is modest in practical
terms. Notable exceptions are found in the vertical (2)
direction and the aggregated 3D RSS measure for the SR vs.
BI comparison, where effect sizes reach the large category
(d = 0.87 and d = 0.69, respectively). These results are
consistent with the known sensitivity of vertical accuracy in
photogrammetric 3D reconstructions to image resolution
and geometric quality. Vertical (Z) estimates depend heavily
on parallax measurements, which are more susceptible to
improvements in image sharpness and texture detail.
Because vertical measurements typically have higher
baseline-related errors and noise compared to horizontal (X
and Y) measurements, resolution enhancement through
super-resolution methods can lead to proportionally greater
accuracy gains in Z. This explains why the Z-direction in our
results exhibits the largest practical significance, even when
horizontal improvements remain statistically significant but
practically smaller in magnitude.

Overall, the analysis conclusively demonstrates that
employing deep-learning-based super-resolution methods
such as Real-ESRGAN not only enhances the visual and
textural quality of input images but also significantly
improves the geometric accuracy and reliability of resulting
3D mesh models. This outcome emphasizes the considerable
potential of advanced image-enhancement methods in
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refining photogrammetric products beyond conventional
interpolation techniques.

5. Discussion and Conclusion

The experimental results confirm that the Real-ESRGAN
model significantly enhances both the visual and
radiometric quality of UAV-derived spatial products when
compared to conventional bicubic interpolation. Across raw
images, orthoimage mosaics (OIMs), and textured 3D
meshes, Real-ESRGAN consistently delivers improvements
in texture clarity, feature sharpness, and radiometric fidelity,
as evidenced by substantial gains in metrics such as RMSE,
SAM, UIQI, and PSNR.

In the case of radiometric analysis, Real-ESRGAN
achieved improvements of up to 100% in some metrics
compared to traditional methods, showing its effectiveness
in reducing spectral and reconstruction errors. These
enhancements contribute directly to more visually coherent
and information-rich images, which can support better
interpretation and decision-making in urban remote sensing
tasks.

From a geometric perspective, the findings reveal a more
subtle outcome. While Real-ESRGAN improved the
geometric fidelity of orthoimage mosaics and 3D mesh
reconstructions in aggregate, its performance on raw 2D
imagery exhibited certain limitations. In some cases, the SR
images showed higher GRMSE values than their LR
counterparts, indicating that perceptual enhancement may
come at the cost of spatial accuracy. This misalignment
arises from the nature of deep learning models, which
prioritize feature reconstruction over pixel-level geometric
consistency. As such, even sub-pixel discrepancies, while
visually negligible, can undermine the accuracy of
photogrammetric outputs in applications requiring precise
spatial measurements.

The results for 3D mesh reconstruction are particularly
promising. The SR-derived meshes demonstrated
substantial reductions in error magnitude across all
dimensions (X, Y, Z) and outperformed both LR and BI
methods in terms of consistency and spatial fidelity.
While z-score analysis indicated that most differences
between methods were statistically significant, partly due to
the very large sample size, Cohen’s d analysis showed that
practical significance was concentrated in the vertical (2)
component and the aggregated 3D RSS, where
improvements were of moderate to large magnitude,
indicating meaningful gains in  real-world 3D
reconstruction performance. It is critical for urban feature
modeling and topographic analyses.

Despite these advances, the trade-off between radiometric
enhancement and geometric accuracy remains a central
challenge. These sub-pixel geometric discrepancies are
primarily caused by the network’s feature reconstruction
process, which can introduce slight spatial shifts during
convolution and upsampling, especially in areas with
repetitive or fine structural patterns. While negligible for

visual interpretation, such deviations can accumulate in
high-precision photogrammetric workflows, potentially
reducing the geometric accuracy of the final products.

Super-resolution networks, including Real-ESRGAN, are
not inherently optimized for spatial coherence, which can
lead to artifacts in geometric alignment, especially in areas
with repetitive or fine structural patterns. This underscores
the need for future research on geometry-aware super-
resolution architectures that integrate spatial constraints
and photogrammetric principles directly into the learning
process. For future research, exploring hybrid super-
resolution approaches could further refine image quality
and spatial accuracy.

Another limitation of this study is that the experiments
were conducted on a single dataset from Rafsanjan, Iran,
acquired under optimal weather and lighting conditions.
While this ensured high-quality input data, it may limit the
generalizability of the findings to other environments, such
as regions with different climatic conditions, varying urban
densities, or UAV platforms with different sensor
specifications. Future research should include case studies
across diverse environmental settings and sensor
configurations to assess the method’s performance in
broader operational contexts. Furthermore, validation
using data from various UAV sensors under different
environmental conditions, such as variable lighting,
seasonal changes, and adverse weather—would provide a
more comprehensive evaluation of Real-ESRGAN'’s
robustness across a wider range of scenarios.

Additionally, integrating high-resolution data, advanced
imaging hardware, and deep learning-based enhancement
techniques could offer a more robust framework for
improving the precision and quality of geospatial products.
Such advancements could bridge the gap between visual
quality and geometric fidelity, enhancing the reliability of
super-resolved imagery in high-precision geospatial
applications.
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