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This study evaluates the effectiveness of Real-ESRGAN, a deep learning-based super-

resolution method, in improving the radiometric and geometric quality of UAV imagery for 

urban applications. While UAV photogrammetry facilitates the generation of 3D models and 

orthophotos, its limited spatial resolution restricts accuracy in detailed urban analysis. Super-

resolution techniques, particularly those based on deep learning, offer a promising solution 

by reconstructing finer spatial details from low-resolution inputs. 

High-resolution images were reconstructed from UAV-based aerial photographs using the 

Real-ESRGAN model. These outputs were compared against bicubic interpolation and 

original datasets to assess visual, radiometric, and geometric improvements. 

Photogrammetric products, including orthoimage mosaics and 3D mesh models, were 

generated from each image type. Standard quality metrics (e.g., RMSE, ERGAS, SAM, 

GRMSE) were used for evaluation. 

Real-ESRGAN substantially outperformed bicubic interpolation in radiometric quality, 

showing improvements of 57.76% in RMSE, 100% in ERGAS, and 56.59% in SAM. It also 

improved geometric accuracy in derived products, as confirmed by the statistical (z-score) 

and practical (Cohen’s d) analyses, with the largest practical effect observed in the Z-direction 

and 3D RSS of mesh reconstructions, indicating substantial and practically meaningful error 

reduction. 

The findings demonstrate that Real-ESRGAN can effectively enhance both visual quality and 

spatial accuracy of UAV-derived imagery and photogrammetric products. However, slight 

geometric inconsistencies in raw SR images suggest a trade-off between perceptual 

enhancement and geometric fidelity. Future research should explore geometry-aware super-

resolution models that integrate spatial constraints and training strategies suited for 

geospatial applications. 
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1. Introduction 

   In recent years, the demand for high-precision spatial 

data in urban areas has grown significantly (Yu & Fang, 

2023). This demand is driven by the complexity of urban 

planning, infrastructure management, and sustainable 

development. In particular, detailed spatial analysis is 

required to address challenges such as traffic congestion, 

environmental pollution, and resource allocation (Rotilio, 

2019). As a result, there has been a growing focus on 

utilizing advanced technologies and methods that produce 

spatial products with higher geometric and radiometric 

accuracy (Kovanič et al., 2023). Aerial imagery, 

particularly when integrated with UAV-based 

photogrammetry, has become a key source for generating 

high-resolution 3D models, Orthophotomosaics, and maps 

that support spatial analyses (Lamsters et al., 2020). 

Historically, spatial analysis relied on analog aerial 

images, which served as the primary source of geospatial 

data for decades (Muhmad Kamarulzaman et al., 2023). 

With technological advancements, these analog images 

were gradually replaced by digital imagery. In recent years, 

the emergence of unmanned aerial vehicles (UAVs) has 

transformed urban data acquisition by collecting high-

resolution aerial imagery with greater flexibility and cost-

effectiveness (Hu & Minner, 2023). This advancement in 

data collection has improved both the speed of production 

and the accuracy of spatial models (Lee et al., 2024).  

UAV-based photogrammetry has become particularly 

important in the context of smart city development, where 

precise spatial information is essential for urban planning, 

geographic analysis, resource monitoring, and 

infrastructure management (Mohamed et al., 2020).  

However, one of the main challenges in using UAV-

derived photogrammetric data is the limitations in the 

radiometric and geometric quality of the images. Especially 

in urban environments with complex features, images 

captured by UAVs can suffer from noise, low resolution, and 

geometric distortions, which can reduce the accuracy and 

reliability of subsequent spatial analyses. Therefore, 

improving image quality has become a key research area in 

photogrammetry and aerial imaging (Nex et al., 2022). 

Traditional methods such as interpolation techniques (e.g., 

nearest neighbor, bilinear, bicubic), noise reduction 

algorithms, contrast enhancement, and edge reconstruction 

using filters like Gaussian, median, or Laplacian have been 

commonly used. However, these classical approaches face 

significant limitations. They often fail to reconstruct fine 

details or preserve complex spatial structures, and in many 

cases, they lead to blurred, distorted, or artificial results, 

ultimately reducing the accuracy of photogrammetric 

applications. 

Among the various approaches developed for this 

purpose, super-resolution techniques have emerged as one 

of the most promising (Haris et al., 2017; Matsuoka & 

Fukue, 2020; Panagiotopoulou et al., 2023). These methods 

aim to reconstruct high-resolution images from low-

resolution inputs, thereby providing more detailed and 

clearer data for urban analysis. 

Traditionally, super-resolution methods were based on 

reconstructing images from a set of images taken with short 

time or spatial intervals. However, recent advancements in 

deep learning and neural networks have transformed these 

techniques, enabling the improvement of image quality from 

a single input image. Particularly in the last decade, 

Generative Adversarial Networks (GANs) and models like 

Enhanced Super-Resolution Generative Adversarial 

Networks (ESRGAN) have garnered significant attention. 

These models, leveraging advanced deep learning 

algorithms, allow for the reconstruction of images with 

higher precision and detail, which is especially beneficial in 

applications where image clarity is crucial, such as urban 

planning and 3D modeling. 

Implementing these techniques in UAV photogrammetry, 

particularly for image enhancement, eliminates the need for 

lower flight altitudes often associated with data redundancy 

or larger focal lengths, which weaken the network stability. 

Ultimately, these methods can help reduce costs and 

improve efficiency in data collection. Despite these 

advancements, limitations still exist, such as the quality of 

UAV sensors and non-ideal conditions that can reduce 

image accuracy. In this context, methods like ESRGAN can 

significantly mitigate these limitations, leading to higher-

quality products in both radiometric and geometric terms. 

This paper aims to evaluate the improvement in the 

radiometric and geometric quality of spatial products 

derived from UAV photogrammetry using the ESRGAN 

method. A comparative analysis will be conducted between 

the original images, enhanced images, and the resulting 

spatial products such as point clouds, meshes, and 

orthophoto mosaics. The main objective of this study is to 

assess the impact of this method on improving the accuracy 
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and resolution of UAV-based products, as well as reducing 

errors in spatial data. The findings of this research could 

serve as an effective solution to overcome the challenges of 

quality in UAV photogrammetry data in urban areas, 

particularly in fields such as urban planning, precise 

mapping, and 3D modeling 

Image super-resolution (SR) techniques can be 

categorized broadly as Single-Image Super-Resolution 

(SISR) or Multi-Image Super-Resolution (MISR) methods. 

SISR reconstructs high-resolution (HR) images from single 

low-resolution (LR) inputs and is widely used in medical 

imaging, surveillance, and remote sensing. It is popular 

because of its simplicity and ability to be applied to a single 

frame. Still, single image super-resolution (SISR) is an ill-

posed problem because high-frequency details are lost, 

making their recovery challenging. This enables AI-based 

SISR techniques to outperform classical methods (Bee Lim 

et al., 2017).   

MISR, on the other hand, uses multiple LR images of the 

same scene viewed from different angles or at different 

points in time. It fuses these images to generate HR outputs 

through complementary information, which is applicable in 

video super-resolution, astronomy, and photogrammetry. 

However, MISR methods require precise image alignment 

and are computationally heavy, which restricts their use in 

dynamic or noisy environments (Christian Ledig et al., 

2017).   

SISR is the main focus of this review, and as such, our 

proposed ESRGAN method is included in this category. We 

explore classical and AI-based approaches and review the 

respective novelties, advantages, and limitations.   

A key gap identified in the current body of research is 

that most super-resolution studies have focused solely on 

improving the visual quality of images, without adequately 

evaluating their geometric accuracy and applicability in 

geospatial decision-making. Investigations reveal that while 

these algorithms may visually enhance images, they can 

introduce significant distortions in the geometric structure, 

which compromises the reliability of the resulting spatial 

products. This becomes critical in high-precision 

applications, where minor inaccuracies may lead to 

considerable errors in final outputs and spatial analyses. 

The present study aims to address this limitation by not only 

evaluating visual improvements but also systematically 

assessing the geometric integrity of super-resolved UAV 

images. The research introduces a novel, application-

oriented approach that integrates deep learning techniques 

with photogrammetric principles to propose a new pathway 

for improving both the visual and spatial quality of aerial 

imagery. 

The main scientific contributions of this research can be 

summarized as follows, aiming to address current gaps in 

the literature and advance the practical application of deep 

learning in UAV-based photogrammetry: 

 The study evaluates the performance of Real-ESRGAN in 

enhancing both the visual and quantitative quality of 

UAV images compared to classical approaches. 

 It assesses the effect of image super-resolution on the 

positional accuracy of end products using reference 

images and a set of low-resolution (LR), bicubic 

interpolated (BI) high-resolution, Real-ESRGAN super-

resolution (SR) images. 

 The methodology incorporates real and complex urban 

models along with precise analytical tools to measure 

geometric accuracy and spatial fidelity. 

 The research integrates deep learning with rigorous 

spatial evaluation to offer a cost-effective, time-efficient, 

and accurate approach for enhancing photogrammetric 

products. 

Paper structure explanation  

 

2. Single Image super-resolution methods 

Single Image Super-Resolution (SISR) techniques aim to 

reconstruct a high-resolution image from a single low-

resolution input, without relying on additional frames or 

viewpoints. These methods have gained significant attention 

due to their practicality in real-world scenarios where only 

one image is available, such as UAV photogrammetry. Over 

the years, SISR approaches have evolved from traditional 

interpolation and reconstruction-based algorithms to 

advanced deep learning architectures that can recover fine 

textures and structural details. This section reviews both 

conventional and AI-based SISR methods, highlighting their 

principles, strengths, and limitations in the context of spatial 

data enhancement. 

2.1. Conventional SISR methods 

Conventional super-resolution in the days before deep 

learning consisted of interpolation-based, reconstruction-

based, and example-based methods. These techniques were 

straightforward and intuitive to implement, yet they were 

limited in recovering fine details and handling high-

frequency textured content.   

2.1.1. Interpolation-based methods 

These methods, such as bilinear, bicubic, and nearest-

neighbor interpolation, use neighboring pixel values to 

calculate missing high-frequency details by taking an 

average. These methods are computationally light and easy 

to apply but fail to recreate fine textures, leading to 

blurriness and artifacts. Some key studies in this domain 

include a systematic review of interpolation techniques from 

the University of Malaysia Perlis  (Wang et al., 2018), and 

a study by HTX's S&COE team comparing interpolation 

versus deep learning-based methods  (Baghel et al., 2023). 

Introductory materials are also available from general 

resources such as “Image Scaling” by Wikipedia 

contributors  (Mei et al., 2020).   

2.1.2. Reconstruction-based methods 

    These methods treat SR as an optimization problem and 

impose priors such as smoothness, sparsity, or edge 

continuity to constrain the solution space. These methods 
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are better than interpolation since they also consider 

assumptions about image properties, but they perform worse 

in complex real-world settings. Notable works include 

(Kamasak et al., 2005)'s approach of interpolating and then 

estimating sub-pixel shift, and (Protter et al., 2009), who 

used self-similarity-based image reconstruction 

techniques.(Zhang et al., 2012) showcased progress and 

issues with the application of such methods to 

heterogeneous datasets. 

2.1.3. Example-based methods 

These approaches can employ dictionaries of LR-HR 

pairs to synthesize the missing high-frequency content. They 

utilize prior data to improve resolution and act as an 

intermediary between interpolation and learning-based 

methods. For instance, (Zhang et al., 2011) applied 

dictionary learning to medical imaging for CT image 

reconstruction. (Wang et al., 2015) offered an extensive 

review of dictionary-based and learning-based SR methods. 

Additionally, (Bedi & Agarwal, 2015) investigated example-

based methods and highlighted that well-curated 

dictionaries are essential for achieving effective SR. 

2.2. DL-based SISR methods 

The advent of AI-based methods has transformed SISR, as 

algorithms can now learn complex LR-to-HR mappings 

using vast amounts of data. Such techniques may include 

CNN-based, GAN-based, or Transformer-based methods. 

2.2.1. CNN-based methods 

Many SISR models employ CNNs, which are the 

foundation of modern image processing pipelines. One 

prominent architecture is the Enhanced Deep Residual 

Networks for Single Image Super-Resolution (EDSR)  (B. 

Lim et al., 2017). EDSR optimized the ResNet structure by 

removing batch normalization layers, which improved 

performance and reduced computational cost. This yielded 

improved spatial information preservation and state-of-the-

art performance on benchmark datasets. However, EDSR 

faces challenges in reconstructing fine details in highly 

complex images. 

2.2.2. GAN-based methods  

Recent advances in SISR include the use of GANs, which 

have made remarkable progress by focusing on perceptual 

quality. SRGAN (C. Ledig et al., 2017) comprises two 

principal components: a generator network and a 

discriminator network. 

2.2.3. Transformer-based methods 

Recently, Transformer-based architecture has become 

popular in SISR. (Baghel et al., 2023) proposed 

SRTransGAN, which combines the long-range dependency 

modelling of transformers with the perceptual realism of 

GANs. This method excels at capturing relationships across 

the entire image but is computationally expensive and 

requires large datasets. (Liang et al., 2021) proposed a 

novel approach, Image Super-Resolution Using Cross-Scale 

Non-Local Attention, to model both local and global 

dependencies using cross-scale attention mechanisms to 

achieve high-quality texture restoration. However, 

Transformer-based methods are still computationally 

expensive and highly reliant on large-scale datasets despite 

their superior performance.  requirements and difficulties in 

working with heterogeneous datasets.   

While progress in SISR techniques is evident, they have not 

yet been widely applied to UAV-based photogrammetry. 

UAV-derived spatial products, such as orthoimage mosaics 

(OIM) and 3D models, introduce challenges like varying 

resolutions and noise. Adaptive AI-based SISR techniques 

for UAV photogrammetry should be explored in future 

research, and their usefulness in improving spatial accuracy 

and recovering minute details should be assessed. 

Experiments on original images and derived products are 

essential to validate their practical utility in remote sensing 

and geospatial applications.   

3. Methodology 

This section outlines the methodology employed to 

analyze image data and associated spatial products for 

super-resolution improvement. As it is shown in Figure 1, 

the process begins with data collection, where raw UAV 

images are obtained and their associated spatial products 

are generated to serve as the ground truth for our 

evaluation. Subsequently, low-resolution images are 

generated using bilinear resampling techniques. Then, high-

resolution images are produced through cubic 

interpolation. Next, super-resolution images are created 

using the REAL-ESRGAN (Enhanced Super-Resolution 

Generative Adversarial Network) model. Following that, 

spatial products of all three groups of images, including 

Orthoimage Mosaic (OIM) and 3D meshes, are generated 

to enrich the dataset. Afterward, a comprehensive 

comparison is conducted between raw images, OIM, and 3D 

meshes against the ground truth. Finally, the quality 

assessment is performed to evaluate both the radiometric 

and geometric accuracy of the products. This evaluation 

employs predefined metrics such as GRMSE, RRMSE, 

ERGAS, SAM, UIQI, CC, and PSNR.   

3.1. Generating Low-Resolution Images Using Bilinear 

Resampling 

To simulate low-resolution images (Low-Resolution or 

LR), the high-resolution (High-Resolution or HR) images 

were down sampled to a lower resolution using 2D bilinear 

interpolation. This method estimates the value of each new  

 

pixel by averaging the weighted values of neighboring 

pixels. More precisely, the value of each new pixel 𝐼′(𝑥′, 𝑦′) 

is calculated using the following equation: 

 

𝐼′(𝑥′, 𝑦′) = ∑ 𝐼(𝑥𝑖 , 𝑦𝑗). 𝑤(𝑥′, 𝑥𝑖). 𝑤(𝑦′, 𝑦𝑗)            𝑖,𝑗                          
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(1) Here, 𝐼(𝑥𝑖 , 𝑦𝑗) represents the surrounding pixel values, and 

𝑤 are the weights based on the distance between the

 

 

 

 
 

Figure 1. The proposed framework to comprehensive radiometric and geometric evaluation of associated spatial 

products for super-resolution improvement. 

target pixel (𝑥′, 𝑦′) and the original pixels. In this study, the 

images were down sampled such that their resolution was 

reduced by a factor of four, and these low-resolution images 

were then used as input for the REAL-ESRGAN neural 

network. 

3.2. Generating High-Resolution Images Using Bicubic 

Interpolation 

To evaluate the performance of the widely used 

conventional interpolation technique, cubic interpolation, in 

improving image quality and the quality of associated 

spatial products, we applied this method to all images in the 

dataset. By comparing the results of cubic interpolation with 

those obtained using the deep learning Real-ESRGAN 

method, we aimed to quantify the effectiveness of each 

approach in enhancing image quality and the corresponding 

spatial products. 

3.3. Image Super-Resolution Using Real-ESRGAN 

The evolution of generative adversarial networks (GANs) 

for image super-resolution began with the introduction of 

SRGAN (Super-Resolution GAN), which was the first to 

combine perceptual loss and adversarial learning to 

produce high-resolution images from low-resolution inputs. 

SRGAN utilized a ResNet-based generator with batch 

normalization layers and a standard discriminator network, 

enabling it to generate photo-realistic textures. However, it 

often introduced unnatural artifacts and failed to preserve 

fine details in smooth regions or edges. 

To address these limitations, ESRGAN (Enhanced 

SRGAN) (Wang et al., 2018), introduced several key 

architectural improvements. It replaced standard residual 

blocks with Residual-in-Residual Dense Blocks (RRDBs), 

removing batch normalization to improve training stability 

and image fidelity. ESRGAN also adopted a relativistic 

discriminator, which evaluates how much more realistic a 

generated image is compared to a real one, rather than 

simply classifying it as real or fake. These changes led to 

better texture reconstruction, sharper edges, and fewer 

artifacts than SRGAN, though ESRGAN still relied on 

synthetic LR-HR image pairs and did not generalize well to 

real-world degradation patterns. 

To overcome this, Real-ESRGAN was developed as a 

robust extension of ESRGAN for handling real-world 

degradations such as noise, blur, and compression artifacts 

(Wang et al., 2021). As shown in Figure 2. it introduces a 

U-Net–based discriminator for better perceptual quality 

assessment and uses a high-order degradation model to 

simulate more realistic low-quality training data. 

Furthermore, it can be trained with both synthetic and 

unpaired real-world images. This makes Real-ESRGAN 

particularly suitable for photogrammetric products like 

orthophotos and 3D textured models, where image 

sharpness, geometric consistency, and radiometric clarity 
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are critical. Its ability to enhance low-quality UAV imagery 

while preserving structural detail directly improves the 

spatial accuracy and interpretability of derived geospatial 

datasets. 

A distinctive feature of REAL-ESRGAN is its 

incorporation of a perceptual loss function, which leverages 

features extracted from pre-trained deep networks. This loss 

function helps the network not only optimize traditional 

quantitative metrics such as Peak Signal-to-Noise Ratio 

(PSNR) but also improve the perceptual quality of the output 

images as judged by human observers. 

Algorithm 1: REAL-ESRGAN 

Input:  

Low-resolution image (LR) 

Initialize:  

 Generator Network G 

 Discriminator Network D 

1. Define Generator Network G: 

 Apply initial convolution to extract basic features from LR 

image 

For each Residual Dense Block in G: 

Apply several convolutional layers 

Use dense connections 

Use residual connections  

End 

 Apply Super-Resolution Module to upscale image  

2. Define Discriminator Network D: 

 Apply convolutional layers to extract texture/detail features 

from image 

 Apply fully connected layers to compute realism score 

4. Define Perceptual Loss: 

 Extract high-level features from pre-trained network  

 Compute feature similarity between generated HR and 

ground truth 

5. Adversarial Training Loop: 

While until convergence: 

 Update Generator G: 

           Generate HR image from LR input 

           Compute perceptual loss and adversarial loss 

           Backpropagate and update G's weights 

 Update Discriminator D: 

            Receive real HR image and generated HR image 

            Compute loss to distinguish between real and fake 

            Backpropagate and update D's weights 

 

End 

Return High-resolution image (HR) from the Generator 

 

The Real-ESRGAN model was adapted using a two-stage 

process: an initial pre-training with the RealESRNet 

architecture for pixel-level reconstruction, followed by fine-

tuning with a GAN-based framework incorporating 

perceptual loss from VGG19, L1 loss (weight 0.01), and 

structural fidelity terms. The training dataset combined 

synthetically degraded images and real UAV imagery from 

urban environments, ensuring both generalized and 

domain-specific performance optimization. 

 

3.4. Spatial Products Generation 

Following the generation of high-resolution images using 

the super-resolution model, these outputs were utilized to 

derive key spatial products essential for photogrammetric 

and geospatial workflows. One primary application was the 

construction of 3D mesh models, where the enhanced spatial 

details contributed to the creation of more geometrically 

accurate and visually realistic surface representations. 

These models provide critical structural context and are 

particularly beneficial in urban modeling, topographic 

reconstruction, and change detection analyses. 

Additionally, orthoimage mosaics (OIMs) were produced 

from the super-resolved images. These orthorectified 

mosaics offer high radiometric and geometric fidelity, 

making them suitable for spatial analysis, thematic 

mapping, and land monitoring applications. The use of 

enhanced-resolution inputs in generating OIMs ensured 

improved sharpness in feature boundaries, better alignment 

across overlapping scenes, and greater overall 

interpretability. These spatial products also served as a 

basis for quantitatively evaluating the benefits of the super-

resolution process in terms of both radiometric 

enhancement and geometric precision. 

4. Experiment 

This section presents the analysis of the results obtained 

from evaluating the quality of the reconstructed images. For 

a comprehensive assessment, it is necessary not only to 

compare the reconstructed images themselves but also to 

examine the quality of the derived photogrammetric 

products, including 3D mesh models and orthophoto 

mosaics. The section begins with a description of the data 

collection process. 

4.1. Study Area and Imaging Sensor 

The study area is in the city of Rafsanjan, situated in 

Kerman Province in southeastern Iran, which is shown in 

Figure 3. Rafsanjan lies within a semi-arid climate zone, 

characterized by clear skies and favorable lighting 

conditions, making it an ideal environment for aerial 

imaging and photogrammetric analysis. The region’s 

geographic and climatic features support high-precision 

data acquisition, offering optimal conditions for capturing 

high-quality aerial imagery. 

The aerial images used in this study were acquired using 

a DJI Phantom 4 Pro V2 drone equipped with a 20-

megapixel camera. The images were captured at an altitude 

of 90 meters above ground level during the winter of 2021. 

The camera’s sensor produced images with a resolution of 

5472 × 3648  pixels, providing detailed and high-quality 

data suitable for subsequent super-resolution processing 
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and spatial product generation. 

 

 
Figure 2. Architecture of the Real-ESRGAN network. (a) Generator; (b) U-net discriminator with spectral normalization 

(Wang et al., 2021) 

4.2. Data Acquisition and Preparation 

In this study, aerial images were acquired using drone-

based imaging under optimal weather and lighting 

conditions to ensure high image quality. These high-

resolution images formed the primary dataset for the 

subsequent super-resolution and photogrammetric 

analyses. 

 

 
Figure 3. The study area (Rafsanjan, Iran). 

 

As a preprocessing step, the original high-resolution 

images were down sampled using bilinear interpolation, 

reducing their resolution to one-quarter of the original size. 

These down sampled images served as the low-resolution 

(LR) inputs for two distinct super-resolution approaches: 

(1) a bicubic interpolation (BI) model and 

(2) the Real-ESRGAN deep neural network model. 

Both methods produced enhanced images with a spatial 

resolution approximately four times greater than the LR 

inputs. As a result, three datasets were prepared: the 

original low-resolution set, the BI-enhanced images, and the 

REAL-ESRGAN-enhanced images. These datasets were 

subsequently used to generate photogrammetric outputs, 

including 3D point clouds, 3D mesh models, and orthoimage 

mosaics (OIMs), which served as the basis for evaluating 

spatial and radiometric improvements. 

Several challenges arose during the data preparation 

phase. These included the selection of suitable training 

image pairs for the deep learning model, as well as the 

tuning and optimization of the REAL-ESRGAN network to 

ensure consistent output quality. Moreover, 

photogrammetric considerations such as image coverage, 

acquisition geometry, and atmospheric clarity played a 

crucial role in ensuring accurate data collection. A 

particularly important challenge involved the reassignment 

of geospatial information to the enhanced images, as the 

network processing pipeline did not preserve geotag 

metadata. This issue was resolved by integrating the 
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original geospatial metadata, thereby ensuring correct 

alignment and georeferencing of the final spatial products. 

 
(a) 

 
(b) 

Figure 4. (a) 45 UAV image dataset for evaluation, (b) 

reconstructed city area as ground truth 

4.3. Quality Assessment 

To evaluate the accuracy and reliability of the generated 

outputs, a comprehensive quality assessment was performed 

by comparing the raw images, orthorectified imagery maps 

(OIMs), and 3D mesh models against ground truth 

references. In all evaluation stages, the original high-

resolution UAV images (OR), acquired under optimal 

weather and lighting conditions, served as the ground truth. 

Low-resolution (LR) images were generated from the OR 

dataset by applying a 4× downsampling using bilinear 

interpolation. These LR images were used as inputs for both 

bicubic interpolation (BI) and Real-ESRGAN (SR) 

processing. The evaluation framework addressed both 

radiometric and geometric characteristics of the datasets, 

which are critical in determining the quality and usability of 

photogrammetric products. Three categories of analysis, 

visual, radiometric, and geometric were applied across all 

derived products to ensure robust and holistic assessment. 

Radiometric evaluation was conducted using widely 

adopted image quality metrics, including Root Mean Square 

Error (RMSE), Relative RMSE (RRMSE), Error relative 

global dimensionless synthesis (ERGAS), Spectral Angle 

Mapper (SAM), Universal Image Quality Index (UIQI), 

Correlation Coefficient (CC), and Peak Signal-to-Noise 

Ratio (PSNR). These metrics were applied to representative 

raw images and OIMs, comparing them to the original high-

resolution dataset as the reference. Geometric evaluation 

was performed using the Ground Root Mean Square Error 

(GRMSE). This metric was applied in 2D for raw images 

and OIMs and in 3D for the reconstructed 3D mesh models, 

allowing precise assessment of positional accuracy. 

Visual inspection was conducted through qualitative 

comparison of selected urban features, particularly 

buildings, in both raw images and OIMs. This method 

provided insights into perceptual improvements, especially 

regarding edge sharpness and structural fidelity, resulting 

from the super-resolution process. The evaluation was 

based on three image sources: low-resolution images, 

bicubic-interpolated images, and images enhanced via 

Real-ESRGAN super-resolution. 

To quantify the comparative performance of the methods, 

the percentage improvement (IMP) or degradation in each 

quality metric was calculated between SR and BI methods, 

relative to the LR baseline. The improvement metric is 

computed as follows: 

𝐼𝑀𝑃 = (
𝑆𝑅 − 𝐵1

𝐵𝐼 − 𝐿𝑅
) × 100                      (2) 

For the visual and geometric assessments, representative 

urban features were selected, including various types of 

residential and commercial buildings, major road networks, 

complex intersections, and open spaces. These features were 

chosen to capture the structural diversity and varying 

spatial complexities of the study area. For the radiometric 

assessment, 38 images were selected to cover diverse urban 

and semi-urban scenes, ensuring statistical 

representativeness.  

For geometric assessments of raw images and orthophoto 

mosaics, five representative image scenes were chosen to 

reflect variations in building density, structural complexity, 

and open spaces, with 30 well-distributed corresponding 

points measured for each scene. In the 3D mesh analysis, 

Cloud-to-Mesh distances were computed from all vertices of 

the reconstructed mesh, with measurements averaged 

separately for the X, Y, and Z coordinates to ensure 

statistically robust and spatially comprehensive accuracy 

measurements. 

4.4. Raw Image Analysis 

4.4.1. Visual assessment 

The visual assessment was conducted by five independent 

reviewers to minimize bias. The original high-resolution 

(OR) images, 4-times down sampled low-resolution (LR) 

images, and super-resolved images produced the bilinear 

interpolation (BI), and Real-ESRGAN model (SR) were 

presented side-by-side for direct comparison. Reviewers 

evaluated each image using a standardized scoring form 

covering eight quality indicators: sharpness, noise level, 

color fidelity, contrast, presence of artifacts, structural 

similarity, naturalness, and fine detail preservation. Each 

indicator was rated on a five-point scale, ensuring 

https://minesparis-psl.hal.science/hal-00464703/document
https://minesparis-psl.hal.science/hal-00464703/document


 

Radiometric and Geometric Enhancement of UAV-Based Urban Orthophoto Mosaic Using Real-ESRGAN… 

 

127 

 

consistency and comparability across image types. Table 1. 

presenting the visual assessment scores for one of the 

evaluated images. 

As illustrated in Figure 5, the LR image is low quality 

which details are missing details. The BI image has better 

quality compared to LR, but there is degradation in the 

edges. The SR image is very close to OR and has the best 

visual quality. 

Table 1. Raw Images Visual Analysis 

Criterion LR vs OR BI vs OR SR vs OR 

Sharpness 1 3 4 

Noise 1 3 5 

Color Fidelity 2 3 4 

Contrast 3 3 5 

Artifacts 1 3 5 

SSIM 1 2 5 

Naturalness 2 3 4 

Detail  1 2 3 

Avg. 1.5714 2.8571 4.2857 

4.4.2. Radiometric assessment 

To further analyze the quality of the reconstructed images, 

a radiometric evaluation was conducted on 38 images. In 

this assessment, the RMSE, ERGAS, SAM, UIQI, CC, and 

PSNR metrics were computed to quantify the extent of 

quality improvement in the reconstructed images compared 

to the original ones. The results of this analysis are 

presented in Table 2.  

The computed IMP values in Table 2 provide a 

quantitative measure of the relative improvement achieved 

by the Real-ESRGAN (SR) method over the bicubic 

interpolation (BI), with respect to the low-resolution (LR) 

baseline. Notably, the SR method consistently outperforms 

BI across all radiometric criteria. For RMSE, ERGAS, and 

SAM—which are error-based metrics where lower values 

indicate better performance, SR achieves improvements of 

57.76%, 100%, and 56.59%, respectively, confirming 

substantial reduction in radiometric distortion. For quality-

enhancing metrics such as UIQI, CC, and PSNR, SR again 

demonstrates significant gains with IMP values of 90.44%, 

62.63%, and 61.12%, respectively. These results clearly 

show that Real-ESRGAN is very effective at improving the 

accuracy and visual quality of UAV images, performing 

much better than traditional interpolation methods. 

 

4.4.2. 2D Geometric assessment 

In addition to radiometric evaluation, a geometric 

accuracy assessment was conducted to analyze the spatial 

consistency of the reconstructed images (Table 3). For this 

purpose, five pairs of different images were selected, and the 

GRMSE (Geometric Root Mean Square Error) was 

calculated for each pair. This metric provides a quantitative 

measure of geometric deviations by comparing 

corresponding spatial points across whole corresponding 

images. 

Although Real-ESRGAN enhances the visual quality of 

UAV images, GRMSE results show that it does not always 

improve geometric accuracy. In some areas, low-resolution 

(LR) images actually exhibit lower geometric error than SR 

outputs. This reveals that perceptual improvements do not 

necessarily correspond to better spatial alignment—an 

important limitation in applications requiring high 

geometric fidelity. The observed differences are typically 

sub-pixel and may seem negligible; however, in high-

precision photogrammetric applications, even such small 

discrepancies can impact results. 

Table 2. Raw Image Radiometric Analysis 

Radiometric 

Criteria 
LR BI SR IMP  

RMSE 0.05914 0.05637 0.05477 57.76 

ERGAS 0.00023 0.00022 0.00021 100.0 

SAM 0.10368 0.09875 0.09596 56.59 

UIQI 0.95310 0.95791 0.96226 90.43 

CC 0.95608 0.95996 0.96239 62.62 

PSNR 72.7070 73.1213 73.3745 61.11 

  
(a) patch 1: OR (b) patch 2: OR 

  
(c)  patch 1: LR (d) patch 2: LR 

  
(e) patch 1: BI (f) patch 2: BI 

  
(g) patch 1: SR (h) patch 2: SR 

Figure 5.   Visual comparison of two sample patches 

from UAV imagery across different processing methods. 

(a–b) Original high-resolution images (OR); (c–d) low-

resolution inputs (LR); (e–f) bicubic interpolation 

results (BI); (g–h) super-resolved outputs using Real-

ESRGAN (SR). 
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The underlying cause is that deep models like Real-

ESRGAN reconstruct images based on learned features, 

rather than preserving exact pixel geometry. This can 

introduce subtle misalignments, especially in complex or 

repetitive structures, increasing GRMSE despite better 

visual clarity. Therefore, while super-resolution enhances 

visual and radiometric properties, it may come at the cost of 

geometric precision, a trade-off that must be considered in 

photogrammetric applications. 

 

Table 3. Raw Image 2D Geometric Analysis 

Image LR BI SR 

Image 1 0.261 0.269 0.962 

Image 2 0.344 0.458 1.231 

Image 3 0.266 0.394 1.630 

Image 4 0.270 0.588 1.733 

Image 5 0.246 0.335 1.454 

Avg. 0.2774 0.4088 1.402 

 
 

4.5. Orthoimage Mosaics (OIM) Analysis 

4.5.1. OIM visual assessment 

The visual quality of orthoimage mosaics generated from 

each image category (OR, LR, BI, SR) was evaluated 

through side-by-side comparisons, which are shown in 

Figure 6. The assessment focused on visual artifacts in 

urban areas, where LR images showed significant blurring 

and loss of fine detail, especially in shadowed regions and 

complex structures. In contrast, the orthoimage mosaics 

generated from SR images displayed clearer textures and 

sharper reconstructed details. Visual comparisons revealed 

that HRE outputs closely resembled the reference 

orthophotos (OR), demonstrating the Real-ESRGAN 

model’s effectiveness in enhancing visual fidelity and 

preserving structural integrity in photogrammetric 

products. 

4.5.2. OIM radiometric assessment 

Following the visual evaluations on OIMS, the analysis 

extended to radiometric assessment on the 

orthophotomosaics generated from LR, BI, and SR images. 

These outputs were assessed in comparison with the 

reference orthophoto (OR) based on quantitative 

radiometric metrics to evaluate the reconstruction quality 

and alignment with the ground truth. The given results in 

Table 4 indicated that orthophotomosaics generated from 

SR images consistently outperformed those from LR and BI 

sources. The SR outputs were closer to the reference in most 

metrics, reflecting superior radiometric fidelity.  

The numerical results in Table 4 show that the Real-

ESRGAN method outperforms bicubic interpolation across 

most radiometric criteria. The most significant 

improvements are observed in SAM and RMSE, with IMP 

values of 123.47% and 115.584%, respectively, indicating a 

notable reduction in spectral and reconstruction errors. 

UIQI also shows a strong improvement of 66.388%, 

suggesting 

better structural image quality in the SR results. PSNR 

and CC exhibit moderate gains of 28.40% and 19.284%, 

respectively, reflecting enhanced signal clarity and 

correlation with the original images. The only metric with 

no improvement is ERGAS, which remains unchanged at 0%, 

indicating equal performance between SR and BI in this case. 

Overall, the numerical trends confirm that Real-ESRGAN 

offers substantial radiometric benefits over traditional 

interpolation methods in the generation of orthoimage 

mosaics. 

Table 4. Orthoimage Mosaic (OIM) Radiometric Analysis 

Radiometric 

Criteria 
LR BI SR IMP  

RMSE 0.1205 0.1128 0.1039 115.584 

ERGAS 0.00044 0.00040 0.00040 0.0000 

SAM 0.2075 0.196 0.1818 123.47 

UIQI 0.6029 0.6987 0.7623 66.388 

CC 0.6198 0.7121 0.7299 19.284 

PSNR 66.596 67.698 68.011 28.40 

 

  
(a) patch 1: OIM from OR (b) patch 2: OIM from OR 

  
(c) patch 1: OIM from LR (d) patch 2: OIM from LR 

  
(e) patch 1: OIM from BI (f) patch 2: OIM from BI 

  
(g) patch 1: OIM from SR (h) patch 2: OIM from SR 
Figure 6.  Visual comparison of two sample patches from 

orthoimage mosaics (OIMs) across different processing 

methods. (a–b) Original high-resolution images (OR); (c–d) 

low-resolution inputs (LR); (e–f) bicubic interpolation results 

(BI); (g–h) super-resolved outputs using Real-ESRGAN (SR). 
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4.5.3. OIM 2D geometric assessment 

To evaluate the geometric accuracy of the orthoimage 

mosaics generated from images with different resolutions, a 

2D positional error analysis was conducted. Using 30 

corresponding points per image, the pixel-wise Euclidean 

distance between the orthoimage from the reference image 

(OR) and three other input types, low-resolution (LR), 

bicubic-interpolated (BI), and Real-ESRGAN super-

resolved (SR) was calculated. The average errors for five 

representative image scenes are reported in Table 5.  

Table 5. OIM 2D Geometric Analysis 

Image LR BI SR 

Image 1 2.833 3.426 2.641 

Image 2 2.674 3.261 2.394 

Image 3 3.109 3.448 2.988 

Image 4 2.728 3.117 2.543 

Image 5 3.291 3.376 3.043 

Avg. 2.9270 3.3256 2.7218 

The analysis confirms that orthophoto mosaics generated 

from LR images suffer from reduced geometric accuracy due 

to their lower clarity and radiometric quality. This 

limitation results in noticeable positional discrepancies 

during the reconstruction of features, particularly in scenes 

with complex details. As a consequence, the ability of 

photogrammetric algorithms to extract precise locations 

and produce geometrically accurate orthophotos is 

diminished. In contrast, the mosaics derived from HRE 

images—reconstructed using the Real-ESRGAN model—

demonstrate superior geometric fidelity. The numerical 

results support this conclusion: the average positional error 

for SR images was 2.7218 pixels, lower than that of LR 

(2.9270 pixels) and significantly better than BI (3.3256 

pixels). These findings indicate that Real-ESRGAN not only 

preserves texture and structural details more effectively but 

also enables more accurate extraction of corresponding 

points and alignment with the reference image. 

4.6. 3D Mesh Analysis 

4.6.1. 3D mesh visual assessment 

The textured 3D meshes generated from each of the image 

sets (OR, LR, BI, and SR) were visually analyzed and placed 

side by side using identical views and similar angles to allow 

for a precise comparative assessment presented in Figure 7.  

This analysis focused on the reconstruction quality of 

urban features with fine details, such as building edges, roof 

lines, facades, window frames, and height differences 

between structural elements.  

The results showed that meshes derived from LR images 

had relatively flat surfaces, rough textures, and low quality, 

with visible fragmentation and poor reconstruction of 

structurally diverse areas. These meshes failed to accurately 

preserve elevation information. In contrast, the meshes 

generated from SR images exhibited higher clarity and 

continuity, especially along edges, and showed improved 

surface smoothness and coherence compared to LR. They 

were also better at reconstructing complex urban structures. 

The reference mesh (OR), as expected, demonstrated the 

highest accuracy in representing urban features and served 

as the main comparison standard. However, the meshes 

produced from SR images performed very similarly to the 

reference and proved to be effective in visualizing urban 

details. 

4.6.2. 3D mesh geometric assessment 

In contrast to the 2D geometric evaluations, which used a 

limited number of corresponding points, the 3D mesh 

geometric assessment was carried out using all vertices of 

the reconstructed mesh. The distances between each vertex 

of the reconstructed mesh and the reference mesh were 

calculated in CloudCompare® and averaged separately for 

the X, Y, and Z coordinates, ensuring statistically robust and 

spatially comprehensive accuracy measurements. 

The conducted analysis aimed to evaluate the influence of 

input image quality on the geometric accuracy of textured 

3D mesh models produced through photogrammetric 

processes. Four distinct image types were assessed: original 

reference (OR), low-resolution (LR), and super-resolved 

high-resolution images enhanced via bicubic interpolation 

(BI) and the Real-ESRGAN method (SR). The geometric 

accuracy was quantitatively analyzed using Cloud-to-Mesh 

distances, measured separately in the X, Y, and Z directions, 

between each reconstructed mesh and the reference mesh. 

The results summarized in Table 6 clearly highlight the 

performance differences across the tested image resolutions. 

The lowest mean errors relative to the reference were 

consistently recorded for the SR meshes, indicating 

enhanced geometric fidelity achieved by the Real-ESRGAN 

method. Specifically, the SR meshes had mean positional 

deviations of approximately 0.0023 m in the X direction, 

0.0060 m in Y, and 0.1199 m in Z, compared to the 

significantly higher errors observed in the bicubic-

interpolated BI meshes (X: 0.0038 m, Y: 0.0130 m, Z: 0.1975 

m) and LR meshes (X: 0.0037 m, Y: 0.0084 m, Z: 0.3153 m). 

Moreover, standard deviation values, indicative of 

consistency and stability in mesh reconstruction, further 

demonstrate superior performance for SR. For instance, the 

standard deviations for SR were considerably lower (e.g., 

0.0830 m in X, 0.1199 m in Y, 0.2403 m in Z) compared to 

the other approaches, confirming greater uniformity in 

reconstruction quality. 

The last row of Table 6 presents the overall three-

dimensional geometric error magnitude computed using the 

Root Sum of Squares (RSS). This metric combines the mean 

errors and their standard deviations from the X, Y, and Z 

directions into a single, representative measure, providing 

a clear comparison among the three methods (LR, BI, and 

SR). 
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Table 6. 3D Mesh Geometric Error (Avg ± std) 

Direction  LR BI SR 

𝑿 0.0037 ± 0.1204 0.0038 ± 0.0900 0.0023 ± 0.1203 

𝒀 0.0084 ± 0.0993 0.0130 ± 0.1270 0.0060 ±0.1299 

𝒁 0.1199 ± 0.3153 0.1975 ± 0.2403 0.0051 ± 0.1998 

3D RSS 0.1203 ± 0.3518 0.1980 ± 0.2863 0.0082 ± 0.2670 

 

According to the computed RSS values, the SR method 

significantly outperforms both LR and BI. Specifically, the 

RSS value for SR (0.0082 ± 0.2670) is considerably lower 

compared to LR (0.1203 ± 0.3518) and BI (0.1980 ± 0.2863). 

This indicates that the SR method achieved the smallest 

overall positional deviation and highest geometric accuracy 

among the three methods. Additionally, the lower standard 

deviation of the SR method reflects greater consistency and 

reliability in reconstructing detailed 3D structures. 

Conversely, the BI method exhibited the highest mean RSS 

value, implying substantial geometric distortion introduced 

by bicubic interpolation compared to the original LR images. 

These results underscore the superior effectiveness of the 

Real-ESRGAN super-resolution method (SR) in enhancing 

geometric fidelity in photogrammetrically generated 3D 

meshes. 

To further investigate the differences in geometric errors 

between the evaluated methods, we quantified both 

statistical significance and practical significance using two 

complementary measures: the z-score test and Cohen’s d 

effect size. The z-score measures how many standard errors 

separate the means of two groups and is calculated as 

𝑧 =
𝑥̅1 − 𝑥̅2

√
𝜎1

2 

𝑛1
+

𝜎2
2 

𝑛2

                                 (3) 

 

Where 𝑥̅1 and 𝑥̅2 are the sample means, 𝜎1
   and , 𝜎2

  are 

the standard deviations, and 𝑛1 and 𝑛2 are the sample sizes 

for the two groups. Under the null hypothesis of equal means, 

|𝑧| > 1.96 indicates statistical significance at the 95% 

confidence level (two-tailed). Given the very large number 

of samples in this study, comparable to the number of mesh 

vertices in the 3D models, it is expected that z-scores can 

reach extremely high values even for very small absolute 

differences in the means. This means that while the 

statistical significance is high for nearly all comparisons, 

the practical relevance of these differences must be 

interpreted with caution. 

To complement the z-score analysis, Cohen’s d was 

calculated to assess practical significance, which reflects 

the magnitude of the observed differences in a scale-

independent manner. Cohen’s d is given by 

𝑑 =  
𝑥̅1 − 𝑥̅2

𝑠𝑝

                                          (4) 

 

with the pooled standard deviation 𝑠𝑝 defined as 

𝑠𝑝 = √
(𝑛1 − 1)𝜎1

2 + (𝑛1 − 1)𝜎1
2 

𝑛1 + 𝑛2 − 2
                    (5) 

 

 

Cohen’s suggested interpretation thresholds are: small 

(0.2 ≤ d < 0.5), moderate (0.5 ≤ d < 0.8), and large (d ≥ 0.8). 

Unlike the z-score, Cohen’s d is not directly influenced by 

sample size, making it a more robust measure of the actual 

magnitude of the improvement. Cohen’s suggested 

thresholds are: small (0.2 ≤ d < 0.5), medium (0.5 ≤ d < 0.8), 

and large (d ≥ 0.8). 

 
Table 7. Statistical significance (z-score) and practical significance 

(Cohen’s d) for 3D mesh geometric error comparisons 

Direction  BI vs. LR  SR vs. LR  SR vs. BI  

𝑿 0.26 (0.0) 3.19 (0.01) 3.87 (0.01) 

𝒀 11.05 (0.04) 5.68 (0.021) 14.92 (0.05) 

𝒁 75.81 (0.28) 119.11 (0.435) 238.44 (0.87) 

3D RSS 66.35 (0.24) 98.31 (0.359) 187.77 (0.69) 

 

Table 7 presents the z-scores (outside parentheses) and 

Cohen’s d values (inside parentheses) for each pairwise 

comparison. The z-scores are extremely large in most cases, 

indicating statistical significance at the 95% level. However, 

given the very large number of vertices in the 3D mesh (often 

exceeding 150,000 points), even minuscule differences in 

means can yield large z-scores. This inflates statistical 

significance and can be misleading if interpreted alone. 

While z-scores are very large across most comparisons, 

confirming that improvements are statistically significant, 

the majority of Cohen’s d values are in the small range, 

indicating that the effect magnitude is modest in practical 

terms. Notable exceptions are found in the vertical (Z) 

direction and the aggregated 3D RSS measure for the SR vs. 

BI comparison, where effect sizes reach the large category 

(d = 0.87 and d = 0.69, respectively). These results are 

consistent with the known sensitivity of vertical accuracy in 

photogrammetric 3D reconstructions to image resolution 

and geometric quality. Vertical (Z) estimates depend heavily 

on parallax measurements, which are more susceptible to 

improvements in image sharpness and texture detail. 

Because vertical measurements typically have higher 

baseline-related errors and noise compared to horizontal (X 

and Y) measurements, resolution enhancement through 

super-resolution methods can lead to proportionally greater 

accuracy gains in Z. This explains why the Z-direction in our 

results exhibits the largest practical significance, even when 

horizontal improvements remain statistically significant but 

practically smaller in magnitude. 

Overall, the analysis conclusively demonstrates that 

employing deep-learning-based super-resolution methods 

such as Real-ESRGAN not only enhances the visual and 

textural quality of input images but also significantly 

improves the geometric accuracy and reliability of resulting 

3D mesh models. This outcome emphasizes the considerable 

potential of advanced image-enhancement methods in 
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refining photogrammetric products beyond conventional 

interpolation techniques. 
 

5. Discussion and Conclusion 

The experimental results confirm that the Real-ESRGAN 

model significantly enhances both the visual and 

radiometric quality of UAV-derived spatial products when 

compared to conventional bicubic interpolation. Across raw 

images, orthoimage mosaics (OIMs), and textured 3D 

meshes, Real-ESRGAN consistently delivers improvements 

in texture clarity, feature sharpness, and radiometric fidelity, 

as evidenced by substantial gains in metrics such as RMSE, 

SAM, UIQI, and PSNR. 

In the case of radiometric analysis, Real-ESRGAN 

achieved improvements of up to 100% in some metrics 

compared to traditional methods, showing its effectiveness 

in reducing spectral and reconstruction errors. These 

enhancements contribute directly to more visually coherent 

and information-rich images, which can support better 

interpretation and decision-making in urban remote sensing 

tasks. 

From a geometric perspective, the findings reveal a more 

subtle outcome. While Real-ESRGAN improved the 

geometric fidelity of orthoimage mosaics and 3D mesh 

reconstructions in aggregate, its performance on raw 2D 

imagery exhibited certain limitations. In some cases, the SR 

images showed higher GRMSE values than their LR 

counterparts, indicating that perceptual enhancement may 

come at the cost of spatial accuracy. This misalignment 

arises from the nature of deep learning models, which 

prioritize feature reconstruction over pixel-level geometric 

consistency. As such, even sub-pixel discrepancies, while 

visually negligible, can undermine the accuracy of 

photogrammetric outputs in applications requiring precise 

spatial measurements. 

The results for 3D mesh reconstruction are particularly 

promising. The SR-derived meshes demonstrated 

substantial reductions in error magnitude across all 

dimensions (X, Y, Z) and outperformed both LR and BI 

methods in terms of consistency and spatial fidelity.  

While z-score analysis indicated that most differences 

between methods were statistically significant, partly due to 

the very large sample size, Cohen’s d analysis showed that 

practical significance was concentrated in the vertical (Z) 

component and the aggregated 3D RSS, where 

improvements were of moderate to large magnitude, 

indicating meaningful gains in real-world 3D 

reconstruction performance. It is critical for urban feature 

modeling and topographic analyses. 

Despite these advances, the trade-off between radiometric 

enhancement and geometric accuracy remains a central 

challenge. These sub-pixel geometric discrepancies are 

primarily caused by the network’s feature reconstruction 

process, which can introduce slight spatial shifts during 

convolution and upsampling, especially in areas with 

repetitive or fine structural patterns. While negligible for 

visual interpretation, such deviations can accumulate in 

high-precision photogrammetric workflows, potentially 

reducing the geometric accuracy of the final products. 

Super-resolution networks, including Real-ESRGAN, are 

not inherently optimized for spatial coherence, which can 

lead to artifacts in geometric alignment, especially in areas 

with repetitive or fine structural patterns. This underscores 

the need for future research on geometry-aware super-

resolution architectures that integrate spatial constraints 

and photogrammetric principles directly into the learning 

process. For future research, exploring hybrid super-

resolution approaches could further refine image quality 

and spatial accuracy.  

Another limitation of this study is that the experiments 

were conducted on a single dataset from Rafsanjan, Iran, 

acquired under optimal weather and lighting conditions. 

While this ensured high-quality input data, it may limit the 

generalizability of the findings to other environments, such 

as regions with different climatic conditions, varying urban 

densities, or UAV platforms with different sensor 

specifications. Future research should include case studies 

across diverse environmental settings and sensor 

configurations to assess the method’s performance in 

broader operational contexts. Furthermore, validation 

using data from various UAV sensors under different 

environmental conditions, such as variable lighting, 

seasonal changes, and adverse weather—would provide a 

more comprehensive evaluation of Real-ESRGAN’s 

robustness across a wider range of scenarios. 

Additionally, integrating high-resolution data, advanced 

imaging hardware, and deep learning-based enhancement 

techniques could offer a more robust framework for 

improving the precision and quality of geospatial products. 

Such advancements could bridge the gap between visual 

quality and geometric fidelity, enhancing the reliability of 

super-resolved imagery in high-precision geospatial 

applications. 
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