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One of the primary applications of remote sensing is the classification of land use and land 

cover (LULC). This field has increased prominence in computer vision tasks with the 

expansion of learning methods, especially in recent years. In this context, the present study 

introduces a convolutional neural network architecture named HCNN, designed to achieve 

high accuracy in LULC classification while minimizing processing cost. A simpler 

architecture based on conventional CNN designs, referred to as SCNN, was also implemented 

for comparison. The HCNN architecture comprises residual, dense, inception, and squeeze-

excitation blocks, along with several base layers. Four models based on these two architectures 

were trained using RGB and multispectral data from the Sentinel-2 imagery in the EuroSAT 

dataset: SCNN-RGB, SCNN-MS, HCNN-RGB, and HCNN-MS. All models achieved 

accuracies above 94%. Among these, HCNN-MS attained the highest accuracy of 98.44%, 

while SCNN-RGB recorded the lowest accuracy at 95.57%. Overall, HCNN-based models 

outperformed SCNN-based models in accuracy and training speed, requiring approximately 

six times less training time. Additionally, the use of multispectral data had a positive impact 

on model accuracy, albeit it increased computational complexity somewhat. An ablation study 

was also conducted to evaluate the role of each block in the HCNN architecture on the model’s 

final performance. The ablation results demonstrated that each block plays a significant role 

in improving accuracy and reducing processing overhead, particularly the residual and dense 

blocks, which had the greatest impact on final accuracy. Moreover, the squeeze-excitation 

block notably reduced training time, while its removal caused minimal change in accuracy.  
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1. Introduction 

    Remote sensing plays a crucial role in Earth observation, 

enabling the continuous monitoring of environmental 

changes, land use patterns, and natural resource 

management (Panda et al., 2024; Sharma et al., 2024; Li et 

al., 2021). It provides essential data for applications such as 

climate change assessment, urban planning, disaster 

response, and agricultural monitoring (Filchev & Chanev, 

2024; Mohan et al., 2024; Padmaja et al., 2024). Remote 

sensing utilizes satellite and airborne sensors to capture 

electromagnetic radiation reflected or emitted from the 

Earth's surface. Therefore, this provides a detailed 

perspective on terrestrial and atmospheric conditions 

(Ghimire). Advances in remote sensing technology have 

greatly improved the spatial, spectral, and temporal 

resolution of satellite imagery, enabling more precise 

analyses (Bing, 2017; Lian et al., 2025; Jiang et al., 2021; 

Swain et al., 2024). Furthermore, the increasing availability 

of high-resolution multispectral data has enabled researchers 

to extract valuable information from large datasets (Lim et 

al., 2024). 

    However, accurate classification tasks such as land cover 

mapping using images derived from satellite sensors are a 

key challenge in remote sensing (Fayaz et al., 2024). 

Therefore, extracting meaningful features from these images 

is crucial, especially for multispectral data. The 

multispectral data provides valuable spectral and spatial 

information for achieving accurate results. Traditional 

classification approaches have relied on manually 

engineered features and shallow learning methods. These 

include spectral, texture, and object-based analyses 

(Blaschke, 2013; Zeng et al., 2021). However, these 

methods are limited by their dependence on domain 

expertise and manual work. They are also vulnerable to 

lighting, scale, and atmospheric changes (Zhu et al., 2017). 

Additionally, differences in sensor types, spatial resolutions, 

and spectral bands pose challenges in creating robust 

classification techniques (Chen et al., 2018; Li et al., 2023).                  

    The increasing complexity and volume of remote sensing 

data require advanced methods for processing high-

dimensional imagery. Neural networks offer a promising 

solution to handle these challenges (Alyahyan, 2025) 

efficiently. Convolutional Neural Networks (CNNs) are 

widely used in computer vision tasks. Their extension to 

remote sensing has shown remarkable success in analyzing 

high-dimensional satellite data (Chen et al., 2020; Liu et al., 

2020). The CNNs can identify spatial patterns and extract 

spectral relationships between pixels, especially in 

multispectral remote sensing data. Recent studies have 

demonstrated their effectiveness in remote sensing tasks, 

including land cover classification, object detection, and 

scene recognition (Lyons et al., 2018; Zeng et al., 2018; Shi 

et al., 2020; Tiwari & Shukla, 2018; Guo et al., 2021).      

    Despite the advantages of CNNs, their use in remote 

sensing faces certain challenges. Training neural network 

models, especially in deep learning, requires a large volume 

of labeled data, which presents a significant challenge (Li et 

al., 2023; Yuan et al., 2023). However, with efforts from 

researchers, valuable benchmark datasets have been made 

publicly available, partially addressing this challenge. For 

instance, many studies have used datasets such as EuroSAT 

for land use and land cover classification (Bhatti et al., 2025; 

Mohammed & Lakizadeh, 2025; Niu et al., 2025; Stival et 

al., 2025). Another challenge is the predominant focus on 

three-channel models in computer vision, which are 

designed primarily for RGB data. As a result, the rich 

spectral features provided by multispectral remote sensing 

data have been largely overlooked (Yassine et al., 2021). 

Well-known models, such as VGG-16 and ResNet-50, 

which have been trained on the ImageNet database, rely on 

three-channel inputs in their initial architecture (Jannat and 

Hossain, 2024). Optimizing the computational efficiency of 

CNNs while maintaining or improving accuracy, especially 

when handling high-dimensional multispectral data, remains 

a key challenge. 

    Most studies have focused on enhancing CNN accuracy 

and overall performance. However, metrics such as feature 

extraction speed and training time, which are crucial for 

computational efficiency, have received less attention. For 

instance, in a study conducted by Acuña-Alonso, a CNN 

model was trained on the EuroSAT dataset for LULC 

classification. This model achieved an accuracy of 88% on 

the test data, demonstrating satisfactory classification 

performance (Acuña-Alonso et al., 2024). In another study, 

Yamashkin developed the GeosystemNet for situations with 

limited data. In this study, when only 10% of the data was 

used for training and 90% for testing, the model achieved an 

accuracy of 89.23% (Yamashkin et al., 2020). In another 

study, Yassine trained a CNN model on the multispectral 

EuroSAT dataset instead of its RGB version and reported an 

overall accuracy of 98.78%. Additionally, computing 

spectral indices and incorporating them into the input data 

further improved the accuracy to 99.58% (Yassine et al., 

2021). These studies confirm CNNs' performance in remote 

sensing tasks while not reporting on their computational 

efficiency. 

    On the other hand, some studies have focused on 

improving the computational efficiency of CNNs and have 

provided reports in this regard. For example, Albarakati 

proposed a method combining a self-attention mechanism 

with integrating IBNR-65 and DenseNet-64 networks. The 

results indicated that the processing time was nearly twice 

as fast as VGG-16 while maintaining an accuracy of 89.5% 

(Albarakati et al., 2024). In another study, researchers 

employed dimension reduction techniques, such as 

histogram sampling and the Bag of Words method, to 
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improve the efficiency of CNNs trained on the BigEarthNet-

S2 dataset while preserving their classification accuracy and 

performance (Calota et al., 2015). It can be inferred that 

researchers primarily focus on developing highly accurate 

CNNs rather than optimizing for highly accurate results and 

computational efficiency. 

    Based on the aforementioned points, the main objective 

of this study is to design an architecture capable of flexibly 

utilizing both RGB and multispectral data with a 

customizable number of channels. In addition to achieving 

significant accuracy, this architecture should also optimize 

computational efficiency and strike an effective balance 

between accuracy and performance. The proposed 

architecture was applied to LULC classification at the patch 

level, where each image patch is labeled based on its 

dominant LULC class. Unlike pixel- or object-level 

classification, this approach is not designed for producing 

thematic maps or for annotating specific objects such as 

buildings or trees. The evaluation of results will provide 

insight into how the CNN architecture and input data 

influence LULC classification performance, with a focus on 

achieving high accuracy while maintaining reduced 

processing demand. 

2. Methodology 

2.1. Data Description 

    The EuroSAT dataset is widely used as a benchmark for 

land use and land cover (LULC) classification/detection 

tasks. Numerous studies have utilized this dataset for 

developing deep learning and machine learning models 

(Günen et al., 2022; Kunwar et al., 2023; Loganathan et al., 

2021). This dataset, derived from the Sentinel-2 mission of 

the Copernicus program, includes 27,000 labeled images 

with 10 to 60 meters spatial resolution, covering ten LULC 

classes across various regions of Europe. These classes are 

Annual Crop, Forest, Herbaceous Vegetation, Highway, 

Industrial, Pasture, Permanent Crop, Residential, River, and 

Sea/Lake (Helber et al., 2019).  The EuroSAT dataset is 

available in two versions: true RGB images in JPG format 

and multispectral images in GeoTIFF format. The RGB 

version contains only the Blue, Green, and Red spectral 

bands. This makes it particularly suitable for computer 

vision models, as most deep learning architectures are 

inherently designed for three-channel data. On the other 

hand, the multispectral version provides all 13 spectral 

bands available in Sentinel-2 data, offering additional 

spectral information that may enhance classification 

accuracy. Figure 1 shows sample EuroSAT images used in 

this study. 

 

Figure 1. EuroSAT dataset samples 

2.2. Data Preparation 

    In this case, the EuroSAT dataset was divided into training 

and validation sets with an 80-20 split ratio. The ratio was 

applied separately to each LULC class rather than to the 

entire dataset. This ensured that the distribution of samples 

for each class was proportionally represented in both the 

training and validation sets. The process was performed 

randomly to avoid bias, ensuring a fair evaluation of the 

models. Table 1 shows the distribution of training and 

validation samples for each class. Finally, the digital 

numbers (DN) of the pixels were normalized using the 

Rasterio package. 

 
Table 1. Training and validation set distribution (80:20) 

ID Class Training Set Validation Set 

1 Annual Crop 2400 600 

2 Forest 2400 600 

3 Herbaceous Vegetation 2400 600 

4 Highway 2000 500 

5 Industrial 2000 500 

6 Pasture 1600 400 

7 Permanent Crop 2000 500 

8 Residential 2400 600 

9 River 2000 500 

10 Sea/Lake 2400 600 

- Sum 21600 5400 
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2.3. Convolutional Neural Network Architectures 

    Two distinct architectures were designed and specifically 

developed for the objectives of this study. The first 

architecture has a simple structure similar to conventional 

CNN architectures. It was designed to achieve acceptable 

results while maintaining simplicity and avoiding excessive 

complexity. The second architecture was developed to 

improve accuracy and computational efficiency. It ensures 

that performance enhancements do not lead to increased 

complexity and reduced computational efficiency. The 

structural details of the architectures are elaborated in the 

following sections. 

2.3.1 Single-Block Convolutional Neural Network 

      The single-block convolutional neural network (SCNN) 

consists of only one convolutional block. This architecture 

is designed to extract hierarchical spatial features through a 

structured sequence of convolutional, pooling, and fully 

connected layers. It begins with an initial convolutional 

layer with 64 filters and a 3×3 kernel to capture fundamental 

patterns. This is followed by batch normalization to stabilize 

learning and max-pooling to reduce spatial dimensions. As 

the network deepens, two additional convolutional layers 

with 128 and 256 filters, each using a 3×3 kernel, refine 

feature extraction. As a result, the model gains an improved 

ability to identify more complex patterns. Each 

convolutional layer is followed by a max-pooling layer to 

progressively down-sample the feature maps. A global 

average pooling (GAP) layer is then applied to condense 

spatial information into a compact representation. Finally, 

fully connected dense layers refine high-level features, 

incorporating a 512-unit dense layer with RELU activation 

and a dropout mechanism to prevent overfitting. Another 

256-unit dense layer is added before the final classification. 

The classification is then performed using a dense layer with 

softmax activation containing 10 output units, ensuring 

efficient and accurate results.  The details of the SCNN 

architecture are presented in Table 2.  

 
Table 2. The SCNN architecture summary 

ID Layer Type Filters Shape / Unit 

1 Conv2D 64 (3×3) 64 × 64 × 64 

2 MaxPooling2D 2×2 32 × 32 × 64 

3 Conv2D 128 (3×3) 32 × 32 × 128 

4 MaxPooling2D 2×2 16 × 16 × 128 

5 Conv2D 256 (3×3) 16 × 16 × 256 

6 MaxPooling2D 2×2 8 × 8 × 256 

7 Global Average Pooling - 192 

8 Dense (ReLU) - 256 

9 Dropout - 256 

10 Dense (Softmax) - 10 

 

2.3.2 Hybrid Multi-Block Convolutional Neural Network 

      The Hybrid Multi-Block Convolutional Neural Network 

(HCNN) enhances feature extraction and classification 

performance by integrating multiple advanced architectural 

blocks.  The details of the HCNN architecture are presented 

in Table 3. 

 
Table 3. The HCNN architecture summary 

ID Layer Type Filters Shape / Unit 

1 Conv2D 64 (3×3) 64 × 64 × 64 

2 Batch Normalization - 64 × 64 × 64 

3 MaxPooling2D 2×2 32 × 32 × 64 

4 Conv2D 64 (3×3) 32 × 32 × 64 

5 Conv2D 64 (3×3) 32 × 32 × 64 

6 Add (Skip Connection) - 32 × 32 × 64 

7 MaxPooling2D 2×2 16 × 16 × 64 

8 Conv2D 64 (3×3) 16 × 16 × 64 

9 Concatenate - 16 × 16 × 64 

10 Conv2D  128 (3×3) 16 × 16 × 128 

11 Concatenate - 16 × 16 × 128 

12 Conv2D  192 (3×3) 16 × 16 × 192 

13 Concatenate - 16 × 16 × 192 

14 Conv2D  256 (1×1) 16 × 16 × 256 

15 Conv2D  256 (3×3) 16 × 16 × 256 

16 Conv2D 256 (5×5) 16 × 16 × 256 

17 Concatenate - 16 × 16 × 192 

18 Global Average Pooling - 192 

19 Dense - 12 

20 Dense - 192 

21 Reshape - 1 × 1 × 192 

22 Multiply Feature Maps - 16 × 16 × 192 

23 Global Average Pooling - 192 

24 Dense (ReLU) - 512 

25 Dropout - 512 

26 Dense (Softmax) - 10 

 

Similar to SCNN, this network begins with a convolutional 

layer with 64 filters and a 3×3 kernel for initial feature 

extraction. It is followed by batch normalization for stable 

learning and max-pooling to reduce spatial dimensions. A 

residual block with two convolutional layers, each with 64 

filters and a 3×3 kernel, and a skip connection ensures 

efficient gradient flow. Next, dense blocks concatenate the 

outputs from three convolutional layers with 64, 128, and 

192 filters, each using 3×3 kernels. This approach enhances 

feature reuse without applying batch normalization.  A 

squeeze-excitation (SE) block dynamically recalibrates 

feature importance using global average pooling and two 

fully connected layers with 12 and 192 units. The output 

undergoes reshaping before multiplication with the feature 

map to emphasize key spatial features. This block reduces 

training time by compressing channel-wise information 
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through global average pooling and using lightweight fully 

connected layers to minimize unnecessary computations. 

Another global average pooling layer condenses spatial 

information, reducing computational demand while 

preserving essential details. The classification stage consists 

of fully connected layers. It includes a dense layer with 512 

units and ReLU activation, dropout regularization, and a 

final dense layer with 10 units and Softmax activation. 

    The integration of residual, dense, inception, and SE 

blocks into the base network architecture is expected to 

achieve a balanced trade-off between accuracy and 

computational efficiency. 

 

 
Figure 2. Methodology flowchart 

 

2.4. Model Configuration 

    For each HCNN and SCNN architecture, two models 

were trained based on RGB and multispectral data. 

Therefore, a total of four independent models were 

implemented for the objectives of this study. In the training 

process, the ADAM optimizer was used to control sudden 

gradient fluctuations and maintain the ideal convergence of 

the models. Thus, the initial learning rate of the models, set 

to 0.001, is adaptively adjusted and reconfigured based on 

gradient variations. In other words, when an increase in the 

gradient is detected, the learning rate is decreased 

accordingly, and when a decrease in the gradient occurs, the 

learning rate is increased accordingly. A maximum of 100 

epochs was allocated for training the models. However, by 

adjusting the patience parameter, the overall performance of 

the models was monitored in each epoch using the Cross-

Entropy loss function. This allowed the training process to 

be halted immediately after surpassing the patience 

threshold without a decrease in loss. This process not only 

optimizes the training process of the models but also plays a 

crucial role in monitoring potential overfitting and 

underfitting.  

    All implementation operations were performed on an 

RTX 3060 laptop GPU with 6 GB of Video Random Access 

Memory (VRAM). The TensorFlow package was used to 

enable GPU acceleration instead of relying on the Central 

Processing Unit (CPU). To facilitate direct reference in the 

results section, models were named SCNN-RGB, SCNN-

MS, HCNN-RGB, and HCNN-MS, reflecting the 

architecture and the type of input data used. 

2.5. Statistical Evaluation 

    In this study, various statistical metrics, including 

confusion matrices, overall accuracy (OA), kappa 

coefficient (KC), mean squared error (MSE), and root mean 

squared error (RMSE), were employed to evaluate the 

models and compare their results statistically. These 

evaluation approaches focus on assessing the accuracy and 

error rates of the models and examining the impact of 

architecture and input data on their statistical performance.   

2.5.1 Confusion Matrix 

      A confusion matrix is a fundamental metric for 

evaluating classification models by comparing the classified 

samples with their corresponding actual labels. It is a square 

matrix where rows represent actual classes and columns 

represent classified classes. The diagonal elements indicate 

correctly classified instances, while off-diagonal elements 

represent misclassifications. Mathematically, it is structured 

as: 

TP FP
CM

FN TN

 
=  
 

                                                             (1) 

where True Positive (TP) is correctly classified positive 

samples, False Positive (FP) is incorrectly classified positive 

samples, False Negative (FN) is incorrectly classified 

negative samples, and True Negative (TN) is correctly 

classified negative samples (Nicolau et al., 2024). 

Start  ur S T Dataset

(MS   RGB)

Data  reparati n

Split
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2.5.2 Overall Accuracy 

      Overall accuracy represents the ratio of correctly 

classified samples to the total number of samples. The 

overall accuracy is calculated as follows: 

1

k

i

i

x

OA
N

==


                                                                          (2) 

where xi is the number of correctly classified samples for 

each class, k is the total number of classes, and N is the total 

number of samples used for assessment. Higher values 

indicate better classification performance. In remote sensing 

applications, overall accuracy is commonly used to assess 

the accuracy of classification tasks, providing an overview 

of model performance (Congalton   Green, 2019). 

2.5.3 Kappa Coefficient 

The Kappa coefficient is a statistical measure used to 

evaluate the agreement between classifiers while accounting 

for random chance. Its values range from -1 to 1, where 1 

indicates perfect agreement and 0 represents agreement 

expected by chance. Negative values suggest systematic 

disagreement, meaning the classifications are worse than 

random assignment. The metric is calculated as follows: 

1

o e

e

p p
kc

p

−
=

−
                                                                                  (3) 

where po is the overall accuracy, and pe is the expected 

agreement by chance, derived from the confusion matrix 

(Cohen, 1960). This metric is widely used in evaluating 

classification maps using remote sensing data 

2.5.4 Mean Squared Error and Root Mean Squared Error 

Mean Squared Error (MSE) measures the average squared 

difference between actual and classified values, estimating 

the model's overall error. A lower MSE indicates a better 

model fit with fewer misclassifications. Mathematically, 

MSE is defined as: 

2

1

1
( )

n

i j

i

MSE y y
n =

= −                                                            (4) 

where yi represents the actual label, yj is the classified 

sample, and n is the number of samples. Since MSE squares 

the differences, it is more sensitive to more significant 

errors, giving them a more significant influence on the final 

value. Root Mean Squared Error (RMSE), derived from 

MSE, is calculated by taking the square root of the MSE 

value: 

2

1

1
( )

n

i j

i

RMSE y y
n =

= −                                                      (5) 

2.6. Computational Efficiency  

    The maximum time elapsed during the training process 

was recorded to assess the computational efficiency of the 

models. This evaluation provides a clearer understanding of 

how architectural differences affect computational speed. It 

also underscores the impact of data dimensionality, 

particularly the number of input channels, on this aspect. 

2.7. Ablation Study  

    To assess the individual contribution of each block within 

the network structure, an ablation study was conducted on 

the HCNN architecture. As the HCNN architecture consists 

of residual, dense, inception, and squeeze-excitation blocks, 

unlike SCNN, each block was individually removed to 

evaluate its impact on the overall performance of the 

network. By comparing the results of the complete network 

architecture with those of versions where individual blocks 

were removed, the anticipated contribution of each block to 

accuracy and efficiency was identified.  

3. Results 

3.1. Statistical Evaluation Results 

    The trained models on RGB data, SCNN-RGB, and 

HCNN-RGB achieved overall accuracies of 94.19% and 

95.54%, respectively. In contrast, SCNN-MS and HCNN-

MS performed better in classifying correct samples than 

SCNN-RGB and HCNN-RGB.  The SCNN-MS recorded an 

accuracy of 95.54%, while HCNN-MS achieved the highest 

performance among all models with an accuracy of 98.44%. 

The kappa coefficients  for the SCNN-RGB, SCNN-MS, 

HCNN-RGB, and HCNN-MS were 93.53%, 97.04%, 

95.03%, and 98.27%, respectively. This indicates the strong 

agreement between the classifications made by these models 

and the actual labels. The highest kappa coefficient value 

was associated with the HCNN-MS. Figure 3 shows the 

accuracy and kappa values of the models. 
 

Figure 3. Accuracy and kappa coefficient graph 
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The error rates of the models, along with overall accuracy 

and kappa coefficient, are presented in Table 4. The HCNN-

MS had the lowest error rate, whereas the SCNN-RGB had 

the highest. Based on all evaluation metrics, these models 

represent the highest and lowest performing approaches in 

this study. Although all four models demonstrated high 

accuracy, the HCNN-based models proved superior to those 

with the SCNN architecture. Additionally, the type of input 

data had a significant impact on the performance of the 

models. In other words, the SCNN-MS and HCNN-MS, 

trained on multispectral data, outperformed those trained on 

RGB data due to their ability to extract a broader range of 

spectral features. 

 
Table 4. Statistical evaluation values 

Model OA KC MSE RMSE 

SCNN-RGB 94.19 93.53 1.23 1.11 

SCNN-MS 97.33 97.04 0.39 0.63 

HCNN-RGB 95.54 95.03 0.77 0.88 

HCNN-MS 98.44 98.27 0.21 0.46 

   

 

Figure 4. HCNN-MS confusion matrix 

 

    The analysis of the main diagonal of these matrices 

reveals more misclassifications in the SCNN-RGB and 

HCNN-RGB compared to the SCNN-MS and HCNN-MS. 

Figure 4 shows the confusion matrix of the HCNN-MS 

model, which was the most accurate model in this study. 

This difference in correctly classifying samples was minor 

in some classes but considerably more significant in others. 

For example, all models performed well in correctly 

classifying Sea/Lake samples. The SCNN-MS achieved 

100% accuracy in this class without any misclassifications. 

Similarly, all models demonstrated high accuracy in 

classifying forest samples, with SCNN-MS achieving the 

highest accuracy of 99.8%. The models demonstrated 

varying performance in correctly classifying the samples of 

the Pasture class. SCNN-RGB, contrary to expectations, 

achieved the best performance in this class with an accuracy 

of 96.8%, outperforming the other models.  The accuracy 

rate of the models in correctly classifying samples for each 

class is shown in Figure 5. 

 

Figure 5. Accuracy reports for each class 

 

3.1.1 Convergence Analysis 

    The convergence of the models was evaluated by 

analyzing the trend in the reduction of training and 

validation errors over 50 epochs. A consistent decrease in 

both metrics and a small gap between them indicates a 

balance between learning and generalization.  All models 

demonstrated stable convergence, avoiding significant 

overfitting or underfitting. While some models exhibited a 

rapid initial decline in loss values, others showed a more 

gradual reduction before stabilizing. 
 

Figure 6. Loss trends graph 
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Minor fluctuations in validation loss were observed in some 

instances, suggesting slight sensitivity to validation data. 

However, loss trends confirm that the models effectively 

learned patterns in the data while maintaining generalization 

capability. Figure 6 shows loss trends. 

3.2. Computational Efficiency Analysis 

     The highest training time was observed for SCNN-MS, 

which required 6,344 seconds to complete. In comparison, 

SCNN-RGB completed training in 4,232 seconds, 

representing a 34% reduction in training time. In contrast, 

the HCNN-based models demonstrated significantly higher 

training efficiency, with HCNN-RGB and HCNN-MS 

completing in 886 and 977 seconds, respectively. Notably, 

HCNN-RGB required approximately 10% less training time 

than HCNN-MS. The 86% difference in training duration 

between HCNN-RGB and SCNN-MS highlights the 

substantial variation in computational demand among the 

models.  

 

Figure 7. Overall performance of the models 

Figure 7 shows the trade-off between statistical performance 

metrics and computational efficiency on a normalized scale. 

Although the models trained on multispectral data 

completed training in less time, the difference was more 

pronounced for the SCNN-based models than for the 

HCNN-based models.  This indicates that the impact of the 

architecture on reducing complexity is far more significant 

than the impact of the dimensionality of input data. 

3.3. Ablation Study Results 

    For HCNN-MS, removing the residual block reduced 

accuracy from 98.44% to 94.17% and slightly decreased 

training time from 977 to 815 seconds. Excluding the dense 

or inception blocks, accuracy dropped to 96.78% and 

96.69%, with training times of 691 and 651 seconds, 

respectively. Removing the squeeze-excitation block had 

minimal impact on accuracy, slightly increasing it to 

98.47%, but significantly increased training time to 1,906 

seconds. Eliminating all blocks resulted in the lowest 

accuracy of 89.17% and the shortest training time of 477 

seconds.  Similarly, for HCNN-RGB, the absence of the 

residual block lowered accuracy from 95.54% to 91.81%, 

with training time reducing from 886 to 564 seconds. 

Excluding the dense and inception blocks reduced accuracy 

to 93.26% and 92.33%, with training times of 461 and 507 

seconds, respectively. The removal of the squeeze-

excitation block resulted in a marginal increase in accuracy 

to 95.89%, but significantly increased training time to 1,668 

seconds. The model without any blocks achieved an 

accuracy of 82.88% and the shortest training time of 381 

seconds.  As shown in Table 5, each block contributes to 

accuracy, especially the residual block. However, the 

squeeze-excitation block does not significantly affect model 

accuracy but plays a critical role in enhancing computational 

efficiency. As expected, this block compresses channel-wise 

information via global pooling and lightweight layers, 

reducing computational load and speeding up training. 

Consequently, its removal leads to increased training time. 

4. Discussion 

    The results of this study showed that all four models 

trained on the EuroSAT dataset performed reasonably well 

Table 5. Block-wise ablation study of HCNN models 

Model Residual Block Dense Block Inception Block SE Block Accuracy (%) Training Time (s) 

 

 
HCNN-MS 

 ✓ ✓ ✓ 94.17 815 

✓  ✓ ✓ 96.78 691 

✓ ✓  ✓ 96.69 651 

✓ ✓ ✓  98.47 1906 

    89.17 477 

✓ ✓ ✓ ✓ 98.44 977 

 

 
HCNN-RGB 

 ✓ ✓ ✓ 91.81 564 

✓  ✓ ✓ 93.26 461 

✓ ✓  ✓ 92.33 507 

✓ ✓ ✓  95.89 1668 

    82.88 381 

✓ ✓ ✓ ✓ 95.54 886 
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in LULC classification. However, their overall performance 

varied depending on the network architecture and input data 

type. In general, trained models on RGB data exhibited 

higher classification errors and lower accuracy compared to 

models based on multispectral data. For example, the 

HCNN-MS achieved a significantly higher performance, 

reaching an accuracy of 98.44%, compared to 95.54% for 

the HCNN-RGB. The SCNN-based models exhibited 

similar behavior, highlighting the contribution of 

multispectral data to improved classification accuracy, 

particularly in distinguishing spectrally similar classes. 

Figure 8 provides a visual insight into the performance of 

the models in classifying 20 random samples.  

    Apart from the data type, the network architecture also 

played an essential role in reducing the computational 

complexity of the models. The HCNN architecture 

significantly reduced training time by optimizing the 

gradient flow and eliminating unnecessary computations. 

For instance, SCNN-MS required 6,344 seconds for 

training, while HCNN-MS completed training in 977 

seconds, indicating a substantial decrease in computational 

time. In addition to reducing training time, HCNN-based 

models outperformed the other models in the evaluation 

criteria of this study, including overall accuracy and kappa 

coefficient. Among them, HCNN-MS achieved the best 

performance, followed by SCNN-MS, then HCNN-RGB, 

and finally SCNN-RGB. Therefore, it can be concluded that 

the HCNN-MS, due to its advanced architecture and the use 

of multispectral data, provided the best performance. In 

contrast, the SCNN-RGB, with a simpler architecture and 

limited data, showed the weakest performance in this study.  

 
Table 6. Accuracy comparison with previous studies 

Model Data OA Reference 

SCNN * RGB 94.19 This study 

SCNN * MS 97.33 This study 

HCNN * RGB 95.54 This study 

HCNN * MS 98.44 This study 

VGG-19 RGB 77.82 Karaköse, 2024 

ResNet-50 RGB 98.71 Panda et al., 2024 

ResNet-101 RGB 99.01 Panda et al., 2024 

GoogleNet RGB 99.68 Panda et al., 2024 

CNN RGB 88 Acuña-Alonso et al., 2024 

VGG-16 RGB 68 Adegun et al., 2023 

DensNet-121 RGB 98 Adegun et al., 2023 

CNN MS 98.78 Yassine et al., 2021 

CNN MS+Indices 99.5 Yassine et al., 2021 

CNN RGB 96.83 Yassine et al., 2021 

CNN MS 94.9 Chong, 2020 

VGG-16 RGB 94.5 Chong, 2020 

RF RGB 61.46 Sonune, 2020 

VGG-19 RGB 97.66 Sonune, 2020 

ResNet-50 RGB 94.25 Sonune, 2020 

    Compared to studies that have similarly used the 

EuroSAT dataset for LULC classification, different 

accuracies have been achieved depending on the network 

architecture and the proposed approach. For example, in one 

study, researchers achieved an accuracy of 97.66% using the 

VGG19 model, while another study using the same model 

reported an accuracy of 77.82%. Similarly, reported 

accuracies varied in studies utilizing the VGG16 model, 

with two studies achieving 94.5% and 68%, respectively. 

Table 6 shows that most of these studies used RGB data. 

Given the variety of CNN architectures used in these studies, 

the abbreviation 'CNN' is used in this table to represent 

them. The trained models in this study are distinguished by 

an asterisk (*) in the table. Considering these results, the 

architectures developed in this study are adequate, as all 

models achieved an accuracy exceeding 94%. 

4.1. Limitations and Applicability 

While the HCNN architecture demonstrated strong 

performance in LULC classification at the patch level, some 

limitations should be acknowledged to provide a balanced 

perspective. The architecture is specifically designed for 

patch-level classification, where each image patch is 

assigned a single label based on its dominant LULC type. 

As such, it is not suitable for pixel-level or object-level 

classification tasks and cannot generate thematic maps that 

delineate detailed object boundaries. This limits its 

applicability in spatial segmentation or object detection 

scenarios.  However, the architecture is highly flexible in 

terms of input data, supporting RGB, multispectral, and 

even single-band imagery with varying numbers of 

channels. The effectiveness of this architecture has only 

been evaluated on the EuroSAT dataset in this study. 

However, it can be applied to other datasets with similar 

characteristics, such as UC Merced and BigEarthNet, which 

also consist of labeled image patches. Therefore, one of the 

future directions of this research is to evaluate the 

architecture on more diverse and larger datasets to overcome 

the geographical and contextual limitations of EuroSAT. 

Although its effectiveness has been primarily demonstrated 

in LULC classification, the architecture is not limited to this 

application and can be adapted for other patch-level 

classification tasks in remote sensing and general computer 

vision. While the proposed method is currently limited to 

patch-level classification, pixel-wise segmentation and 

thematic mapping are more critical in many practical remote 

sensing applications. Therefore, a key direction for future 

research could be to redesign the method within an encoder–

decoder framework to enable pixel-wise segmentation, 

following the approach of architectures such as U-Net. 
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5. Conclusion 

    The advancement of satellite sensors has increased access 

to diverse and detailed data while also introducing 

challenges in processing high-dimensional inputs. In 

response, machine learning methods, particularly 

convolutional neural networks (CNNs), have become 

effective tools in satellite image processing and computer 

vision tasks. This study introduces a hybrid multi-block 

CNN (HCNN) architecture specifically designed to enhance 

accuracy and computational efficiency in LULC 

classification using the EuroSAT dataset derived from 

Sentinel-2 imagery. By integrating multiple architectural 

blocks alongside Batch Normalization and Global Average 

Pooling layers, the HCNN significantly outperformed a 

single-block (SCNN) across all statistical metrics. The 

HCNN models trained on RGB and multispectral data 

demonstrated both high accuracy and substantially reduced 

training time. 

     Furthermore, the flexible structure of the HCNN enables 

compatibility with datasets of varying input dimensions, 

making it applicable not only to remote sensing but also to a 

broad range of computer vision tasks. The results are 

consistent with recent studies on deep learning for LULC 

classification using the EuroSAT dataset. In some cases, the 

proposed HCNN models achieve higher accuracy than 

common architectures, such as VGG16. Unlike many 

previous works, this study also emphasizes computational 

efficiency, a factor often overlooked in the related literature. 

Future research can build on this architecture by exploring 

more optimized variations that maintain high performance 

while reducing computational demands, thus facilitating 

deployment in low-resource hardware. 

 

Figure 8. Classification results for 20 random samples 

Refrences 
 

Acuña-Alonso, C., García-Ontiyuelo, M., Barba-Barragáns, 

D., & Álvarez, X. (2024). Development of a 

convolutional neural network to accurately detect land 

use and land cover. MethodsX, 12, 102719. 

https://doi.org/10.1016/j.mex.2024.102719  

Adegun, A. A., Viriri, S., & Tapamo, J. R. (2023). Review of 

deep learning methods for remote sensing satellite 

images classification: experimental survey and 

comparative analysis. Journal of Big Data, 10(1), 93. 

https://doi.org/10.1186/s40537-023-00772-x  

Albarakati, H. M., Khan, M. A., Hamza, A., Khan, F., 

Kraiem, N., Jamel, L., ... & Alroobaea, R. (2024). A 

novel deep learning architecture for agriculture land 

cover and land use classification from remote sensing 

images based on network-level fusion of self-attention 

architecture. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing. 

https://doi.org/10.1109/jstars.2024.3369950  

Alyahyan, S. (2025). FusionNet remote a hybrid deep 

learning ensemble model for remote image 

classification in multispectral images. Discover 

Computing, 28(1), 3. https://doi.org/10.1007/s10791-

025-09498-1  

Bhatti, M. K., Khan, M. A., Shaheen, S., Hamza, A., Arishi, 

A., AlHammadi, D. A., ... & Nam, Y. (2025). A Novel 

Approach for High-Resolution Coastal Areas and Land 

Use Recognition from Remote Sensing Images based 

on Multimodal Network-Level Fusion of SRAN3 and 

Lightweight Four Encoders ViT. IEEE Journal of 

Selected Topics in Applied Earth Observations and 

Remote Sensing. 

https://doi.org/10.1109/jstars.2025.3542194  

Bing, Z. (2017). Current Status and Future Prospects of 

Remote Sensing. Bulletin of Chinese Academy of 

Sciences (Chinese Version), 32(7), 774-784. 

https://doi.org/10.11834/jrs.20166264  

Blaschke, T. (2013, March). Object based image analysis: A 

new paradigm in remote sensing. In ASPRS Annual 

Conference, March (pp. 24-28). 

Calota, I., Faur, D., & Datcu, M. (2023). Dimensionality 

Reduction of Deep Learning for Earth Observation: 

Smaller, Faster, Simpler. IEEE Journal of Selected 

Topics in Applied Earth Observations and Remote 

Sensing, 16, 4484-4498. 

https://doi.org/10.1109/jstars.2023.3270384  

Chen, G., Zhang, X., Tan, X., Cheng, Y., Dai, F., Zhu, K., ... 

& Wang, Q. (2018). Training small networks for scene 

classification of remote sensing images via knowledge 

distillation. Remote Sensing, 10(5), 719. 

https://doi.org/10.3390/rs10050719  

Chen, J., Huang, H., Peng, J., Zhu, J., Chen, L., Li, W., ... & 

Li, H. (2020). Convolution neural network architecture 

learning for remote sensing scene classification. arXiv 

preprint arXiv:2001.09614. 

https://doi.org/10.48550/arXiv.2001.09614 

Annual Crop Forest Herbaceous Vegetation Highway Industrial 

 
(A) 

 
(B) 

 
(C) 

 
(D) 

 
(E) 

 
(F) 

 
(G) 

 
(H) 

 
(I) 

 
(J) 

Pasture Permanent Crop Residential River Sea/Lake 

 
(K) 

 
(L) 

 
(M) 

 
(N) 

 
(O) 

 
(P) 

 
(Q) 

 
(R) 

 
(S) 

 
(T) 

                     

                     

                     

Model A B C D E F G H I J K L M N O P Q R S T 

SCNN-RGB ✓ ✓ ✓ ✓  ✓ ✓ ✓  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 
SCNN-MS  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

HCNN-RGB  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓  ✓ 
HCNN-MS  ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ 

 

https://doi.org/10.1016/j.mex.2024.102719 
https://doi.org/10.1186/s40537-023-00772-x
https://doi.org/10.1109/jstars.2024.3369950
https://doi.org/10.1007/s10791-025-09498-1 
https://doi.org/10.1007/s10791-025-09498-1 
https://doi.org/10.1109/jstars.2025.3542194
https://doi.org/10.11834/jrs.20166264
https://doi.org/10.1109/jstars.2023.3270384
https://doi.org/10.3390/rs10050719
https://doi.org/10.48550/arXiv.2001.09614


 

Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024 

 

 

116 

Chong, E. EuroSAT Land Use and Land Cover Classification 

using Deep Learning. https://github.com/e-

chong/Remote-Sensing, 2020. 

Cohen, J. (1960). A cofficient of agreement for nominal 

scales. Educational and psychological measurement, 

20(1), 37-46. 

https://doi.org/10.1177/001316446002000104  

Congalton, R. G., & Green, K. (2019). Assessing the 

accuracy of remotely sensed data: principles and 

practices. CRC press. 

https://doi.org/10.1201/9780429052729  

Fayaz, M., Nam, J., Dang, L. M., Song, H. K., & Moon, H. 

(2024). Land-cover classification using deep learning 

with high-resolution remote-sensing imagery. Applied 

Sciences, 14(5), 1844. 

https://doi.org/10.3390/app14051844  

Filchev, L., & Chanev, M. (2024, June). Remote Sensing in 

Climate Change Research. In The International 

Conference on Environmental Protection and Disaster 

Risks (pp. 147-166). Cham: Springer Nature 

Switzerland. https://doi.org/10.1007/978-3-031-74707-

6_17  

Ghimire, M. Remote Sensing and Image Analysis in 

Environmental Studies. 

Günen, M. A. (2022). Performance comparison of deep 

learning and machine learning methods in determining 

wetland water areas using EuroSAT dataset. 

Environmental Science and Pollution Research, 29(14), 

21092-21106. https://doi.org/10.1007/s11356-021-

17177-z  

Guo, F., Li, Z., Xin, Z., Zhu, X., Wang, L., & Zhang, J. 

(2021). Dual graph U-Nets for hyperspectral image 

classification. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 14, 

8160-8170. 

https://doi.org/10.1109/jstars.2021.3103744  

Helber, P., Bischke, B., Dengel, A., & Borth, D. (2019). 

Eurosat: A novel dataset and deep learning benchmark 

for land use and land cover classification. IEEE Journal 

of Selected Topics in Applied Earth Observations and 

Remote Sensing, 12(7), 2217-2226. 

https://doi.org/10.1109/jstars.2019.2918242  

Karaköse, E. (2024). An Efficient Satellite Images 

Classification Approach Based on Fuzzy Cognitive 

Map Integration with Deep Learning Models Using 

Improved Loss Function. IEEE Access. 

https://doi.org/10.1109/access.2024.3461871  

Kunwar, S., & Ferdush, J. (2023). Mapping of land use and 

land cover (LULC) using EuroSAT and transfer 

learning. arXiv preprint arXiv:2401.02424. 

https://doi.org/10.48550/arXiv.2401.02424 

Li, R., Gao, X., Shi, F., & Zhang, H. (2023). Scale effect of 

land cover classification from multi-resolution satellite 

remote sensing data. Sensors, 23(13), 6136. 

https://doi.org/10.3390/s23136136  

Li, Y., Wang, L., Liu, X., Chu, Q., & Yang, X. (2021). A 

review of spatiotemporal super-resolution mapping for 

remote sensing data fusion. IEEE Journal on 

Miniaturization for Air and Space Systems, 3(1), 9-18. 

https://doi.org/10.1109/jmass.2021.3091837  

Li, L., Zhang, W., Zhang, X., Emam, M., & Jing, W. (2023). 

Semi-supervised remote sensing image semantic 

segmentation method based on deep learning. 

Electronics, 12(2), 348. 

https://doi.org/10.3390/electronics12020348  

Lian, Z., Zhan, Y., Zhang, W., Wang, Z., Liu, W., & Huang, 

X. (2025). Recent Advances in Deep Learning-Based 

Spatiotemporal Fusion Methods for Remote Sensing 

Images. Sensors, 25(4), 1093. 

https://doi.org/10.3390/s25041093  

Lim, S. L., Sreevalsan‐Nair, J.,   Daya Sagar, B. S. (2024). 

Multispectral data mining: A focus on remote sensing 

satellite images. Wiley Interdisciplinary Reviews: Data 

Mining and Knowledge Discovery, 14(2), e1522. 

https://doi.org/10.1002/widm.1522  

Liu, Q., Basu, S., Ganguly, S., Mukhopadhyay, S., DiBiano, 

R., Karki, M., & Nemani, R. (2020). Deepsat v2: feature 

augmented convolutional neural nets for satellite image 

classification. Remote Sensing Letters, 11(2), 156-165. 

https://doi.org/10.1080/2150704x.2019.1693071  

Loganathan, A., Koushmitha, S., & Arun, Y. N. K. (2021, 

December). Land Use/Land Cover Classification Using 

Machine Learning and Deep Learning Algorithms for 

EuroSAT Dataset–A Review. In International 

Conference on Intelligent Systems Design and 

Applications (pp. 1363-1374). Cham: Springer 

International Publishing. https://doi.org/10.1007/978-

3-030-96308-8_126  

Lyons, M. B., Keith, D. A., Phinn, S. R., Mason, T. J., & 

Elith, J. (2018). A comparison of resampling methods 

for remote sensing classification and accuracy 

assessment. Remote Sensing of Environment, 208, 145-

153. https://doi.org/10.1016/j.rse.2018.02.026  

Jannat, T., & Hossain, M. A. (2024, May). Adapting VGG16 

and ResNet50 for Cross-Domain Transfer Learning on 

Hyperspectral Image. In 2024 6th International 

Conference on Electrical Engineering and Information 

& Communication Technology (ICEEICT) (pp. 1350-

1355). IEEE. 

https://doi.org/10.1109/iceeict62016.2024.10534513  

Jiang, M., Shen, H., Li, J., & Zhang, L. (2021). An Integrated 

Framework for the Heterogeneous Spatio-Spectral-

Temporal Fusion of Remote Sensing Images. arXiv 

https://doi.org/10.1177/001316446002000104
https://doi.org/10.1201/9780429052729
https://doi.org/10.3390/app14051844
https://doi.org/10.1007/978-3-031-74707-6_17
https://doi.org/10.1007/978-3-031-74707-6_17
https://doi.org/10.1007/s11356-021-17177-z
https://doi.org/10.1007/s11356-021-17177-z
https://doi.org/10.1109/jstars.2021.3103744
https://doi.org/10.1109/jstars.2019.2918242
https://doi.org/10.1109/access.2024.3461871
https://doi.org/10.48550/arXiv.2401.02424
https://doi.org/10.3390/s23136136
https://doi.org/10.1109/jmass.2021.3091837
https://doi.org/10.3390/electronics12020348
https://doi.org/10.3390/s25041093
https://doi.org/10.1002/widm.1522
https://doi.org/10.1080/2150704x.2019.1693071 
https://doi.org/10.1007/978-3-030-96308-8_126 
https://doi.org/10.1007/978-3-030-96308-8_126 
https://doi.org/10.1016/j.rse.2018.02.026 
https://doi.org/10.1109/iceeict62016.2024.10534513 


 

Efficient Deep Learning for Land Use and Land Cover Classification  

 

117 

preprint arXiv:2109.00400. 

https://doi.org/10.48550/arXiv.2109.00400 

Mohammed, E. A., & Lakizadeh, A. (2025). Benchmarking 

Vision Transformers for Satellite Image Classification 

based on Data Augmentation Techniques. Int. J. 

Advance Soft Compu. Appl, 16(3). 

Mohan, M., Macharla, A., P, P., Sharan, B., Nageswaran, A., 

& RM, B. (2024). Remote sensing-based ecosystem 

monitoring and disaster management in urban 

environments using machine learnings. Remote 

Sensing in Earth Systems Sciences, 7(4), 319-327. 

https://doi.org/10.1007/s41976-024-00124-0   

Nicolau, A. P., Dyson, K., Saah, D., & Clinton, N. (2023). 

Accuracy assessment: quantifying classification 

quality. In Cloud-Based Remote Sensing with Google 

Earth Engine: Fundamentals and Applications (pp. 135-

145). Cham: Springer International Publishing. 

https://doi.org/10.1007/978-3-031-26588-4_7  

Niu, Y., Song, Z., Luo, Q., Chen, G., Ma, M., & Li, F. (2025). 

ATMformer: An Adaptive Token Merging Vision 

Transformer for Remote Sensing Image Scene 

Classification. Remote Sensing, 17(4), 660. 

https://doi.org/10.3390/rs17040660  

Padmaja, S. M., Naveenkumar, R., Kumari, N. L., Pimo, E. 

S. J., Bindhu, M., Konduri, B., & Jangir, P. (2024). 

Deep Learning in Remote Sensing for Climate-Induced 

Disaster Resilience: A Comprehensive Interdisciplinary 

Approach. Remote Sensing in Earth Systems Sciences, 

1-16. https://doi.org/10.1007/s41976-024-00178-0  

Panda, S., Yadav, V. S., & Tripathi, V. K. (2024). Application 

of Remote Sensing in Natural Resource Management. 

In Sustainable Development and Geospatial 

Technology: Volume 2: Applications and Future 

Directions (pp. 173-180). Cham: Springer Nature 

Switzerland. https://doi.org/10.1007/978-3-031-65703-

0_11  

Sharma, S., Beslity, J. O., Rustad, L., Shelby, L. J., Manos, 

P. T., Khanal, P., ... & Khanal, C. (2024). Remote 

Sensing and GIS in Natural Resource Management: 

Comparing tools and emphasizing the importance of in-

situ data. Remote Sensing, 16(22), 4161. 

https://doi.org/10.3390/rs16224161  

Shi, C., Wang, T., & Wang, L. (2020). Branch feature fusion 

convolution network for remote sensing scene 

classification. IEEE Journal of Selected Topics in 

Applied Earth Observations and Remote Sensing, 13, 

5194-5210. 

https://doi.org/10.1109/jstars.2020.3018307  

Stival, L., da Silva Torres, R., & Pedrini, H. (2025). 

Semantically-Aware Contrastive Learning for 

multispectral remote sensing images. ISPRS Journal of 

Photogrammetry and Remote Sensing, 223, 173-187. 

https://doi.org/10.1016/j.isprsjprs.2025.02.024  

Sonune, N. Land Cover Classification with EuroSAT 

Dataset. https://www.kaggle.com/nilesh789/land-

cover-classification-with-eurosat-dataset, 2020. 

Swain, R., Paul, A., & Behera, M. D. (2024). Spatio-temporal 

fusion methods for spectral remote sensing: A 

comprehensive technical review and comparative 

analysis. Tropical Ecology, 65(3), 356-375. 

https://doi.org/10.1007/s42965-023-00318-5  

Tiwari, P., & Shukla, P. (2018). Crop yield prediction by 

modified convolutional neural network and 

geographical indexes. International Journal of 

Computer Sciences and Engineering, 6(8), 503-513. 

https://doi.org/10.26438/ijcse/v6i8.503513  

Yassine, H., Tout, K., & Jaber, M. (2021). Improving lulc 

classification from satellite imagery using deep 

learning–eurosat dataset. The International Archives of 

the Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 43, 369-376. 

https://doi.org/10.5194/isprs-archives-xliii-b3-2021-

369-2021  

Yamashkin, S. A., Yamashkin, A. A., Zanozin, V. V., 

Radovanovic, M. M., & Barmin, A. N. (2020). 

Improving the efficiency of deep learning methods in 

remote sensing data analysis: geosystem 

approach. IEEE Access, 8, 179516-179529. 

https://doi.org/10.1109/access.2020.3028030  

Yuan, Z., Tang, C., Yang, A., Huang, W., & Chen, W. (2023). 

Few-shot remote sensing image scene classification 

based on metric learning and local descriptors. Remote 

Sensing, 15(3), 831. 

https://doi.org/10.3390/rs15030831  

Zeng, D., Chen, S., Chen, B., & Li, S. (2018). Improving 

remote sensing scene classification by integrating 

global-context and local-object features. Remote 

Sensing, 10(5), 734. 

https://doi.org/10.3390/rs10050734  

Zeng, Z., Wang, W., & Zhang, W. (2021, January). Target 

classification algorithms based on multispectral 

imaging: A review. In Proceedings of the 2021 6th 

International Conference on Multimedia and Image 

Processing (pp. 12-21). 

https://doi.org/10.1145/3449388.3449393  

Zhu, X. X., Tuia, D., Mou, L., Xia, G. S., Zhang, L., Xu, F., 

& Fraundorfer, F. (2017). Deep learning in remote 

sensing: A comprehensive review and list of resources. 

IEEE geoscience and remote sensing magazine, 5(4), 8-

36. https://doi.org/10.1109/mgrs.2017.2762307 
 

https://doi.org/10.48550/arXiv.2109.00400
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/s41976-024-00124-0
https://doi.org/10.1007/978-3-031-26588-4_7
https://doi.org/10.3390/rs17040660 
https://doi.org/10.1007/s41976-024-00178-0 
https://doi.org/10.1109/jstars.2020.3018307
https://doi.org/10.1016/j.isprsjprs.2025.02.024 
https://doi.org/10.1007/s42965-023-00318-5
https://doi.org/10.26438/ijcse/v6i8.503513 
https://doi.org/10.5194/isprs-archives-xliii-b3-2021-369-2021
https://doi.org/10.5194/isprs-archives-xliii-b3-2021-369-2021
https://doi.org/10.1109/access.2020.3028030 
https://doi.org/10.3390/rs15030831 
https://doi.org/10.3390/rs10050734 
https://doi.org/10.1145/3449388.3449393 
https://doi.org/10.1109/mgrs.2017.2762307 

