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One of the primary applications of remote sensing is the classification of land use and land
cover (LULC). This field has increased prominence in computer vision tasks with the
expansion of learning methods, especially in recent years. In this context, the present study
introduces a convolutional neural network architecture named HCNN, designed to achieve
high accuracy in LULC classification while minimizing processing cost. A simpler
architecture based on conventional CNN designs, referred to as SCNN, was also implemented
for comparison. The HCNN architecture comprises residual, dense, inception, and squeeze-
excitation blocks, along with several base layers. Four models based on these two architectures
were trained using RGB and multispectral data from the Sentinel-2 imagery in the EuroSAT
dataset: SCNN-RGB, SCNN-MS, HCNN-RGB, and HCNN-MS. All models achieved
accuracies above 94%. Among these, HCNN-MS attained the highest accuracy of 98.44%,
while SCNN-RGB recorded the lowest accuracy at 95.57%. Overall, HCNN-based models
outperformed SCNN-based models in accuracy and training speed, requiring approximately
six times less training time. Additionally, the use of multispectral data had a positive impact
on model accuracy, albeit it increased computational complexity somewhat. An ablation study
was also conducted to evaluate the role of each block in the HCNN architecture on the model’s
final performance. The ablation results demonstrated that each block plays a significant role
in improving accuracy and reducing processing overhead, particularly the residual and dense
blocks, which had the greatest impact on final accuracy. Moreover, the squeeze-excitation

block notably reduced training time, while its removal caused minimal change in accuracy.
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1. Introduction

Remote sensing plays a crucial role in Earth observation,
enabling the continuous monitoring of environmental
changes, land wuse patterns, and natural resource
management (Panda et al., 2024; Sharma et al., 2024; Li et
al., 2021). It provides essential data for applications such as
climate change assessment, urban planning, disaster
response, and agricultural monitoring (Filchev & Chanev,
2024; Mohan et al., 2024; Padmaja et al., 2024). Remote
sensing utilizes satellite and airborne sensors to capture
electromagnetic radiation reflected or emitted from the
Earth's surface. Therefore, this provides a detailed
perspective on terrestrial and atmospheric conditions
(Ghimire). Advances in remote sensing technology have
greatly improved the spatial, spectral, and temporal
resolution of satellite imagery, enabling more precise
analyses (Bing, 2017; Lian et al., 2025; Jiang et al., 2021;
Swain et al., 2024). Furthermore, the increasing availability
of high-resolution multispectral data has enabled researchers
to extract valuable information from large datasets (Lim et
al., 2024).

However, accurate classification tasks such as land cover
mapping using images derived from satellite sensors are a
key challenge in remote sensing (Fayaz et al., 2024).
Therefore, extracting meaningful features from these images
is crucial, especially for multispectral data. The
multispectral data provides valuable spectral and spatial
information for achieving accurate results. Traditional
classification approaches have relied on manually
engineered features and shallow learning methods. These
include spectral, texture, and object-based analyses
(Blaschke, 2013; Zeng et al., 2021). However, these
methods are limited by their dependence on domain
expertise and manual work. They are also vulnerable to
lighting, scale, and atmospheric changes (Zhu et al., 2017).
Additionally, differences in sensor types, spatial resolutions,
and spectral bands pose challenges in creating robust
classification techniques (Chen et al., 2018; Li et al., 2023).

The increasing complexity and volume of remote sensing
data require advanced methods for processing high-
dimensional imagery. Neural networks offer a promising
solution to handle these challenges (Alyahyan, 2025)
efficiently. Convolutional Neural Networks (CNNs) are
widely used in computer vision tasks. Their extension to
remote sensing has shown remarkable success in analyzing
high-dimensional satellite data (Chen et al., 2020; Liu et al.,
2020). The CNNs can identify spatial patterns and extract
spectral relationships between pixels, especially in
multispectral remote sensing data. Recent studies have
demonstrated their effectiveness in remote sensing tasks,
including land cover classification, object detection, and
scene recognition (Lyons et al., 2018; Zeng et al., 2018; Shi
et al., 2020; Tiwari & Shukla, 2018; Guo et al., 2021).

Despite the advantages of CNNs, their use in remote
sensing faces certain challenges. Training neural network
models, especially in deep learning, requires a large volume
of labeled data, which presents a significant challenge (Li et
al., 2023; Yuan et al., 2023). However, with efforts from
researchers, valuable benchmark datasets have been made
publicly available, partially addressing this challenge. For
instance, many studies have used datasets such as EuroSAT
for land use and land cover classification (Bhatti et al., 2025;
Mohammed & Lakizadeh, 2025; Niu et al., 2025; Stival et
al., 2025). Another challenge is the predominant focus on
three-channel models in computer vision, which are
designed primarily for RGB data. As a result, the rich
spectral features provided by multispectral remote sensing
data have been largely overlooked (Yassine et al., 2021).
Well-known models, such as VGG-16 and ResNet-50,
which have been trained on the ImageNet database, rely on
three-channel inputs in their initial architecture (Jannat and
Hossain, 2024). Optimizing the computational efficiency of
CNNs while maintaining or improving accuracy, especially
when handling high-dimensional multispectral data, remains
a key challenge.

Most studies have focused on enhancing CNN accuracy
and overall performance. However, metrics such as feature
extraction speed and training time, which are crucial for
computational efficiency, have received less attention. For
instance, in a study conducted by Acuiia-Alonso, a CNN
model was trained on the EuroSAT dataset for LULC
classification. This model achieved an accuracy of 88% on
the test data, demonstrating satisfactory -classification
performance (Acufa-Alonso et al., 2024). In another study,
Yamashkin developed the GeosystemNet for situations with
limited data. In this study, when only 10% of the data was
used for training and 90% for testing, the model achieved an
accuracy of 89.23% (Yamashkin et al., 2020). In another
study, Yassine trained a CNN model on the multispectral
EuroSAT dataset instead of its RGB version and reported an
overall accuracy of 98.78%. Additionally, computing
spectral indices and incorporating them into the input data
further improved the accuracy to 99.58% (Yassine et al.,
2021). These studies confirm CNNs' performance in remote
sensing tasks while not reporting on their computational
efficiency.

On the other hand, some studies have focused on
improving the computational efficiency of CNNs and have
provided reports in this regard. For example, Albarakati
proposed a method combining a self-attention mechanism
with integrating IBNR-65 and DenseNet-64 networks. The
results indicated that the processing time was nearly twice
as fast as VGG-16 while maintaining an accuracy of 89.5%
(Albarakati et al., 2024). In another study, researchers
employed dimension reduction techniques, such as
histogram sampling and the Bag of Words method, to
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improve the efficiency of CNNs trained on the BigEarthNet-
S2 dataset while preserving their classification accuracy and
performance (Calota et al., 2015). It can be inferred that
researchers primarily focus on developing highly accurate
CNN s rather than optimizing for highly accurate results and
computational efficiency.

Based on the aforementioned points, the main objective
of this study is to design an architecture capable of flexibly
utilizing both RGB and multispectral data with a
customizable number of channels. In addition to achieving
significant accuracy, this architecture should also optimize
computational efficiency and strike an effective balance
between accuracy and performance. The proposed
architecture was applied to LULC classification at the patch
level, where each image patch is labeled based on its
dominant LULC class. Unlike pixel- or object-level
classification, this approach is not designed for producing
thematic maps or for annotating specific objects such as
buildings or trees. The evaluation of results will provide
insight into how the CNN architecture and input data
influence LULC classification performance, with a focus on
achieving high accuracy while maintaining reduced
processing demand.

2. Methodology
2.1. Data Description

The EuroSAT dataset is widely used as a benchmark for
land use and land cover (LULC) classification/detection
tasks. Numerous studies have utilized this dataset for
developing deep learning and machine learning models
(Giinen et al., 2022; Kunwar et al., 2023; Loganathan et al.,
2021). This dataset, derived from the Sentinel-2 mission of
the Copernicus program, includes 27,000 labeled images
with 10 to 60 meters spatial resolution, covering ten LULC
classes across various regions of Europe. These classes are
Annual Crop, Forest, Herbaceous Vegetation, Highway,
Industrial, Pasture, Permanent Crop, Residential, River, and
Sea/Lake (Helber et al., 2019). The EuroSAT dataset is
available in two versions: true RGB images in JPG format
and multispectral images in GeoTIFF format. The RGB
version contains only the Blue, Green, and Red spectral
bands. This makes it particularly suitable for computer
vision models, as most deep learning architectures are
inherently designed for three-channel data. On the other
hand, the multispectral version provides all 13 spectral
bands available in Sentinel-2 data, offering additional
spectral information that may enhance -classification
accuracy. Figure 1 shows sample EuroSAT images used in
this study.
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6.

Figure 1. EuroSAT dataset samples

2.2. Data Preparation

In this case, the EuroSAT dataset was divided into training
and validation sets with an 80-20 split ratio. The ratio was
applied separately to each LULC class rather than to the
entire dataset. This ensured that the distribution of samples
for each class was proportionally represented in both the
training and validation sets. The process was performed
randomly to avoid bias, ensuring a fair evaluation of the
models. Table 1 shows the distribution of training and
validation samples for each class. Finally, the digital
numbers (DN) of the pixels were normalized using the
Rasterio package.

Table 1. Training and validation set distribution (80:20)

1D Class Training Set Validation Set
1 Annual Crop 2400 600
2 Forest 2400 600
3 Herbaceous Vegetation 2400 600
4 Highway 2000 500
5 Industrial 2000 500
6 Pasture 1600 400
7 Permanent Crop 2000 500
8 Residential 2400 600
9 River 2000 500
10 Sea/Lake 2400 600
- Sum 21600 5400
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2.3. Convolutional Neural Network Architectures

Two distinct architectures were designed and specifically
developed for the objectives of this study. The first
architecture has a simple structure similar to conventional
CNN architectures. It was designed to achieve acceptable
results while maintaining simplicity and avoiding excessive
complexity. The second architecture was developed to
improve accuracy and computational efficiency. It ensures
that performance enhancements do not lead to increased
complexity and reduced computational efficiency. The
structural details of the architectures are elaborated in the
following sections.

2.3.1 Single-Block Convolutional Neural Network

The single-block convolutional neural network (SCNN)
consists of only one convolutional block. This architecture
is designed to extract hierarchical spatial features through a
structured sequence of convolutional, pooling, and fully
connected layers. It begins with an initial convolutional
layer with 64 filters and a 3%3 kernel to capture fundamental
patterns. This is followed by batch normalization to stabilize
learning and max-pooling to reduce spatial dimensions. As
the network deepens, two additional convolutional layers
with 128 and 256 filters, each using a 3x3 kernel, refine
feature extraction. As a result, the model gains an improved
ability to identify more complex patterns. Each
convolutional layer is followed by a max-pooling layer to
progressively down-sample the feature maps. A global
average pooling (GAP) layer is then applied to condense
spatial information into a compact representation. Finally,
fully connected dense layers refine high-level features,
incorporating a 512-unit dense layer with RELU activation
and a dropout mechanism to prevent overfitting. Another
256-unit dense layer is added before the final classification.
The classification is then performed using a dense layer with
softmax activation containing 10 output units, ensuring
efficient and accurate results. The details of the SCNN
architecture are presented in Table 2.

Table 2. The SCNN architecture summary

1D Layer Type Filters Shape / Unit
1 Conv2D 64 (3x3) 64 x 64 x 64
2 MaxPooling2D 2x2 32 %32 x64
3 Conv2D 128 (3%3) 32 x32x128
4 MaxPooling2D 2x2 16 x 16 x 128
5 Conv2D 256 (3x3) 16 x 16 x 256
6 MaxPooling2D 2x2 8 x 8 x 256
7 Global Average Pooling - 192

8 Dense (ReLU) - 256

9 Dropout - 256

10 Dense (Softmax) - 10

2.3.2 Hybrid Multi-Block Convolutional Neural Network

The Hybrid Multi-Block Convolutional Neural Network
(HCNN) enhances feature extraction and classification
performance by integrating multiple advanced architectural
blocks. The details of the HCNN architecture are presented
in Table 3.

Table 3. The HCNN architecture summary

1D Layer Type Filters Shape / Unit
1 Conv2D 64 (3x3) 64 x 64 x 64
2 Batch Normalization - 64 x 64 x 64
3 MaxPooling2D 2x2 32 x 32 x 64
4 Conv2D 64 (3x3) 32 x32 %64
5 Conv2D 64 (3x3) 32 x 32 x 64
6 Add (Skip Connection) - 32 x32 %64
7 MaxPooling2D 2x2 16 x 16 x 64
8 Conv2D 64 (3x3) 16 x 16 x 64
9 Concatenate - 16 x 16 x 64
10 Conv2D 128 (3x3) 16 x 16 x 128
11 Concatenate - 16 x 16 x 128
12 Conv2D 192 (3x3) 16 x 16 x 192
13 Concatenate - 16 x 16 x 192
14 Conv2D 256 (1x1) 16 x 16 x 256
15 Conv2D 256 (3x3) 16 x 16 x 256
16 Conv2D 256 (5%5) 16 x 16 x 256
17 Concatenate - 16 x 16 x 192
18  Global Average Pooling - 192
19 Dense - 12
20 Dense - 192
21 Reshape - 1x1x192
22 Multiply Feature Maps - 16 x 16 x 192
23 Global Average Pooling - 192
24 Dense (ReLLU) - 512
25 Dropout - 512
26 Dense (Softmax) - 10

Similar to SCNN, this network begins with a convolutional
layer with 64 filters and a 3x3 kernel for initial feature
extraction. It is followed by batch normalization for stable
learning and max-pooling to reduce spatial dimensions. A
residual block with two convolutional layers, each with 64
filters and a 3x3 kernel, and a skip connection ensures
efficient gradient flow. Next, dense blocks concatenate the
outputs from three convolutional layers with 64, 128, and
192 filters, each using 3x3 kernels. This approach enhances
feature reuse without applying batch normalization. A
squeeze-excitation (SE) block dynamically recalibrates
feature importance using global average pooling and two
fully connected layers with 12 and 192 units. The output
undergoes reshaping before multiplication with the feature
map to emphasize key spatial features. This block reduces
training time by compressing channel-wise information
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through global average pooling and using lightweight fully
connected layers to minimize unnecessary computations.
Another global average pooling layer condenses spatial
information, reducing computational demand while
preserving essential details. The classification stage consists
of fully connected layers. It includes a dense layer with 512
units and ReLU activation, dropout regularization, and a
final dense layer with 10 units and Softmax activation.

The integration of residual, dense, inception, and SE
blocks into the base network architecture is expected to
achieve a balanced trade-off between accuracy and
computational efficiency.

T
o A
EuroSAT Dataset
(MS & RGB)
~
— Y
Data Preparation

zo%-Z Validation Set l

Training Set

Architectures
(SCNN & HCNN) Model Configuration
Comparison Eval

Figure 2. Methodology flowchart

2.4. Model Configuration

For each HCNN and SCNN architecture, two models
were trained based on RGB and multispectral data.
Therefore, a total of four independent models were
implemented for the objectives of this study. In the training
process, the ADAM optimizer was used to control sudden
gradient fluctuations and maintain the ideal convergence of
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the models. Thus, the initial learning rate of the models, set
to 0.001, is adaptively adjusted and reconfigured based on
gradient variations. In other words, when an increase in the
gradient is detected, the learning rate is decreased
accordingly, and when a decrease in the gradient occurs, the
learning rate is increased accordingly. A maximum of 100
epochs was allocated for training the models. However, by
adjusting the patience parameter, the overall performance of
the models was monitored in each epoch using the Cross-
Entropy loss function. This allowed the training process to
be halted immediately after surpassing the patience
threshold without a decrease in loss. This process not only
optimizes the training process of the models but also plays a
crucial role in monitoring potential overfitting and
underfitting.

All implementation operations were performed on an
RTX 3060 laptop GPU with 6 GB of Video Random Access
Memory (VRAM). The TensorFlow package was used to
enable GPU acceleration instead of relying on the Central
Processing Unit (CPU). To facilitate direct reference in the
results section, models were named SCNN-RGB, SCNN-
MS, HCNN-RGB, and HCNN-MS, reflecting the
architecture and the type of input data used.

2.5. Statistical Evaluation

In this study, various statistical metrics, including
confusion matrices, overall accuracy (OA), kappa
coefficient (KC), mean squared error (MSE), and root mean
squared error (RMSE), were employed to evaluate the
models and compare their results statistically. These
evaluation approaches focus on assessing the accuracy and
error rates of the models and examining the impact of
architecture and input data on their statistical performance.

2.5.1 Confusion Matrix

A confusion matrix is a fundamental metric for
evaluating classification models by comparing the classified
samples with their corresponding actual labels. It is a square
matrix where rows represent actual classes and columns
represent classified classes. The diagonal elements indicate
correctly classified instances, while off-diagonal elements
represent misclassifications. Mathematically, it is structured
as:

TP FP
CM = 1)
FN TN

where True Positive (TP) is correctly classified positive
samples, False Positive (FP) is incorrectly classified positive
samples, False Negative (FN) is incorrectly classified
negative samples, and True Negative (TN) is correctly
classified negative samples (Nicolau et al., 2024).
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2.5.2 Overall Accuracy

Overall accuracy represents the ratio of correctly
classified samples to the total number of samples. The
overall accuracy is calculated as follows:

k
fo
— i=1

N

where x; is the number of correctly classified samples for
each class, £ is the total number of classes, and N is the total
number of samples used for assessment. Higher values
indicate better classification performance. In remote sensing
applications, overall accuracy is commonly used to assess
the accuracy of classification tasks, providing an overview
of model performance (Congalton & Green, 2019).

0A @

2.5.3 Kappa Coefficient

The Kappa coefficient is a statistical measure used to
evaluate the agreement between classifiers while accounting
for random chance. Its values range from -1 to 1, where 1
indicates perfect agreement and O represents agreement
expected by chance. Negative values suggest systematic
disagreement, meaning the classifications are worse than
random assignment. The metric is calculated as follows:

fo e Po=Pe 5

l1-p,

where p, is the overall accuracy, and p. is the expected
agreement by chance, derived from the confusion matrix
(Cohen, 1960). This metric is widely used in evaluating
classification maps using remote sensing data

2.5.4 Mean Squared Error and Root Mean Squared Error

Mean Squared Error (MSE) measures the average squared
difference between actual and classified values, estimating
the model's overall error. A lower MSE indicates a better
model fit with fewer misclassifications. Mathematically,
MSE is defined as:

1 n
MSE:—Z(y[—yj)z “)

s

where y; represents the actual label, y; is the classified
sample, and 7 is the number of samples. Since MSE squares
the differences, it is more sensitive to more significant
errors, giving them a more significant influence on the final
value. Root Mean Squared Error (RMSE), derived from
MSE, is calculated by taking the square root of the MSE
value:

1 n
RMSE = /; > (=¥, ®)
i=1

2.6. Computational Efficiency

The maximum time elapsed during the training process
was recorded to assess the computational efficiency of the
models. This evaluation provides a clearer understanding of
how architectural differences affect computational speed. It
also underscores the impact of data dimensionality,
particularly the number of input channels, on this aspect.

2.7. Ablation Study

To assess the individual contribution of each block within
the network structure, an ablation study was conducted on
the HCNN architecture. As the HCNN architecture consists
of residual, dense, inception, and squeeze-excitation blocks,
unlike SCNN, each block was individually removed to
evaluate its impact on the overall performance of the
network. By comparing the results of the complete network
architecture with those of versions where individual blocks
were removed, the anticipated contribution of each block to
accuracy and efficiency was identified.

3. Results
3.1. Statistical Evaluation Results

The trained models on RGB data, SCNN-RGB, and
HCNN-RGB achieved overall accuracies of 94.19% and
95.54%, respectively. In contrast, SCNN-MS and HCNN-
MS performed better in classifying correct samples than
SCNN-RGB and HCNN-RGB. The SCNN-MS recorded an
accuracy of 95.54%, while HCNN-MS achieved the highest
performance among all models with an accuracy of 98.44%.
The kappa coefficients for the SCNN-RGB, SCNN-MS,
HCNN-RGB, and HCNN-MS were 93.53%, 97.04%,
95.03%, and 98.27%, respectively. This indicates the strong
agreement between the classifications made by these models
and the actual labels. The highest kappa coefficient value
was associated with the HCNN-MS. Figure 3 shows the
accuracy and kappa values of the models.

100.0

8754 87.33 97.04

9419
93.53

Values (%)
©
g
B

T T T T
SCNN-RGB SCNN-MS HCNN-RGB HCNN-MS

BB Overall Accuracy [ Kappa Coefficient

Figure 3. Accuracy and kappa coefficient graph
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The error rates of the models, along with overall accuracy
and kappa coefficient, are presented in Table 4. The HCNN-
MS had the lowest error rate, whereas the SCNN-RGB had
the highest. Based on all evaluation metrics, these models
represent the highest and lowest performing approaches in
this study. Although all four models demonstrated high
accuracy, the HCNN-based models proved superior to those
with the SCNN architecture. Additionally, the type of input
data had a significant impact on the performance of the
models. In other words, the SCNN-MS and HCNN-MS,
trained on multispectral data, outperformed those trained on
RGB data due to their ability to extract a broader range of
spectral features.

Table 4. Statistical evaluation values

Model 0OA KC MSE RMSE
SCNN-RGB 94.19 93.53 1.23 1.11
SCNN-MS 97.33 97.04 0.39 0.63
HCNN-RGB 95.54 95.03 0.77 0.88
HCNN-MS 98.44 98.27 0.21 0.46

Annual Crop

Forest 50(
Herbaceous Vegetation- 0

M 3 2 2 4 0 400

2.0 o 1 1 0
- 300
Pasture o 2 1 0

Permanent Crop+ 7 0 4 1 0 1 . 0 0 0 L 20

Residential 4 0 0 0 0 1

Highway 4 2

Industrial | 0 0 0

Rver{ 1 0 0 4 0 1 0 0 0 o
Seallake - 0 0 0 0 0 1 0 0 8
T T T T T T T T T —-0
5 &> > &
o ¢ P e
p L F T &
& RE S & P o
« 2 <«
& o
& <
Qg’@o

Figure 4. HCNN-MS confusion matrix

The analysis of the main diagonal of these matrices
reveals more misclassifications in the SCNN-RGB and
HCNN-RGB compared to the SCNN-MS and HCNN-MS.
Figure 4 shows the confusion matrix of the HCNN-MS
model, which was the most accurate model in this study.
This difference in correctly classifying samples was minor
in some classes but considerably more significant in others.
For example, all models performed well in correctly
classifying Sea/Lake samples. The SCNN-MS achieved
100% accuracy in this class without any misclassifications.
Similarly, all models demonstrated high accuracy in
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classifying forest samples, with SCNN-MS achieving the
highest accuracy of 99.8%. The models demonstrated
varying performance in correctly classifying the samples of
the Pasture class. SCNN-RGB, contrary to expectations,
achieved the best performance in this class with an accuracy
of 96.8%, outperforming the other models. The accuracy
rate of the models in correctly classifying samples for each
class is shown in Figure 5.

Annual Crop 95.3 95.2 98.3

Forast LN 99.8 98.3 99.7 o8

Herbaceous Vegetation 88.2 98.3 m 98.0
Highway - 88.0 95.0 95.8 9
Industrial 98.0 98.2 97.6 98.8
Permanent Crop 94.4 m 97.2 92
Residential 89.0 98.7 97.8 99.5
rRver 018 [EEECRENN 920 [EECTN ey
Sea Lake 99.5 100.0 99.8 99.8

SCNN-RGB

SCNN-MS  HCNN-RGB ~ HCNN-MS

Figure 5. Accuracy reports for each class

3.1.1 Convergence Analysis

The convergence of the models was evaluated by
analyzing the trend in the reduction of training and
validation errors over 50 epochs. A consistent decrease in
both metrics and a small gap between them indicates a
balance between learning and generalization. All models
demonstrated stable convergence, avoiding significant
overfitting or underfitting. While some models exhibited a
rapid initial decline in loss values, others showed a more
gradual reduction before stabilizing.

SCAM-RGE SCNNMS

Figure 6. Loss trends graph
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Table S. Block-wise ablation study of HCNN models

Model Residual Block Dense Block Inception Block SE Block Accuracy (%) Training Time (s)

x v v v 94.17 815
v x v v 96.78 691
v v x v 96.69 651

HENN-MS v v v x 98.47 1906
x x x x 89.17 477
v v v v 98.44 971
x v v v 91.81 564
v x v v 93.26 461
v v x v 92.33 507

HCNN-RGB v v v x 95.89 1668
x x x x 82.88 381
v v v v 95.54 886

Minor fluctuations in validation loss were observed in some
instances, suggesting slight sensitivity to validation data.
However, loss trends confirm that the models effectively
learned patterns in the data while maintaining generalization
capability. Figure 6 shows loss trends.

3.2. Computational Efficiency Analysis

The highest training time was observed for SCNN-MS,
which required 6,344 seconds to complete. In comparison,
SCNN-RGB completed training in 4,232 seconds,
representing a 34% reduction in training time. In contrast,
the HCNN-based models demonstrated significantly higher
training efficiency, with HCNN-RGB and HCNN-MS
completing in 886 and 977 seconds, respectively. Notably,
HCNN-RGB required approximately 10% less training time
than HCNN-MS. The 86% difference in training duration
between HCNN-RGB and SCNN-MS highlights the
substantial variation in computational demand among the
models.

SCNN-RGB SCNN-MS

—— HCNN-RGB —— HCHNN-MS

Accuracy

Computational

Efficiency Kappa

RMSE MSE

Figure 7. Overall performance of the models

Figure 7 shows the trade-off between statistical performance
metrics and computational efficiency on a normalized scale.

Although the models trained on multispectral data
completed training in less time, the difference was more
pronounced for the SCNN-based models than for the
HCNN-based models. This indicates that the impact of the
architecture on reducing complexity is far more significant
than the impact of the dimensionality of input data.

3.3. Ablation Study Results

For HCNN-MS, removing the residual block reduced
accuracy from 98.44% to 94.17% and slightly decreased
training time from 977 to 815 seconds. Excluding the dense
or inception blocks, accuracy dropped to 96.78% and
96.69%, with training times of 691 and 651 seconds,
respectively. Removing the squeeze-excitation block had
minimal impact on accuracy, slightly increasing it to
98.47%, but significantly increased training time to 1,906
seconds. Eliminating all blocks resulted in the lowest
accuracy of 89.17% and the shortest training time of 477
seconds. Similarly, for HCNN-RGB, the absence of the
residual block lowered accuracy from 95.54% to 91.81%,
with training time reducing from 886 to 564 seconds.
Excluding the dense and inception blocks reduced accuracy
to 93.26% and 92.33%, with training times of 461 and 507
seconds, respectively. The removal of the squeeze-
excitation block resulted in a marginal increase in accuracy
to 95.89%, but significantly increased training time to 1,668
seconds. The model without any blocks achieved an
accuracy of 82.88% and the shortest training time of 381
seconds. As shown in Table 5, each block contributes to
accuracy, especially the residual block. However, the
squeeze-excitation block does not significantly affect model
accuracy but plays a critical role in enhancing computational
efficiency. As expected, this block compresses channel-wise
information via global pooling and lightweight layers,
reducing computational load and speeding up training.
Consequently, its removal leads to increased training time.

4. Discussion

The results of this study showed that all four models
trained on the EuroSAT dataset performed reasonably well
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in LULC classification. However, their overall performance
varied depending on the network architecture and input data
type. In general, trained models on RGB data exhibited
higher classification errors and lower accuracy compared to
models based on multispectral data. For example, the
HCNN-MS achieved a significantly higher performance,
reaching an accuracy of 98.44%, compared to 95.54% for
the HCNN-RGB. The SCNN-based models exhibited
similar behavior, highlighting the contribution of
multispectral data to improved classification accuracy,
particularly in distinguishing spectrally similar classes.
Figure 8 provides a visual insight into the performance of
the models in classifying 20 random samples.

Apart from the data type, the network architecture also
played an essential role in reducing the computational
complexity of the models. The HCNN architecture
significantly reduced training time by optimizing the
gradient flow and eliminating unnecessary computations.
For instance, SCNN-MS required 6,344 seconds for
training, while HCNN-MS completed training in 977
seconds, indicating a substantial decrease in computational
time. In addition to reducing training time, HCNN-based
models outperformed the other models in the evaluation
criteria of this study, including overall accuracy and kappa
coefficient. Among them, HCNN-MS achieved the best
performance, followed by SCNN-MS, then HCNN-RGB,
and finally SCNN-RGB. Therefore, it can be concluded that
the HCNN-MS, due to its advanced architecture and the use
of multispectral data, provided the best performance. In
contrast, the SCNN-RGB, with a simpler architecture and
limited data, showed the weakest performance in this study.

Table 6. Accuracy comparison with previous studies

Model Data OA Reference
SCNN * RGB 94.19 This study
SCNN * MS 97.33 This study
HCNN * RGB 95.54 This study
HCNN * MS 98.44 This study
VGG-19 RGB 77.82 Karakose, 2024

ResNet-50 RGB 98.71 Panda et al., 2024
ResNet-101 RGB 99.01 Panda et al., 2024
GoogleNet RGB 99.68 Panda et al., 2024

CNN RGB 88 Acuna-Alonso et al., 2024

VGG-16 RGB 68 Adegun et al., 2023
DensNet-121 RGB 98 Adegun et al., 2023

CNN MS 98.78 Yassine et al., 2021

CNN MS+Indices 99.5 Yassine et al., 2021

CNN RGB 96.83 Yassine et al., 2021

CNN MS 94.9 Chong, 2020
VGG-16 RGB 94.5 Chong, 2020

RF RGB 61.46 Sonune, 2020
VGG-19 RGB 97.66 Sonune, 2020
ResNet-50 RGB 94.25 Sonune, 2020
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Compared to studies that have similarly used the
EuroSAT dataset for LULC classification, different
accuracies have been achieved depending on the network
architecture and the proposed approach. For example, in one
study, researchers achieved an accuracy of 97.66% using the
VGG19 model, while another study using the same model
reported an accuracy of 77.82%. Similarly, reported
accuracies varied in studies utilizing the VGG16 model,
with two studies achieving 94.5% and 68%, respectively.
Table 6 shows that most of these studies used RGB data.
Given the variety of CNN architectures used in these studies,
the abbreviation 'CNN' is used in this table to represent
them. The trained models in this study are distinguished by
an asterisk (*) in the table. Considering these results, the
architectures developed in this study are adequate, as all
models achieved an accuracy exceeding 94%.

4.1. Limitations and Applicability

While the HCNN architecture demonstrated strong
performance in LULC classification at the patch level, some
limitations should be acknowledged to provide a balanced
perspective. The architecture is specifically designed for
patch-level classification, where each image patch is
assigned a single label based on its dominant LULC type.
As such, it is not suitable for pixel-level or object-level
classification tasks and cannot generate thematic maps that
delineate detailed object boundaries. This limits its
applicability in spatial segmentation or object detection
scenarios. However, the architecture is highly flexible in
terms of input data, supporting RGB, multispectral, and
even single-band imagery with varying numbers of
channels. The effectiveness of this architecture has only
been evaluated on the EuroSAT dataset in this study.
However, it can be applied to other datasets with similar
characteristics, such as UC Merced and BigEarthNet, which
also consist of labeled image patches. Therefore, one of the
future directions of this research is to evaluate the
architecture on more diverse and larger datasets to overcome
the geographical and contextual limitations of EuroSAT.
Although its effectiveness has been primarily demonstrated
in LULC classification, the architecture is not limited to this
application and can be adapted for other patch-level
classification tasks in remote sensing and general computer
vision. While the proposed method is currently limited to
patch-level classification, pixel-wise segmentation and
thematic mapping are more critical in many practical remote
sensing applications. Therefore, a key direction for future
research could be to redesign the method within an encoder—
decoder framework to enable pixel-wise segmentation,
following the approach of architectures such as U-Net.
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5. Conclusion

The advancement of satellite sensors has increased access
to diverse and detailed data while also introducing
challenges in processing high-dimensional inputs. In
response, machine learning methods, particularly
convolutional neural networks (CNNs), have become
effective tools in satellite image processing and computer
vision tasks. This study introduces a hybrid multi-block
CNN (HCNN) architecture specifically designed to enhance
accuracy and computational efficiency in LULC
classification using the EuroSAT dataset derived from
Sentinel-2 imagery. By integrating multiple architectural
blocks alongside Batch Normalization and Global Average
Pooling layers, the HCNN significantly outperformed a
single-block (SCNN) across all statistical metrics. The
HCNN models trained on RGB and multispectral data
demonstrated both high accuracy and substantially reduced
training time.

Furthermore, the flexible structure of the HCNN enables
compatibility with datasets of varying input dimensions,
making it applicable not only to remote sensing but also to a
broad range of computer vision tasks. The results are
consistent with recent studies on deep learning for LULC
classification using the EuroSAT dataset. In some cases, the
proposed HCNN models achieve higher accuracy than
common architectures, such as VGGI16. Unlike many
previous works, this study also emphasizes computational
efficiency, a factor often overlooked in the related literature.
Future research can build on this architecture by exploring
more optimized variations that maintain high performance
while reducing computational demands, thus facilitating
deployment in low-resource hardware.

Forest
() (D) ‘
P

crmanent Crop

Annual 1 Croj

N
B

)
Pasture

hway

(H)
r

Herbaceous Vegetation
(E

S
s
(F)
al

High
N
©

Ri

)
ident Vel

t

Model A B C D E F G H I J K L M N O P Q R S T
SCNN-RGB v Vv Vv v x v v Vv x Vv Vv Vv Vv Vv v v v v v V
SCNN-MS, x v v v v v v v v v v Vv Vv v v v v v Vv Vv
HCNN-RGB x v v v v v v v v v v Vv Vv Vv v Vv Vv Vv x ¥V
HCNN-MS x v v v v v v v v v v Vv Vv Vv Vv Vv v v v V

Figure 8. Classification results for 20 random samples
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