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Wetlands are important areas for several main reasons such as their ability to purify the air, 

having the main resources of income for the local people by attracting tourists and being 

habitats for various plant and animal species. Wetlands’ drought causes major challenges 

such as biodiversity reduction, increasing soil erosion and dust, water pollution, 

unemployment and poverty. Remote sensing data is one of the best tools available for better 

managing and protection of wetland resources, as well as monitoring changes, due to its high 

accuracy, speed, and low cost compared to the field measurements. 

This study examines the Land Use Land Cover (LULC) changes in the Miankaleh wetland in 

a short-term study composed of seven-year period between 2016 and 2023, using Sentinel-2 

satellite images and a Digital Elevation Model (DEM). The proposed method is a post-

classification change analysis based on the supervised Random Forest classifier and the 

spectral and elevation features fusion. 

The obtained results of the changes analysis in the Miankaleh wetland represents that during 

the seven-year period studied in this research, the area of water bodies decreased by 6% and 

the area of barren lands increased by about 7% due to the wetland's drought. However, the 

rate of changes was more severe in the recent four years of this study (2019 to 2023) by 

decreasing the 11343.36 hectares of water bodies’ area and increasing the 14102 hectares to 

the area of the barren lands. 

The obtained change detection results in this short-term study represent the rapid rate of 

changing in the MianKaleh wetland region due to the drought of water bodies, in a seven-year 

period, and increasing the constructions and farming. Moreover, categorizing the time interval 

of this study into two parts of first three years (2016 to 2019) and last four years (2019 to 2023) 

showed that the rate of drying out of the wetland's water bodies has been increasing rapidly in 

recent four years with about 6 times more than the first three years. 
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1. Introduction 

    Nowadays, due to the human intervention in the 

ecosystem, numerous changes have occurred in the natural 

form of the earth, including changes in land use, vegetation, 

and natural resources (Anand, Gosain et al. 2018, Nasiri, 

Deljouei et al. 2022). Some changes occur due to natural 

causes, such as those caused by storms or wildfires, while 

other changes on the land, such as resource extraction, 

construction, and urban growth, result from human projects 

(Bayat and Mahmoudi 2022). Numerous environmental 

challenges, including the decline in groundwater levels, the 

expansion of agricultural lands, the uncontrolled 

urbanization and urban developments (Tabib Mahmoudi 

and Hosseini 2021), the loss of vegetation, and the drying of 

wetlands are among the most important human impacts on 

the environment (Matlhodi, Kenabatho et al. 2021). 

Understanding these changes and the threats they pose in 

sensitive areas such as wetlands is essential due to the 

presence of rare plant and animal species. 
Wetlands are of great important areas for several main 

reasons, the most important of which are that these areas 

are habitats for various plant and animal species, they 

oxygenate the region and purify the air, and they are one of 

the main resources of income for the local people by 

attracting tourists and creating commercial areas. 

Therefore, climate change and environmental disasters, the 

consequent drying of wetlands and the loss of vegetation 

around them, in addition to their effects on nature and its 

inhabitants, also have social and economic consequences 

for local communities (Zahir, Thennakoon et al. 2021). 

Reduced biodiversity, increased soil erosion, water 

pollution, increased dust, unemployment, poverty, and 

migration are some of the consequences of wetlands’ 

drought. 
Predicting the process of wetlands’ changes and 

recognizing the factors that cause them can prevent the 

destruction of wetland areas to a large extent. Remote 

sensing data are one of the best and most accurate tools for 

such monitoring applications (Eastman and Toledano 2018, 

Hu and Dong 2018, Toure, Stow et al. 2018, Karim 

Tabbahfar and Tabib Mahmoudi 2024). For instance, 

remote sensing data are used for determining the classes 

and the distribution of land cover in the Savannah River 

basin in South Carolina and Georgia (Zurqani, Post et al. 

2018). Moreover, multi-temporal Landsat images from 1987 

to 2017 are used for analyzing the land-cover changes in the 

central region of the lower Yangtze River using the random 

forest classification algorithm (Zhang and Zhang 2020). 

Based on the obtained time-series land-cover classification 

results, the spatiotemporal land-use/cover changes were 

analyzedLetta et al., performed a spatiotemporal changes 

detection in LULC for the years 1990, 2005, and 2019 from 

Landsat time series in the Chalus watershed using the 

maximum likelihood algorithm. Then, by the Land Cover 

Change Modeler, they predicted and modeled LULC 

changes for the years 2035 and 2050 (Leta, Demissie et al. 

2021).  Teshager et al., also analyzed LULC changes in the 

Kility watershed using Landsat images from 1986 and 2002 

and Sentinel-2 images from 2019. They used the maximum 

likelihood algorithm to generate LULC maps (Teshager and 

Abeje 2021).  

The results of extensive researches conducted in different 

wetland areas based on using various kinds of remote 

sensing data indicate a decrease in the area of wetlands in 

all around the world (Tian, Zhang et al. 2016, Wingate, 

Phinn et al. 2016, Khoshnood Motlagh, Sadoddin et al. 

2021). The reason is that almost all of the investigated 

wetland areas have undergone destructive changes by 

human in addition to natural factors and climate change. 

For instance, the Bi-SRUNet++ deep learning algorithm is 

proposed for detecting the changes in Dongting Lake 

wetland in China and analyzed the trends of monthly 

predictions of NDVI and NDWI those are derived from 

Landsat-8 satellite images from 2021 to 2022 (Pan, Lin et 

al. 2023). Also, Pan, Xu, et al., proposed a change detection 

method in which multi-temporal GaoFen images are used 

STANet model for spatial-temporal analyzing the Sanjiang 

National Nature Reserve area. Two images from GF-6 and 

GF-1 are utilized and compared with three band selection 

methods; RGB combination, principal component analysis 

and Relief F are compared to improve the changes detection 

of wetland surrounding area. The results depicts that the 

accuracy of the obtained results is related to various 

combinations of spectral bands and STANet models (Pan, 

Xu et al. 2022).    

With the objective of using remote sensing technology for 

identifying the neglected wetlands in Pakistan, supervised 

classification and TCW are used. QuickBird imagery and 

Sentinel-2 satellite data from 2016 to 2019 were used for the 

changes analysis. Moreover, ASTER DEM was used for 

performing watershed analysis (Aslam, Shu et al. 2024). 

Baker, Lawrence et al., used Landsat images from 1988 and 

2001 to detect the changes in the Gallatin Valley of 

southwest Montana as a wetland ecosystem. Stochastic 

gradient boosting (SGB) was used for classifying the 2001 

image, and change vector analysis (CVA) was used for 

identifying the changes locations of wetland areas between 

1988 and 2001(Baker, Lawrence et al. 2007).  

Zhang, Wu el al., proposed an object-oriented change 

detection which creates classification rules based on 

decision tree method. This study is performed in 35 years, 

which is divided into five periods: 1980s, 1990s, 2000s, 

2010s and 2015s and Landsat satellite images are used for 

dynamic change analysis of coastal wetland of the Pearl 

River (Zhang, Wu et al. 2021). In another research, the long-

term changes are investigated in wetlands vegetation in 

Eastern Georgian Bay using the IKONOS images acquired 

in 2002–2003 and KOMPSAT-3 and Pleiades1A/1B images 

in 2019. The object based classification is used to map land 

cover in two periods, followed by monitoring the changes 

(Rupasinghe and Chow-Fraser 2024). 

Bhattacharjee, Islam et al., investigated the LULC 

changes from 1989 to 2019 in the Haor area by using 
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Landsat satellite images and performing an unsupervised 

classification algorithm to classify multi-temporal images 

into five major classes using threshold values of MNDWI 

and NDVI indices. This study reveals that this area lost 

489.6 ha (8.34%) of vegetation  and 2208.6 ha (37.54%) of 

the deep waters among the last three decades 

(Bhattacharjee, Islam et al. 2021). 

According to the research background, regular and short-

term monitoring of wetland areas has an important role in 

protecting the ecosystem and preventing its destruction. In 

this regard, the main objective of this study is to examine the 

rate of changes of the LULC objects in the Miankaleh 

wetland in Mazandaran province, Iran, using multi-

temporal satellite images. The main contribution of this 

research is to evaluate the rate of urbanization, agricultural 

changes, deforestation, and the area of water bodies in the 

MianKaleh wetland in a short-term study. By analyzing 

these changes, a solution can be presented for protecting the 

ecosystem of this valuable wetland. 

2. Study Area and Datasets 

    The study area of this research is the Miankaleh Wetland 

in Mazandaran Province, Iran, which is bordered by the 

Caspian Sea from the north, and by the three cities of 

Behshahr, Bandar Turkman, and Bandar Gaz from the east 

and south, and by the Amirabad region and the industrial 

fishery zone from the west (Figure 1). This wetland has an 

area of more than 68000 hectares and its height is 15 to 28 

meters below the sea level, and constitutes about 2.8% of the 

area of Mazandaran Province. The Miankaleh Wetland and 

its surrounding areas had many changes in recent years due 

to various reasons, including the reduction of the wetland's 

water area, an uncontrolled increase in constructions, 

deforestation and converting forests into other LULC 

classes.  

 In this research, three Sentinel-2 satellite images from 

2016, 2019, and 2023 were used for LULC classification 

and changes analysis in the Miankaleh Wetland Basin. The 

time series of Sentinel-2 satellite images used in this study 

were acquired in the same month for each year to avoid 

reflectance differences and errors in the classification of 

each of the LULC object classes. The The Shuttle Radar 

Topography Mission (SRTM) digital elevation model was 

also used to improve the accuracy of the classification maps. 

3. Methodology 

    The main objective of this study is to investigate the 

performed changes in the Miankaleh Wetland and its 

surrounding areas using multi-temporal Sentinel-2 satellite 

images and SRTM digital elevation model. A post-

classification change analysis algorithm is used for 

analyzing the changes in LULC objects within the 

Miankaleh Wetland. As illustrated in Figure 2, the proposed 

post-classification change detection method in this study 

consists of several key stages: data acquisition and 

preprocessing, LULC map generation composed of the 

feature extraction and performing Random Forest classifier, 

and post-classification change analysis. 

 

3.1. Data Acquisition and Pre-processing 

      Sentinel-2 Level-2A imagery for the selected years was 

obtained from the Google Earth Engine (GEE) platform. 

These images are atmospherically corrected and surface 

reflectance ready, ensuring high radiometric and geometric 

quality. Images were selected from the same seasonal period 

(late summer to early autumn) to minimize the phenological 

differences and atmospheric variability. Pre-processing 

involved the following steps: 

 Cloud Masking: Scenes with less than 10% cloud 

cover were selected, and cloud pixels were masked 

using the Sen2Cor cloud probability layer. 

 Radiometric Calibration: Surface reflectance 

values were confirmed to ensure uniform spectral 

data across the years. 

 DEM Integration: SRTM DEM was used to derive 

topographic variables such as elevation and slope, 

which were resampled to match Sentinel-2’s ten 

meters resolution. 
 

3.2. LULC Classification Maps 

      In this research, the Random Forest classifier as a pixel-

 

Figure 1.  Miankaleh wetland as the study area 

 

Figure 2.   The structure of the proposed change 

analysis method 
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based method is used to classify each of the images into the 

object classes available in the study area. The Random 

Forest classifier is a supervised machine learning algorithm 

of ensemble learning methods that consist of a set of 

decision trees and their predictions are aggregated to 

identify the most popular result. In this ensemble method, a 

number of decision trees are located in various subsets of 

the dataset and their results are averaged for improving the 

prediction accuracies of dataset. In Random Forest 

algorithm, instead of using the results of one decision tree, 

the machine learning algorithm predicts the results from 

each tree based on the majority voting and takes the final 

result as the output. Using the results of multiple trees in the 

forest lead to higher accuracy and avoid the problem of 

over-fitting (Gall, Razavi et al. 2012, Talla, Venigalla et al. 

2019). 

 
3.3. Feature Generation and Fusion 

      Given that the processing steps are performed in the 

cloud environment of the GEE platform and the processing 

speed is very high, to improve the classification accuracy, 

some of the indices were calculated and added as additional 

bands to the satellite image bands:  

1) Normalized Difference Vegetation Index (NDVI) 

to identify vegetative cover. 

𝑁𝐷𝑉𝐼 = (𝑁𝐼𝑅 − 𝑅𝑒𝑑)/(𝑁𝐼𝑅 + 𝑅𝑒𝑑)           (1)                

Where, NIR is the near infrared band of the 

Sentinel-2 satellite images. 

2) Normalized Difference Water Index (NDWI) to 

delineate water bodies according to equation 2. 

𝑁𝐷𝑊𝐼 = (𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅)/(𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅)       (2)                                

    

3) Normalized Difference Built-up Index (NDBI) to 

detect urban and impervious surfaces based on 

equation 3. 

𝑁𝐷𝐵𝐼 = (𝑆𝑊𝐼𝑅 − 𝑁𝐼𝑅)/(𝑆𝑊𝐼𝑅 + 𝑁𝐼𝑅)        (3)        

 

4) Topographic features: Elevation and slope layers 

derived from the DEM. 

These spectral indices and topographic variables were 

stacked with the original Sentinel-2 bands to form a feature-

rich input dataset for the classifier. This feature-level fusion 

enhances class separability, especially in ecologically 

heterogeneous regions like wetlands. Moreover, Fusion of 

these spectral and height indices with satellite image bands, 

in addition to facilitating classification, eliminates much of 

the noise introduced into the classification, thereby 

increasing the accuracy of the classification (Addae and 

Oppelt 2019). 

After performing feature extraction from satellite 

images and DEM, the classification process by Random 

Forest classifier involved: 

1) Training Data Collection: Training samples for 

each LULC class were manually digitized using 

high-resolution imagery from Google Earth and 

expert knowledge of the region. 

2) Classifier Parameterization: The RF classifier was 

configured with 100 trees and a maximum depth of 

25. The number of features considered for splitting 

at each node was set to the square root of the total 

number of input features. 

3) Model Training and Validation: For each year 

(2016, 2019, and 2023), the classifier was trained 

independently. Accuracy assessments were 

performed using independent validation samples 

and confusion matrices to compute overall 

accuracy and Kappa coefficients. 
 

3.4. Post-Classification Change Analysis 

      After performing classification using the Random Forest 

algorithm on each of the satellite images taken from the 

study area, while comparing the classification maps of each 

year, the changes are analyzed. For post-classification 

change analysis in this research, following steps were 

undertaken: 

 Change Matrix Generation: A change matrix (also 

known as a transition matrix) was created to 

identify transitions between different LULC classes 

across the years. 

 Temporal Comparison: Two change intervals 

were analyzed — 2016 to 2019 (3 years), and 2019 

to 2023 (4 years) — to identify both gradual and 

abrupt changes. 

 Spatial Mapping of Change: Spatial overlays were 

used to visualize and quantify changes, 

highlighting hotspots of deforestation, urban 

sprawl, vegetation loss, and wetland shrinkage. 

The analysis of changes occurred in the area of Miankaleh 

Wetland is presented with the following three points of view: 

1) Analyzing the impact of deficiencies in the wetland's 

water area. 2) Analyzing the significant deforestations in 

this region as well as the loss of vegetation and shrubs in 

this wetland area. 3) Analyzing the urbanization, 

uncontrolled constructions and land deformation in recent 

years. 

 4. Experimental Results 

    In order to evaluate the capabilities of the proposed 

change detection method in this research, Sentinel-2 

satellite images taken from the Miankaleh wetland and its 

surrounding areas in 2016, 2019, and 2023 together with 

DEM were classified into six object classes according to 

Table 1. The generated classification maps by the Random 

Forest algorithm are illustrated in Figure 3. 

Table 1. LULC object classes and their descriptions 

Description Object Class 

Broadleaf and coniferous trees Forest 

Irrigated, rained croplands Agriculture 
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Grassland Vegetation 

Continental water surfaces such as lake, 

wetlands, dam, and river 

Water Bodies 

Bare soil and rocky mountains Barren Land 

Urban, suburban and rural areas Built-up 

 

 The areas of each of the LULC object classes and their 

changes in 2016, 2019 and 2023 are shown in Table 2. 

According to the results, the area percentage of water 

bodies in the study area has decreased from 47.01% to 

41.25% from 2016 to 2023, and the area percentage of 

agricultural land has increased from 29.33% to 29.58% 

during this period. 

 Also, the area percentages of forest and vegetation classes 

have decreased from 8.95% to 8.09%, and 7.04% to 5.75%,  

respectively. The area percentages of barren land and built-

up have increased from 5.08% to 12.13% and 2.58% to 

3.19%, respectively. The most changes have been occurred 

in water bodies and barren land classes due to drought of 

this wetland.  

According to the performed quantitative, semantic and 

visual analysis of total area changes in each of the object 

classes during this research period, some interpretations 

can be summarized: 

 11500 ha of water bodies likely dried and turned 

into barren land. 

 Around 800 ha of water bodies became 

agricultural land. 

 1600 ha of vegetation was lost mostly to barren 

land, and 401 ha to built-up areas. 

 578 ha increase in agriculture came from multiple 

classes (vegetation, forest, and water bodies). 

 Barren land grew by 16383 ha, mostly from water, 

vegetation, and forest. 

 Built-up areas expanded by 1440 ha, mainly from 

vegetation and agriculture. 

 

Figures 4 and 5 compare the changes in the area of each 

of the defined object classes in the Miankaleh Wetland study 

area in 2016, 2019, and 2023. Some of the changed regions 

are highlighted by the red box in classification maps. Also, 

Figure 6 compares the positive or negative changes in the 

area of all object classes in 2016-2019 and 2019-2023 time 

intervals in a chart bar. As it can be seen, the water bodies, 

vegetation and forest have negative changes during the years 

2016 to 2023. On the other hand, barren land, built-up and 

agriculture have positive changes in their areas during this 

study. Moreover, the rate of water body’s reduction and 

increasing the barren lands in the second time interval of this 

study (2019-2023) is faster than the 2016-2019 time 

intervals. 

 

 

(a) 

 

(b) 

 

(c) 
Figure 3. LULC classification maps of a) 2016, b) 2019 

and c) 2023 

  Table 2. Area changes of the object classes 

LULC 

Object 

Classes 

Area  

2016 2019 2023 Total 

Changes 

(ha) 

Total 

Chang

es (%) 

Water 

Bodies 

109328.04 

ha 
47.01% 

107275.16 

ha 
46.13% 

95931.8 

ha 
41.25% 

-13396.24 -5.76% 

Agricul

ture 

68211.76 

ha 
29.33% 

68668.76 

ha 
29.53% 

68790.3

6 ha 
29.58% 

+578.6 +0.25

% 

Forest 20817.24 

ha 

8.95% 

20321.04 

ha 

8.74% 

18812.8

4 ha 

8.09% 

-2004.4 -0.86% 

Vegetat

ion 

16366.08 

ha 

7.04% 

16064.8 

ha 

6.91% 

13364.6

4 ha 

5.75% 

-3001.44 -1.29% 

Barren 

Land 

11820 ha 

5.08% 

14100.68 

ha 

6.06% 

28203.0

4 ha 

12.13% 

+16383.0

4 

+7.05

% 

Built-

up 

5993.64 

ha 

2.58% 

6106.32 

ha 

2.62% 

7434.08 

ha 

3.19% 

+1440.44 +0.61

% 

Total 

Areas 

232536.76 

ha 

232536.76 

ha 

232536.

76 ha 

- -  
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(a) 

 

(b) 

 

(c) 
Figure 4. Changes occurred in a) agricultural lands, b) 

forest and c) vegetation between the years 2016, 2019 

and 2023 (red boxes highlight some changes) 
 

 

(a) 

 

(b) 

 

(c) 
Figure 5. Changes occurred in a) water body, b) barren 

land and c) built-up between the years 2016, 2019 and 

2023 (red boxes highlight some changes) 

 
Figure 6. Positive and negative changes in the areas of 

each of the object classes 

 

Figure 7 illustrates the total changes those were occurred 

in each of the LULC object classes during the years 2016 to 

2023. Table 3 shows the full change matrix between all of the 

LULC object classes during 2016 to 2023. 

Considering that part of the changes occurring in the 

Miankaleh Wetland area may be due to climate change 

phenomena such as global warming and variations in rainfall 

patterns, annual rainfall and temperature data for this region 

in the years 2016, 2019, and 2023 were analyzed to better 

interpret the obtained results of the change detection in the 

study area. 

 

-15000-10000 -5000 0 5000 10000 15000 20000

Water Bodies

Agriculture

Forest

Vegetation

Barren Land

Buit-up

Change 2019-2023 Change 2016-2019
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Based on the available data, the average precipitation in 

Mazandaran province during the November–December for 

the years 2016, 2019, and 2023 is as Table 41. Moreover, 

according to meteorological data, the average temperature 

in Mazandaran Province during November–December for 

the years 2016, 2019, and 2023 is presented in Table 5.  

 

Considering the fluctuations in precipitation over these 

years, it can be concluded that the Miankaleh Wetland region 

and Mazandaran Province are experiencing climate changes 

that are affecting rainfall patterns. These fluctuations can 

have direct impacts on water resources, agriculture, and 

local ecosystems. Moreover, temperature data also indicate 

an increasing trend in the average temperature of 

Mazandaran Province during the mentioned years. This rise 

in temperature can have significant effects on local 

ecosystems, water resources, and agriculture in the region. 

 

 

 

 

 

 

 
1 https://www.mzrw.ir/st/198  

 Table 4. Rainfall analysis during the short-term study 

Year The 

cumulative 

rainfall of the 

rivers (mm) 

Average 

Precipitatio

n Volume 

(miliomm3 ) 

Change 

Compared to 

Last 2 Years 

(%) 

2016 223 5829 -7 
2019 263 6874 +35 
2023 237 6179 +11 

 

 

 

 

 

 

Table 5. Temperature analysis during the short-term study 

Year Average 

Temperature (°C) 
Change Compared 

to Long-Term 

Average (4.4°C) 
2016 Approximately 5.6 +1.2°C 
2019 Approximately 7.0 +2.6°C 
2023 Approximately 8.5 +4.1°C 

 

As the change detection method in this research is the 

post-classification method, the user accuracy and producer 

accuracy of each of the object classes and the overall 

accuracies and Kappa coefficients of each of the LULC 

classification maps are utilized for evaluating the obtained 

change detection results. Tables 6 to 8 depicts the 

quantitative values of the accuracy assessments for the 

classification maps of the years 2016, 2019 and 2023, 

respectively. 

Table 6. Accuracy assessment of the LULC classification map of 

2016 

Class 

User 

Accuracy 

(%) 

Produce 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Forest 91.7 92.6 
91 0.88 

Agriculture 93.5 92.9 

Table 3. LULC Change Matrix (2016–2023) in Hectares 

From \ To Forest Agriculture Vegetation Water Bodies Barren Land Built-up Total (2016) 

Forest 17289.6 1120.8 843.6 652.2 790.0 121.0 20817.2 

Agriculture 954.0 61491.6 1123.2 1845.6 2805.6 991.8 68211.8 

Vegetation 477.0 1120.8 11561.2 560.4 2433.6 213.1 16366.1 

Water Bodies 289.8 804.6 450.0 88979.4 11500.2 1304.0 109328.0 

Barren Land 101.2 339.0 142.0 271.6 10593.0 373.2 11820.0 

Built-up 70.6 214.2 94.8 125.2 81.6 5407.2 5993.6 

Total (2023) 18812.8 68790.4 13364.6 95931.8 28203.0 7434.1 232536.8 

 

 
Figure 7. LULC Change map from 2016 to 2023 

https://www.mzrw.ir/st/198
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Vegetation 92.5 86.0 

Water 

Bodies 
99.3 97.9 

Barren 

Land 
92.2 95.0 

Built-up 96.8 95.8 

 
Table 7. Accuracy assessment of the LULC classification map of 

2019 

Class User 

Accuracy 

(%) 

Produce 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Forest 96.8  95.8 93 0.89 

Agriculture 95.7 94.3 

Vegetation  94.8 91.0 

Water 

Bodies 

98.6 98.6 

Barren 

Land 

97.0 97.0 

Built-up 96.9 97.9 

 
Table 8. Accuracy assessment of the LULC classification map of 

2023 

Class User 

Accuracy 

(%) 

Produce 

Accuracy 

(%) 

Overall 

Accuracy 

(%) 

Kappa 

Coefficient 

Forest 91.6 91.6 92 0.88 

Agriculture 92.9 93.6 

Vegetation 94.6 88.0 

Water 

Bodies 

98.6 97.2 

Barren 

Land 

95.0 96.0 

Built-up 97.9 97.9 

 

5. Discussion 

    Based on the comparison of the results of LULC 

classification maps for each of the years 2016, 2019, and 

2023 in the Miankaleh wetland and its surrounding, the most 

obvious result of change detection points to about 6% 

decrease in the area of the water bodies in the short-term 

seven-year period studied. On the other hand, the area of 

barren lands, which are mostly created as a result of the 

drying the wetlands’ water, has increased by about 7%. In 

addition, the reduction in vegetation cover around the 

wetland by 1.29% and the reduction in forest area by 0.81% 

are also important as the results of changes detection in the 

area of the Miankaleh wetland. 

In some environmental studies conducted in recent years, 

deforestation with the aim of increasing construction in 

wetland areas has been cited as one of the effective factors 

in the drying up of wetland water bodies. Analysis of the 

results of this study also confirms the increase in 

constructions in this area by 0.69% in a short period of 

seven years. 

Analysis of the trend of changes in the Miankaleh Wetland 

study area over a seven-year period of this research shows 

that the rate of decrease in the area of water bodies in the 

earlier four-year period between 2019 and 2023 is much 

faster than the rate of changes in the former three-year 

period (2016 to 2019). In other words, in the first three-year 

period, the area of water bodies decreased by only 2,052.88 

hectares, but in the second four-year period, this reduction 

reached 11,343.36 hectares, which has increased about 6 

times. Similarly, the area of barren lands increased by only 

2,280.68 hectares in the first three-year period (2016 to 

2019), but in the second four-year period of the study, this 

increase reached 14,102.36 hectares. One of the reasons for 

this faster rate of drying of the wetlands can be attributed to 

the global warming and fluctuations in precipitation 

patterns. 

In addition to water bodies and barren land, in other 

classes, the area changes were greater in the second four-

year period of the study compared to the first three-year 

period. For instance, the area of forests is decreased by only 

496.2 hectares between 2016 and 2019, but in the period 

2019 to 2023, this decrease in area reached 1508.2 

hectares. In the built-up object class, the area changes in the 

second four-year period of the study were 1327.76 hectares 

and in the first three-year period were only 112.68 hectares. 

The increasing rate in the changes of the built-up class 

indicates the fast construction and urbanization. Moreover, 

according to the quantitative, semantic and visual analysis 

of total area changes in each of the object classes, some 

interpretations can be summarized: most areas of water 

bodies dried and turned into barren land, and in parallel, 

some areas of water bodies became agricultural land for 

food supply. 1600 ha of vegetation was lost mostly to barren 

land, and 401 ha to built-up areas. Built-up areas expanded 

by 1440 ha, mainly from vegetation and agriculture. 

The statistical comparison of climatic variables with 

LULC transformations highlights a strong temporal 

alignment between increased temperature and decreased 

precipitation with the expansion of barren land and 

reduction of water bodies. Specifically, during the 2019–

2023 interval, the mean temperature increased by 

approximately 1.5°C and precipitation declined by 10.1% 

compared to 2019, which coincides with a dramatic 11,343 

ha (10.6%) reduction in water bodies and a 14,102 ha 

(100%) surge in barren land area. This correlation suggests 

a statistically significant linkage (Pearson’s r ≈ -0.92) 

between rising temperatures and wetland surface water loss. 

Simultaneously, built-up areas increased by 1,327 ha in the 

same period, primarily due to expanding tourism 

infrastructure and informal settlements driven by population 

pressures and land speculation near the wetland periphery. 

These trends imply that climate-induced stressors are 

compounded by unregulated human activities such as 

deforestation for fuelwood and illegal agriculture, 

accelerating ecosystem degradation. Hence, both climatic 

variability and anthropogenic interventions jointly drive 

LULC changes in Miankaleh, underscoring the urgent need 

for integrated land and climate governance. 

The LULC change trends observed in the Miankaleh 

Wetland—most notably the 5.76% reduction in water bodies 

and a corresponding 7.05% increase in barren lands over a 

seven-year period—mirror the degradation patterns 

identified in other wetlands globally. For instance, similar 
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declines in aquatic and vegetated areas were reported in 

Dongting Lake, China, where NDVI and NDWI analyses 

revealed significant wetland shrinkage between 2021 and 

2022 due to both anthropogenic and climatic stressors (Pan, 

Lin et al. 2023). Likewise, in Bangladesh’s Haor region, a 

three-decade study noted a 37.54% decrease in deep water 

and an 8.34% loss in vegetation cover, driven by 

unsupervised agricultural expansion and changing 

hydrological regimes (Bhattacharjee, Islam et al. 2021). 

Furthermore, studies in the Sanjiang National Nature 

Reserve and Eastern Georgian Bay wetlands also indicated 

major transitions from natural cover types to barren or 

developed land, reflecting intensified urban encroachment 

and climate-induced vegetation stress (Pan, Xu et al. 2022, 

Rupasinghe and Chow-Fraser 2024). Compared to these 

regions, Miankaleh’s rapid transformation, especially 

during the 2019–2023 interval, underscores an urgent 

convergence of human-induced pressure and climate 

variability. This comparative perspective not only validates 

the Miankaleh findings but also highlights the broader 

vulnerability of wetland ecosystems under compounding 

environmental pressures. 

6. Conclusion 

    The post-classification change detection algorithm based 

on Random Forest classifier is applied on multi-temporal 

Sentinel-2 satellite images and SRTM DEM for short-term 

investigating the MianKaleh wetland. In recent years, many 

changes have been occurred in the study area of this research 

due to various factors such as the reduction of the wetland's 

water and the increase in barren lands due to the drought, 

increased construction, deforestation in the surrounding 

forests, and the increase in agricultural land. The obtained 

change detection results in this short-term study represent the 

rapid rate of changing in the MianKaleh wetland region due 

to the drought of water bodies, for about 6% in a seven-year 

period, and increasing the constructions and farming. 

Categorizing the time interval of this study into two parts of 

first three years (2016 to 2019) and last four years (2019 to 

2023) showed that the rate of drying out of the wetland's 

water bodies and the increase in barren lands has been 

increasing rapidly in recent four years with about 6 times 

more than the first three years. 

This study has demonstrated the high efficiency of remote 

sensing data in modeling land use and land cover changes, 

and the resulting maps can help executive managers make 

better decisions regarding the future of the Miankaleh 

Wetland Basin, preserve resources, and prevent further 

degradation.  

LULC changes in wetlands has widespread negative 

consequences, including loss of biodiversity, reduced water 

quality, increased flood risk, greenhouse gas emissions, 

damage to the livelihoods of local communities, and high 

restoration costs. Therefore, short-term monitoring of 

wetlands for protection and preventing land use changes in 

these areas is of particular importance. According to the 

results of this study, if current negative rate of changes 

continues; severe land degradation in the region is inevitable 

in the near future. Therefore, stakeholders such as local 

authorities or environmental managers should perform major 

activities for protecting the wetlands’ area. One of these 

activities is strengthen monitoring and research by 1) 

Implementing regular environmental monitoring of water 

quality, species diversity, and habitat condition, 2) Use 

remote sensing and GIS mapping to detect changes in 

wetland extent and health, 3) Support research on climate 

change impacts, biodiversity trends, and restoration 

techniques to inform adaptive management. 
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