University of Tehran

An Enhanced Three-Phase Heuristic Approach for the Capacitated Vehicle Routing

Earth Observation and Geomatics Engineering

Homepage: https://eoge.ut.ac.ir/

Problem with Time Windows: Comparing Insertion-Based and Savings-Based

1. Corresponding author, M.Sc. GIS Department, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology. E-mail:

afathi@email.kntu.ac.ir

2. Associate Professor, GIS Department, Faculty of Geodesy and Geomatics, K. N. Toosi University of Technology. E-mail:

mesgari@email.kntu.ac.ir

Initialization

Arash Fathi 1= , Mohammad Saadi Mesgari ?

Article Info

ABSTRACT

Article type:
Research Article

Article history:

Received 2025-04-20

Received in revised form 2025-
05-29

Accepted 2025-08-12

Published online 2025-10-19

Keywords:

Vehicle routing problem,
Three-phase method,
Initialization algorithm,
Perturbation,

Local search.

Vehicle routing optimization in goods distribution helps reduce traffic congestion, lower air
pollution, and cut operational costs. This study evaluates two three-phase heuristic methods
for solving the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW),
focusing on minimizing both service time and the number of vehicles used. Each method
consists of initialization, perturbation, and local search phases, differing primarily in their
initialization algorithms: one employs an insertion-based heuristic, while the other uses a
savings-based algorithm. To enhance efficiency, structured initialization was applied instead
of random initialization, accelerating convergence to high-quality solutions. Additionally,
solution feasibility was maintained at every step to avoid the need for a repair function. To
escape local optima, the Variable Neighborhood Search (VNS) algorithm introduced
controlled perturbations, while the Variable Neighborhood Descent (VND) algorithm refined
solutions during the local search phase. The methods were tested on the Solomon benchmark
dataset, which includes 100 customers distributed in random, clustered, and semi-clustered
(random-cluster) patterns. Results showed that the insertion-based method produced better
solutions in 66.1% of cases, whereas the savings-based method was computationally faster.
Furthermore, the insertion-based approach outperformed a reference Genetic Algorithm (GA)
in 53.6% of instances, demonstrating its effectiveness for time-sensitive distribution scenarios.
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1. Introduction

The explosive growth of urban centers intensifies last-
mile logistics challenges, creating pressure to meet delivery
deadlines, reduce costs, minimize transit times, and
maximize fleet utilization (Liu, 2022). As transportation
constitutes approximately 20% of total production costs,
even marginal improvements yield significant economic
benefits (Savi¢ et al., 2020). This challenge is formalized as
the Vehicle Routing Problem (VRP), where fleets of
constrained vehicles service geographically scattered
customers from a central depot (Polat et al., 2015). Two key
variants address core practical tensions: the Capacitated
VRP with strict loading limits and the VRP with Time
Windows (VRPTW) incorporating customer-specified
delivery intervals (Ghoseiri & Ghannadpour, 2010;
Karakatic & Podgorelec, 2015). These formulations
balance operational efficiency against physical and
temporal constraints, making them essential for supply
chain optimization (Dieter et al., 2023).

Solution methodologies vary with problem complexity
and scale (zZhang, 2024). Exact methods guarantee
optimality for smaller instances but become computationally
infeasible as problems scale (Eiben & Smith, 2015; Guo et
al., 2024; Yoshizaki, 2009). Consequently, metaheuristics
are widely adopted, efficiently navigating the solution space
to deliver near-optimal solutions within practical
timeframes (Irnich et al., 2014). Examples include multi-
objective genetic algorithms for VRPTW (Ghoseiri &
Ghannadpour, 2010), disturbance-based VNS for time-
constrained routing (Polat et al., 2015), saving-based
heuristics for stochastic scenarios (Wang & Zhou, 2016),
VNS for maritime logistics (Todosijevi¢ et al., 2017), GA-
PSO hybrids for VRPTW (Ahkamiraad & Wang, 2018), and
random-key GAs for Open VRP (Ruiz et al., 2019).

Effective VRP solutions often employ a structured three-
phase methodology: initial solution construction, controlled
randomization to avoid local optima, and intensive local
search. However, current initialization strategies exhibit
limitations. Random initial solutions often require time-
consuming feasibility repairs (Ghoseiri & Ghannadpour,
2010; Ahkamiraad & Ruiz et al., 2019; Todosijevic et al.,
2017). Additionally, many studies focus solely on
minimizing travel distance, neglecting operationally
significant vehicle waiting times (Polat et al., 2015; Ruiz et
al., 2019; Shahbazian et al., 2024, Todosijevi¢ et al., 2017).

This study presents two improved three-phase
metaheuristic methods for the Capacitated VRPTW. Both
share a common framework but employ distinct
initialization strategies: insertion-based versus savings-
based heuristics. Following initialization, both incorporate
a perturbation phase for diversification and an intensive
local search. The objective function minimizes total service
time (including vehicle waiting times) and fleet size within a
single scalar formulation, addressing key gaps in practical
relevance and solution comprehensiveness compared to
prior work. Performance is evaluated using Solomon's
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benchmark dataset (Solomon, 1987) and compared against
established Genetic Algorithms.

The paper is structured as follows: Section 2 details the
problem formulation. Section 3 presents the methodology.
Section 4 describes the benchmark dataset. Section 5
outlines the experimental setup and metrics. Section 6
discusses findings and concludes.

2. Problem Description and Mathematical Modeling

The accelerating pace of urbanization and population
growth has dramatically expanded service areas, increased
customer bases, and necessitated larger vehicle fleets for
distribution. These developments have rendered traditional
routing approaches increasingly inadequate, creating a
pressing need for advanced metaheuristic optimization
methods (Karakatic & Podgorelec, 2015). The Vehicle
Routing Problem (VRP) addresses this challenge by
optimizing delivery routes for fleets servicing customers
from a central depot while minimizing operational costs
(Irnich et al., 2014). The problem incorporates several
critical constraints: each vehicle has a finite capacity that
cannot be exceeded, customers have specific demand
guantities and service durations, and deliveries must occur
within predefined time windows. Notably, vehicles arriving
early must wait until a customer's time window opens - a key
operational consideration that this study explicitly
incorporates into its objective function. All routes must
begin and end at the depot, creating closed-loop itineraries.

We adopt the Capacitated Vehicle Routing Problem with
Time Windows (CVRPTW) as our modeling framework due
to its strong alignment with real-world distribution
challenges. It captures both the physical constraint of
limited vehicle capacity and the temporal constraint of
customer time windows, both of which are essential in last-
mile urban logistics. This formulation is also widely used in
the literature and supported by standard benchmarks,
making it suitable for rigorous comparative evaluation.

Effective mathematical modeling is paramount for
successful optimization. In our formulation, we represent
each vehicle's route as an ordered sequence of customer
IDs, with complete solutions comprising sets of such routes.
Fig. 1 illustrates this representation through a three-vehicle
solution example, where Vehicle 1's route (depot —
customer 5 — customer 3 — customer 4 — depot)
demonstrates the sequential structure. This modeling
approach captures both the assignment of customers to
vehicles and their service sequence, providing a
computationally tractable framework for optimization while
maintaining fidelity to real-world operational constraints.
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Figure 1. Problem model
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The CVRPTW addressed in this study includes several
key characteristics: each customer has a specific demand
and a time window [a;, b;] during which service must begin;
each vehicle has a limited capacity g and must serve
customers in a continuous tour that starts and ends at the
depot; and vehicles may arrive early but must wait until the
customer's time window opens. These constraints reflect
real-world logistics operations where time-sensitive
deliveries and fleet limitations are paramount.

The Capacitated Vehicle Routing Problem with Time
Windows (CVRPTW) can be formally represented as a
directed graph G = (N, A), where N denotes the set of nodes
corresponding to customer locations and the depot, while A
represents the arcs connecting these nodes with associated
travel distances. Building upon the foundational work of
Desaulniers et al. (Desaulniers et al., 2014) and Braysy et
al. (Braysy & Gendreau, 2002), we present a comprehensive
mathematical formulation comprising constraints (1)
through (9) that captures the problem's key operational
constraints and objectives.

min fyrprw = Z Z Z CijXijie + Z Yk (1)
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Where V is the set of vehicles, and N=CU {0, n+1} is the
set of all nodes, including the set of customers C and the
depot represented by node 0 (start) and node n+1 (end). The
parameter ¢; denotes the travel cost from node i to node j,
and 4; is the demand of customer i. Each vehicle has a
capacity limit denoted by g. The time window during which
service must begin at node i is defined by the interval [a,, 1],
and s; is the service time at node i. The travel time from
node i to node j is represented by ¢;, and wy is the arrival
time of vehicle k at node i.

The mathematical formulation introduces two key
decision variables to model the vehicle routing and
scheduling problem with time windows. The binary variable
xj €{0,1} indicates whether vehicle k travels directly from

node i to node j, while the binary variable y, € {0,1} denotes
whether vehicle k is used in the solution. The continuous
variable w;, = o represents the arrival time of vehicle k at
node i, subject to the time window constraints.

The mathematical model consists of the following key
relations. Relation (1) defines the objective function to be
minimized: it integrates both the total routing cost and the
number of vehicles used in a single-objective framework.
The first term, Siey Sien Zjen cijXyx » represents the total
distance-based routing cost, while the second term, 5,¢,y,,
penalizes the use of vehicles. The objective function
integrates two critical components: total travel cost and
number of vehicles used. This reflects a trade-off between
minimizing operational distance and reducing fleet size,
both of which are cost drivers in logistics operations.
Additionally, the model implicitly penalizes vehicle waiting
times through the arrival time variable, which improves
realism in urban settings where early arrivals are frequent.
All travel distances are computed using the Euclidean
metric, consistent with Solomon benchmark specifications.

Relation (2) ensures that each customer is visited exactly
once by a single vehicle, avoiding split deliveries. Relation
(3) enforces the vehicle capacity constraint: for each
vehicle, the total demand of the served customers must not
exceed its capacity q. Relation (4) guarantees that each
vehicle, if used, departs exactly once from the depot (node
0), while Relation (5) enforces flow conservation for each
customer: the number of vehicles entering a customer node
must equal the number of vehicles leaving it, ensuring route
continuity. Relation (6) requires that each vehicle returns to
the depot (node n+1) if it is used. Relation (7) establishes
time consistency between service at two consecutively
visited nodes: if vehicle k travels from node i to node j, then
the arrival time at j must be no earlier than the departure
time from i, accounting for service time s; and travel time ¢;.
Relation (8) ensures that the arrival time at each node lies
within its designated time window [, b;], maintaining
schedule feasibility. Relation (9) defines the binary nature
of the routing and vehicle usage variables, constraining x
and y, to take values from {0,1}. Together, these relations
provide a comprehensive mathematical framework for the
VRPTW that not only seeks to minimize the total cost of
routing but also discourages excessive use of vehicles,
thereby producing more efficient and practical solutions.

This formulation employs binary decision variables to
represent route assignments and vehicle usage, and
continuous variables to model arrival times. This mixed-
integer structure captures the key logistical features of the
CVRPTW and enables direct modeling of waiting times, an
aspect often neglected in previous studies. The formulation
ensures feasible, time-consistent routes while minimizing
operational cost and fleet size.

3. Methodology

We design a three-phase metaheuristic approach to
solve the CVRPTW effectively. This structure enables a
balance between solution quality, computational efficiency,
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and feasibility. The first phase constructs an initial solution
using either an insertion-based or savings-based heuristic
to ensure feasibility from the outset. The second phase
introduces controlled random perturbations to escape local
optima, while the third phase applies local search to
intensify and refine the solution. This combination leverages
the strengths of both constructive heuristics and
neighborhood-based metaheuristics.

This study proposes a three-phase metaheuristic
approach for solving the Vehicle Routing Problem (VRP),
comprising (1) initial solution construction, (2)
perturbation, and (3) local search. The first phase generates
a feasible initial solution using either an insertion heuristic
(Hassin & Keinan, 2008) (Lu & Dessouky, 2006) or a
savings heuristic (Polat et al., 2015) (Wang & Zhou, 2016)
, ensuring all constraints are satisfied from the outset. This
strategic initialization promotes faster convergence by
eliminating the need for subsequent repair operations
common in random initialization approaches. To escape
local optima, the second phase incorporates a perturbation
mechanism through Variable Neighborhood Search (VNS)
(Hansen & Mladenovi¢, 2001) (Hansen et al., 2017), which
intentionally introduces controlled randomization to
diversify the solution space. The third phase employs
Variable Neighborhood Descent (VND) (Polat et al., 2015)
(Todosijevi¢ et al, 2017) for intensive local search,
systematically exploring neighborhood structures to identify
quality improvements. This phased methodology balances
exploration and exploitation, where VNS broadens the
search while VND intensively refines promising solutions,
collectively driving the algorithm toward superior solutions.

Fig. 2 presents the comprehensive flowchart of the
proposed three-phase methodology. The algorithmic
process initiates with the generation of an initial feasible
solution, followed by the systematic preparation of two
ordered lists: neighborhood structures for perturbation
(Section 3.2) and search operators for local improvement
(Section 3.3). The perturbation phase first applies the initial
neighborhood structure from the predefined list,
intentionally introducing controlled diversification that may
not yield immediate improvements. Subsequently, the local
search phase sequentially applies its operator list until
either an improvement is found or all operators are
exhausted.

The search mechanism implements an improvement-
driven restart policy: whenever an operator successfully
enhances the solution, the process reverts to the first
operator, while unsuccessful attempts progress linearly
through the operator list. Similarly, improved solutions
trigger a reset to the initial neighborhood structure,
whereas unimproved solutions advance to subsequent
neighborhoods. Crucially, all modifications undergo
continuous feasibility verification, with strict enforcement of
vehicle capacity and time window constraints after each
alteration. This embedded constraint validation eliminates
the computational overhead of separate repair mechanisms.
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To ensure that all generated solutions remain feasible
with respect to vehicle capacity and customer time windows,
our methodology incorporates embedded feasibility checks
at critical stages of the algorithm. Feasibility is explicitly
validated during the initial solution construction phase,
where both the insertion-based and savings-based heuristics
are designed to add customers only when doing so does not
violate capacity or time window constraints. This approach
eliminates the need for post-hoc repair mechanisms, which
are often computationally expensive and prone to
introducing unintended bias in the solution space (Li et al.,
2022). During this phase, every candidate insertion or
merge is evaluated for constraint adherence before it is
applied, guaranteeing that the initial solution is fully
feasible by construction. In subsequent phases—
perturbation and local search—feasibility is maintained by
design. Each neighborhood operator in both the Variable
Neighborhood Search (VNS) and Variable Neighborhood
Descent (VND) algorithms performs feasibility validation
before committing any solution-altering operation (Li et al.,
2022). This ensures that no infeasible move is accepted into
the current solution set. As a result, there is no need for
separate feasibility repair procedures after each move,
which significantly improves computational efficiency and
preserves the structural integrity of the solution. This
embedded  feasibility  enforcement is  especially
advantageous in tightly constrained problems like
CVRPTW, where infeasible solutions can lead to prolonged
search times or convergence failure.

To enhance the effectiveness of the proposed solution
method, the selection and ordering of neighborhood
structures in both the perturbation and local search phases
were guided by principles of algorithmic diversity,
computational efficiency, and empirical performance. In the
perturbation phase (VNS), the neighborhood operators were
chosen to introduce increasing levels of structural
modification to the current solution. Starting with the
simplest operations (e.g., one-point crossover and
relocation) and progressing toward more disruptive
transformations (e.g., inverted crossover), this sequencing
supports a controlled diversification mechanism. The
rationale is that smaller changes help escape shallow local
optima with minimal disruption, while progressively larger
changes enable the algorithm to explore distant regions of
the solution space when necessary. This strategic ordering
ensures a balance between intensification and
diversification, which is central to the design philosophy of
VNS.

Similarly, the local search phase (VND) employs
neighborhood structures arranged in increasing complexity
and computational cost. The ordering from L1 to L5
prioritizes operators that are faster to evaluate and have a
high likelihood of improving solution quality early in the
search. For example, the inversion and 1-opt moves (L1 and
L2) are applied first because they offer rapid refinement
with low overhead, often correcting small inefficiencies in
route structures. More complex moves such as 3-opt and
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crossover (L4 and L5) are applied later, allowing the
algorithm to exploit deeper structural improvements only
when simpler adjustments no longer yield benefits. This
order also supports the improvement-driven restart
mechanism used in VND, ensuring that more
computationally expensive operators are only applied when
necessary. Overall, the design and ordering of these
operations reflect a deliberate trade-off between local
optimization efficiency and global search capability.

The following sections detail the methodological
components in sequence: initial solution construction
techniques, perturbation mechanisms with associated
neighborhood structures, and finally the local search
optimization framework. This structured approach ensures
both rigorous constraint satisfaction and efficient solution
space exploration.

Construction of a feasible
initial solution (x)

Selection and ordering of ]

neighberhood structures

r ~

Selection and ordering of
local search operators

[s=1
-
Generating a feasible solution in the s-th
neighborhood of x
('=perturbation (x))
v [k=1} N\
r N
Perform an exhaustive search using the
k-th local search operator on x*
| (x*'=LocalSearch(x’k))
e
. T Yes
— No- N — pa—
> T No " better e e
{k=k+1} o thnx? _—
\ ~ —~
— /
AN ~ S/
7 lsx'bemer TYes e
T thmx? =
NoT
s=s+1

Fig. 2. Flowchart of the Three-Phase Algorithm: Initial
construction of a feasible solution, perturbation using
neighborhood structures, and local search via a VND

scheme

3.1. Initial Solution Construction

As established earlier, a valid solution comprises an
ordered set of customer sequences representing vehicle
routes. However, feasibility requires strict adherence to all
problem  constraints, which  presents significant
computational challenges in constrained routing problems
such as the CVRPTW, where both vehicle capacity and
customer time windows must be simultaneously satisfied
(Da Silva & Urrutia, 2010). To address this complexity, we
employ two distinct heuristic approaches for generating
initial feasible solutions: an insertion-based method
utilizing insertion heuristics and a savings-based method
applying savings heuristics. These approaches are
subsequently evaluated through comparative performance

analysis, providing insights into their respective strengths
under varying problem conditions.

Insertion Heuristic

The insertion heuristic initiates by constructing an initial
route where a vehicle departs from the depot, services the
most distant unvisited customer, and returns directly to the
depot. Subsequent customers are systematically inserted
into existing routes based on three critical criteria: temporal
feasibility (time windows), spatial proximity (distances), and
residual vehicle capacity. The algorithm progresses
iteratively, evaluating potential insertions through a
tripartite cost assessment that considers: (a) candidate
customers eligible for insertion, (b) feasible insertion
positions within existing routes, and (c) the corresponding
route cost implications (Hassin & Keinan, 2008) (Lu &
Dessouky, 2006).

At each iteration, the algorithm selects the insertion
yielding the minimal cost increase, with the process
continuing until either vehicle capacity constraints prevent
further insertions or all customers are successfully routed.
When no additional customers can be accommodated in
existing routes, new routes are initialized following the same
farthest-first principle. Fig. 3 illustrates the complete
algorithmic workflow, demonstrating this systematic

balance between spatial efficiency and constraint
satisfaction.
Cstart D
L L
" Selecting a vehicle and the ‘
farthest unserved customer to
create a route ‘
[Depot, Farthest, Depot] )
_—Eit ;msﬂ:}élc No
— insert a new
~_customer? _-
ves |
( Vlnsmmg an unscheduled customer into B
the created route based on the provided
nstructions.
Yes T
J— No _——Ts there an ~~_ No AT s
QE{_M) ~__ unserved = ~<__ DUSAL o -

; capacity full?
—_customer? Sapadlly T

Fig. 3. Flowchart of the Insertion Heuristic Algorithm
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Savings Heuristic

The savings heuristic, first introduced by Clarke and
Wright (Wang & Zhou, 2016), is a classical approach for
constructing cost-efficient vehicle routes through the
iterative merging of customer-specific tours. Initially, each
customer is assigned a dedicated route where a vehicle
departs from the depot, visits a single customer, and
returns—yielding routes of the form Depot — Customer —
Depot.

The core idea of the algorithm lies in computing a
savings value for each pair of customers i and j, which
guantifies the potential cost reduction achieved by
combining their individual routes into a single tour. This
savings value is computed as:

Saving Cost = Dist, , + Dist,; —Dist; (12)

where:
Dist;, is the distance from customer i to the depot,
Dist,; is the distance from the depot to customer j,
Dist;; is the distance between customers i and j.

All possible savings values are calculated and stored in
a Savings List, which is then sorted in descending order so
that the most beneficial route mergers (those with the
highest savings) are considered first.

The merging process, illustrated in Fig. 4, proceeds as
follows:

1. Select the top entry from the Savings List,
corresponding to a potential merge between
customers i and j.

2. Check feasibility of the merge by verifying that:

e The customers are at the ends of their
respective routes.

e Combining the routes does not violate vehicle
capacity or time window constraints.

3. Iffeasible, merge the two routes into a single tour.

4. Update the solution and the Savings List:

e Remove or update entries involving customers
i or j, as their routes have changed.

¢ Recalculate savings values for any new
feasible route combinations involving the
merged route.

5. If not feasible, discard the current savings entry
and proceed to the next highest one.

This process continues until the Savings List is
exhausted—that is, when no further feasible merges can be
performed. The final solution consists of a set of routes that
aim to minimize the overall travel cost while adhering to all
operational constraints, including vehicle capacity and
customer time windows.
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Fig. 4. Flowchart of the Heuristic Savings Algorithm
3.2. Perturbation Algorithm

Following initial solution construction, we employ the
Variable Neighborhood Search  (VNS) algorithm
(Mladenovi¢ & Hansen, 1997) to enhance solution quality
through systematic diversification. The VNS approach,
originally developed by Mladenovi¢ and Hansen, operates
by cyclically exploring predefined neighborhood structures
that each impose distinct modifications to the current
solution (Mladenovi¢ & Hansen, 1997). This strategic
alternation between different neighborhood types facilitates
comprehensive exploration of the solution space while
mitigating premature convergence to local optima.

As detailed in Table 1, our implementation utilizes five
specific neighborhood structures, applied sequentially in the
following order: N1 — N2 — N3 — N4 — N5. This ordered
progression ensures methodical exploration of increasingly
complex solution modifications while maintaining
algorithmic efficiency. Each neighborhood transition
occurs only after exhaustive search within the current
neighborhood structure, following the fundamental VNS
principle of balanced intensification and diversification.
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Table. 1. Neighborhood Structures

Randomly selects two routes, swaps parts of them at a single point

I Random I Random
(N1) l’ l'
Routel | |1 |2 |3 |0 0 5 6 !7 /8 |0 Route 2
One-point
crossover :
Routel [ |1 [8 |0 0 /S5 6 |72 3 |0 | Route2
Randomly selects a customer from one route and inserts it into another
I Random I Random
'--- L]
(N2) Routel | ( |1 : 2 :3 0 0 516 7 810 Route 2
Relocation ——t
Routel [ |1 |13 |0 0|5 6|7 |2 |8 |0 | Route2
Exchanges customers between two different routes _
I Random I Random
(N3) Routel |0 |1 : 2 1310 0 5 1|6 : 708 0 Route 2
Exchange -
Route 1 0 1! 7 :3 0 0 S 6 : 2 :8 0 Route 2
Swaps segments between two routes, each defined by two cut points
I Random I Random
(N4)
2 Point Cross Routel 10 1 |2 |3 |0 04 5 6 7 80 Route 2
Over
Route 1 0 1 5 6 7 0 0 4 2 3 8 0 Route 2

Similar to two-point crossover, but the segments are reversed before being swapped
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(NS)
Inverted crossover I _Randil I_Randil
Routel | 1 2 3 0 0 |4 S5 6 7 8 0 | Route2
Route 1 0 1 7 6 50 04 3 2 80 Route 2

The selection of five neighborhood structures was driven
by the need to balance diversification and intensification in
the search process. Each operator introduces a distinct form
of perturbation, allowing for broader exploration of the
solution space without introducing excessive computational
burden. Empirical evaluation indicated that this number
provides a good trade-off between solution quality and
runtime. Therefore, the number of local search operators
has been deliberately limited to five to maintain algorithmic
efficiency while avoiding diminishing returns from
additional neighborhoods.

3.3. Local Search Algorithm

Following the perturbation phase, the Variable
Neighborhood Descent (VND) algorithm performs
systematic  solution refinement through exhaustive

neighborhood exploration. Unlike its VNS counterpart

which introduces stochastic perturbations, VND employs a
deterministic approach, sequentially applying local search
operators in a predefined order (L1 - L2 - L3 — L4 —
L5) to ensure comprehensive local optimization (Hansen et
al., 2017). The algorithm implements an improvement-
driven restart mechanism: whenever any operator yields an
enhanced solution, the search reverts to the initial operator
(L1), enabling deeper exploration of promising solution
spaces. Crucially, all neighborhood moves maintain
solution feasibility by design, eliminating the computational
burden associated with repair mechanisms while preserving
constraint satisfaction. This embedded feasibility guarantee
contributes significantly to the method's computational
efficiency throughout the intensification process.

Table 2. Local Search Operators

i )
C_—_—_—0
0|4/5 6|7 8|0
— L
0 4 7 6 5S|8 0
(L1)
Inversion | This operator systematically examines all feasible inversion operations across every route in the current

solution. For each candidate route, the algorithm evaluates every possible pair of customer positions,
calculating the potential improvement in the objective function that would result from reversing the
customer sequence between each position pair. The optimal inversion, defined as the pair yielding the
maximum improvement, is then implemented. The inversion mechanism operates by selecting a target route
and two distinct customer positions within it, then reversing the subsequence bounded by these positions.
This transformation is applied exhaustively across all routes in the solution, ensuring a comprehensive
exploration of the inversion neighborhood space. The operator ultimately selects and retains only the most
beneficial inversion found during this process, thereby guaranteeing local optimality to this particular
neighborhood structure.
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(" Fandom | (" Fandom |
( Selection ) (| _plaee
ool
0 45 6|7 8|0
(L2 ==1- |
opt) o -
(|_3 == 2-
opt) 0 6 7 4 5810
(|_4 == 3-
opt) This operator performs an exhaustive evaluation of all possible k-opt moves across each route in the current
k-opt solution. For every route, it identifies the optimal k-opt transformation, the relocation of a sequence of k
consecutive customers to a new position within the same route, that maximizes improvement in the objective
function while maintaining their original order. The selected move is then implemented to refine the
solution. The operator systematically explores the neighborhood space by assessing potential relocations
(either forward or backward along each route) for every valid k-length customer sequence. This
comprehensive search ensures identification of the most beneficial intra-route restructuring, thereby
guaranteeing local optimality to the k-opt neighborhood structure.
This operator systematically explores all feasible one-point crossover operations between route pairs in
the current solution. For each potential route combination, it identifies the optimal crossover point that
(L5) magimizes_improvement in the objective function. Th_e operation selects tW(_) distinct routes and a customer
One-point position within e_a_ch, then_ generates_new route cqnflguratlons by exchanging the subsequences preceding
the selected positions while preserving the remaining segments. The operator exhaustively evaluates all
crossover . . - . A o . .
possible route pairings and crossover positions, implementing only the most beneficial configuration found.
This comprehensive search strategy ensures thorough exploration of the crossover neighborhood space,
while the preservation of subsequence order maintains solution feasibility. Through this process, the
operator guarantees identification of locally optimal solutions to the one-point crossover transformation.

To ensure optimal performance of the proposed three-
phase metaheuristics, a systematic parameter tuning
procedure was conducted. The goal was to determine
effective configurations for the neighborhood structures
used during the perturbation phase (VNS) and the local
search operators in the refinement phase (VND), as well as
to optimize other key parameters such as the number of
iterations, perturbation strength, and runtime limits. Tuning
was performed using a representative subset of Solomon's
benchmark instances (R101, C101, RC101) to capture
varying spatial distributions. A full-factorial grid search
was applied, and each configuration was evaluated under a
fixed time limit of 120 seconds using two performance
metrics: total travel cost and the number of vehicles used.

The final configuration—>500 iterations, perturbation
strength of 3, and a sequential VNS structure (N1 — N3 —
N2 — N4 — N5)—proved most effective. The VND
operators were applied in a fixed order (L2 - L3 — L1 —
L4 — L5), progressing from simple to more complex
heuristics. This structure balanced diversification and
intensification, enabling robust solution quality while
maintaining computational efficiency. Increasing iterations
beyond 500 yielded minimal improvement, and moderate
perturbation strength avoided destabilizing the search. The
selected settings enabled consistent convergence across

instance types, demonstrating the importance of structured
tuning in heuristic design.

4. Data Used

This study employs Solomon’s benchmark datasets
(Solomon, 1987), which are widely used for evaluating
solutions to the Vehicle Routing Problem with Time
Windows (VRPTW). These datasets offer a range of problem
instances with varying sizes and configurations, each
including precise geographical coordinates for the depot
and customer locations. Operational parameters such as
fleet size, vehicle capacity, individual customer demands,
and time window constraints—including earliest service
start time, latest acceptable arrival time, and service
duration—are clearly specified. Fig. 5 illustrates a
representative data file structure from Solomon’s collection,
demonstrating the standardized format used for these
benchmark problems.
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Fig. 5. Structure of Solomon’s data

The datasets are systematically organized into three
main classes based on customer spatial distribution:
Random (R), Clustered (C), and Random-Clustered (RC)
configurations (Solomon, 1987). Each class includes two
variants distinguished by the strictness of time windows. The
“1” series (e.g., R1, Cl, RCI) features tight time windows,
limiting the number of customers per route due to narrower
service periods. Conversely, the “2” series (e.g., R2, C2,
RC2) incorporates relaxed time windows, which allow for
more flexible scheduling and the possibility of longer routes
serving more customers (Ghoseiri & Ghannadpour, 2010).
This structure enables a comprehensive evaluation of
algorithmic performance under varying temporal and
spatial constraints.

The distinction among the R, C, and RC configurations
lies in the spatial arrangement of customer locations and
reflects different real-world distribution scenarios. In the
Random (R) instances, customer locations are spread
uniformly across the service area without any discernible
spatial pattern. This setting simulates environments such as
rural or low-density suburban regions, where demand
points are dispersed, and routing solutions must account for
greater travel distances and less predictable routing paths.

In contrast, the Clustered (C) instances consist of
customers grouped into well-defined clusters or zones, often
concentrated around specific points. These clusters may
represent business districts, urban delivery zones, or other
high-density demand centers where delivery locations are
geographically close to one another. This spatial
configuration allows for shorter intra-cluster travel but

poses challenges in inter-cluster transitions and vehicle
load balancing.

The Random-Clustered (RC) configuration is a hybrid
that combines features of both previous types. In these
instances, some customers are arranged in clusters while
others are distributed randomly throughout the service area.
This mixed layout closely resembles real-world distribution
systems where urban deliveries (clusters) coexist with
suburban or rural outliers (random points). As such, RC
instances are generally considered more complex due to the
need to simultaneously manage intra-cluster efficiency and
inter-cluster routing diversity.

These variations in spatial distribution are critical to
testing the robustness of VRP algorithms. Algorithms may
perform well in clustered environments due to route density
but struggle in random or mixed configurations that require
more flexible and adaptive strategies. Therefore, the
Solomon datasets remain a benchmark not only for
performance comparison but also for analyzing algorithm
sensitivity to different spatial structures.

5. Implementation and Numerical Evaluation

This study comparatively evaluates two three-phase
solution approaches differentiated by their initial solution
construction algorithms: an insertion-based method
utilizing insertion heuristics and a savings-based method
employing savings heuristics. Both implementations were
developed in Python 3.6 and executed on standardized
hardware (Intel Core i3 1.70GHz processor, 4GB RAM) to
ensure consistent performance measurement. The
experimental evaluation employed Solomon's benchmark
datasets comprising 100 customer instances, with solution
quality assessed across all problem categories. Fig. 6
demonstrates representative output visualizations for

datasets R112, C105, and RC106, where distinct color-
coding illustrates the optimized vehicle routes generated by
each method. This comparative visualization facilitates
direct observation of the routing patterns emerging from
each algorithmic approach.

RC106

R112

C105

Fig. 6. Example Output
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Table 3: Comparison Between Insertion-Based and Savings-Based Methods

data

R101
R102
R103
R104
R105
R106
R107
R108
R109
R110
R111
R112
R201
R202
R203
R204
R205
R206
R207
R208
R209
R210
R211
C101
C102
C103
C104
C105
C106
C107
C108
C109
C201
C202
C203
C204
C205
C206
C207
C208
RC101
RC102
RC103
RC104
RC105
RC106
RC107
RC108
RC201
RC202
RC203
RC204
RC205
RC206
RC207
RC208
Average

Processing
Time
169.98
275.47
119.20
119.16
133.36
100.44
134.62
189.53
113.12
75.85
110.10
94.96
166.50
263.81
312.26
466.89
184.15
289.65
492.61
506.03
469.22
258.20
306.86
50.36
94.52
68.52
65.30
52.78
59.93
50.07
66.15
65.06
216.17
463.21
421.48
447.84
244.64
289.92
251.42
423.55
153.63
157.87
107.63
89.88
140.76
86.86
119.77
79.04
192.00
366.47
350.84
391.03
330.46
251.60
295.21
262.23
216.15

Savings-Based Method
Total Service
Time
1729.80
1626.03
1328.10
1051.69
1512.10
1374.96
1174.73
1012.83
1228.49
1148.17
1131.89
1016.64
1302.18
1121.37
938.69
775.15
1067.49
966.07
864.60
729.51
916.59
957.81
798.32
828.94
866.00
829.86
830.02
866.00
828.94
866.00
832.27
849.25
591.56
591.56
591.17
590.60
588.88
588.49
588.29
588.32
1785.74
1577.49
1412.48
1212.10
1646.27
1537.21
1324.26
1165.59
1469.97
1213.57
1005.38
848.78
1279.14
1157.00
1045.10
791.56
1033.29

Number of
Vehicles

Processing
Time
163.66
390.27
293.35
346.58
131.07
221.55
296.74
183.36
179.68
216.40
151.19
265.08
480.78
714.75
1107.00
1474.00
783.00
622.03
1036.41
1517.22
731.27
7870.80
766.86
104.10
249.47
284.90
457.09
101.99
183.08
120.58
141.28
129.69
228.81
530.29
848.47
836.91
340.13
394.85
438.26
347.66
117.20
97.79
181.02
133.26
140.89
86.15
215.25
127.16
460.56
559.01
866.84
1263.72
555.81
643.71
639.32
898.74
590.97

Insertion-Based Method
Total Service
Time
1700.70
1514.84
1276.26
1076.09
1428.03
1301.36
1144.21
1013.97
1294.33
1130.49
1154.07
1015.55
1316.75
1142.73
941.22
765.76
1015.27
969.01
874.76
720.16
976.88
948.65
836.11
828.94
834.64
884.48
866.68
828.94
828.94
829.70
828.94
836.33
591.56
591.56
591.17
602.95
588.88
588.49
588.29
588.32
172251
1548.48
1381.06
1223.67
1600.80
1421.89
1337.86
1199.60
1436.35
1174.06
973.73
809.36
1249.28
1097.04
1048.95
869.62
1022.72

Number of
Vehicles

20
19
15
12
15
13
12
11
14
12
12
11
4

PRPRRPRPRPRPRRRE R
wwEEBEEEESEEEBwrwwwws~RD
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Table 4. Comparison Between Insertion-Based Method and Genetic Algorithm(Ghoseiri & Ghannadpour, 2010)

i Genetic Algorithm (Ghoseiri & Ghannadpour, 2010) Baseline Insertion Method
Number of Vehicles Total Service Time Number of Vehicles Total Service Time
R101 19 1677 20 1700.70
R102 18 1511.8 19 1514.84
R103 14 1287 15 1276.26
R104 10 974.24 12 1076.09
R105 15 1424.6 15 1428.03
R106 13 1270.3 13 1301.36
R107 11 1108.8 12 1144.21
R108 10 971.91 11 1013.97
R109 12 1212.3 14 1294.33
R110 12 1156.5 12 1130.49
R111 11 1111.9 12 1154.07
R112 10 1036.9 11 1015.55
R201 4 1351.4 4 1316.75
R202 4 1091.22 4 1142.73
R203 3 1041 4 941.22
R204 3 1130.1 4 765.76
R205 4 1087.8 4 1015.27
R206 3 940.12 3 969.01
R207 3 904.9 3 874.76
R208 3 774.18 3 720.16
R209 4 1008 3 976.88
R210 3 938.58 4 948.65
R211 4 11015 3 836.11
C101 10 828.94 10 828.94
C102 10 828.94 10 834.64
C103 10 828.06 11 884.48
C104 10 824.78 10 866.68
C105 10 828.94 10 828.94
C106 10 828.94 10 828.94
Cc107 10 828.94 10 829.70
C108 10 828.94 10 828.94
C109 10 828.94 10 836.33
C201 3 591.56 3 591.56
C202 3 591.56 3 591.56
C203 3 591.17 3 591.17
C204 3 599.96 3 602.95
C205 3 588.88 3 588.88
C206 3 588.88 3 588.49
C207 3 591.56 3 588.29
C208 3 588.32 3 588.32
RC101 15 1690.6 17 1722.51
RC102 14 1509.4 14 1548.48
RC103 12 1331.8 13 1381.06
RC104 11 1177.2 11 1223.67
RC105 15 1611.5 17 1600.80
RC106 13 1437.6 13 1421.89
RC107 11 1222.1 13 1337.86
RC108 11 1156.5 12 1199.60
RC201 4 1423.7 5 1436.35
RC202 4 1369.8 5 1174.06
RC203 4 1060 4 973.73
RC204 3 901.46 4 809.36
RC205 4 1410.3 6 1249.28
RC206 4 1194.8 5 1097.04
RC207 4 1040.6 5 1048.95
RC208 3 898.5 4 869.62
Average 7.84 1048.84 8.15 1022.72
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Table 3 compares the insertion-based and savings-based
methods using the Solomon dataset. The first column lists
the dataset identifiers, followed by three columns for each
method: the number of vehicles used, total service time, and
processing time. The results show that the insertion-based
method outperforms the savings-based approach in solution
quality, with lower average total costs (1022.72 vs. 1033.29)
and fewer vehicles used (8.15 vs. 10.04). Additionally, the
insertion-based method yielded better results in 66.1% of
the datasets, demonstrating its superiority in cost-efficiency
and routing performance. However, the savings-based
method was significantly faster, with an average processing
time of 216.15 compared to 590.97 for the insertion-based
approach.

Table 4 compares the performance of the insertion-based
method and a Genetic Algorithm (GA) (Ghoseiri &
Ghannadpour, 2010) in terms of vehicle count and total
service time. The insertion-based method achieved better
solutions in 53.6% of the datasets, with lower average total
costs (1022.72 vs. 1048.84) compared to the GA. However,
the GA required slightly fewer vehicles on average (7.84 vs.
8.15), suggesting a trade-off between cost efficiency and
fleet size optimization.

The results demonstrate that the choice between the
insertion-based and savings-based methods depends on the
specific priorities of the application. The insertion-based
method is more effective when optimizing for solution
quality and cost minimization, whereas the savings-based
method is advantageous for scenarios requiring faster
computational performance.

It is worth noting that the GA results used for comparison
were drawn from the work of Ghoseiri and Ghannadpour
(Ghoseiri & Ghannadpour, 2010), where a multi-objective
VRPTW model was solved using a goal programming
approach and a customized Genetic Algorithm. Their GA
incorporated advanced mechanisms such as the Push
Forward Insertion Heuristic and JA-interchange in the
initialization phase, along with Pareto-based selection and
local improvement strategies during  evolution.
Chromosomes represented customer sequences, and order-
based crossover and mutation were used to maintain
diversity. The authors tuned GA parameters empirically and
tested their method on Solomon’s benchmark datasets. Since
our study uses their published results without re-
implementation, the comparison in Table 4 reflects
differences in approach and performance rather than direct
execution under identical settings.

6. Discussion and Conclusion

This study addresses the Vehicle Routing Problem with Time
Windows (VRPTW) under vehicle capacity constraints, with
objectives to minimize total service time, reduce fleet size, and
account for vehicle waiting times. The proposed solution adopts
a three-phase optimization framework combining initial
solution construction, perturbation, and local search. The
initial phase utilizes either insertion or savings heuristics to
generate feasible solutions, thereby preventing cold starts and

improving  convergence efficiency. The  subsequent
perturbation phase employs Variable Neighborhood Search
(VNS), which introduces solution diversity through mechanisms
comparable to mutation operators in genetic algorithms,
effectively avoiding local optima. Finally, the Variable
Neighborhood Descent (VND) method refines solutions
through systematic local search. This combined approach
leverages both exploratory capabilities and intensive local
optimization to effectively solve the VRPTW.

The two methods differ primarily in their initial solution
construction: the insertion-based approach employs the
insertion heuristic, while the savings-based method utilizes the
savings heuristic. Both approaches share identical
perturbation and local search phases, employing neighborhood
structures including one-point crossover, relocation, swap,
two-point  crossover, and inverse crossover during
perturbation, and operators such as inversion, 1-opt (including
repeated application), and one-point crossover during local
search.

Evaluation on Solomon's benchmark datasets (random,
clustered, and random-clustered configurations, each
containing 100 customers) revealed distinct performance
characteristics. The insertion-based method demonstrated
superior solution quality, achieving lower average total costs
(1022.72 vs. 1033.29) and requiring fewer vehicles (8.15 vs.
10.04), while producing optimal solutions in 66.1% of cases.
However, the savings-based method showed significantly faster
computation times (216.15 seconds vs. 590.90 seconds per
instance), as shown in Table 3.

This performance difference stems from fundamental
algorithmic distinctions. The savings heuristic maintains
computational efficiency by computing the savings list once
(with subsequent resorting) and simplifying route merges by
considering only route endpoints. Conversely, the insertion
heuristic's exhaustive evaluation of all possible customer
insertion positions results in greater computational overhead,
though yielding better quality solutions.

Comparative analysis reveals the insertion-based method
achieved superior cost efficiency (average total cost: 1022.72
vs. 1048.84) compared to the genetic algorithm approach
(Ghoseiri & Ghannadpour, 2010), though the genetic
algorithm demonstrated marginally better vehicle utilization
(7.84 vs. 8.15 vehicles). The three-phase methodology
developed in this study offers several advantages over
conventional approaches. By employing heuristic-based initial
solutions rather than random starts, the method achieves faster
convergence and more efficient optimization. The
incorporation of a perturbation phase effectively prevents
convergence to local optima, with the framework occasionally
outperforming existing genetic algorithm implementations.

A key innovation lies in the systematic validation of solution
feasibility throughout each phase, eliminating the need for
post-hoc correction procedures and their associated
computational costs. The comprehensive exploration of
neighborhood structures and local search operators in this
work suggests several productive directions for future
research, including: (1) systematic evaluation of individual
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operator contributions, (2) investigation of alternative operator
combinations, and (3) integration with real-world routing
constraints such as dynamic traffic conditions. Furthermore,
the potential synergies between the proposed approach and
established metaheuristics (e.g., particle swarm optimization,
tabu search) warrant examination in subsequent studies.
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