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Vehicle routing optimization in goods distribution helps reduce traffic congestion, lower air 

pollution, and cut operational costs. This study evaluates two three-phase heuristic methods 

for solving the Capacitated Vehicle Routing Problem with Time Windows (CVRPTW), 

focusing on minimizing both service time and the number of vehicles used. Each method 

consists of initialization, perturbation, and local search phases, differing primarily in their 

initialization algorithms: one employs an insertion-based heuristic, while the other uses a 

savings-based algorithm. To enhance efficiency, structured initialization was applied instead 

of random initialization, accelerating convergence to high-quality solutions. Additionally, 

solution feasibility was maintained at every step to avoid the need for a repair function. To 

escape local optima, the Variable Neighborhood Search (VNS) algorithm introduced 

controlled perturbations, while the Variable Neighborhood Descent (VND) algorithm refined 

solutions during the local search phase. The methods were tested on the Solomon benchmark 

dataset, which includes 100 customers distributed in random, clustered, and semi-clustered 

(random-cluster) patterns. Results showed that the insertion-based method produced better 

solutions in 66.1% of cases, whereas the savings-based method was computationally faster. 

Furthermore, the insertion-based approach outperformed a reference Genetic Algorithm (GA) 

in 53.6% of instances, demonstrating its effectiveness for time-sensitive distribution scenarios.  
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1. Introduction 

The explosive growth of urban centers intensifies last-

mile logistics challenges, creating pressure to meet delivery 

deadlines, reduce costs, minimize transit times, and 

maximize fleet utilization (Liu, 2022). As transportation 

constitutes approximately 20% of total production costs, 

even marginal improvements yield significant economic 

benefits (Savić et al., 2020). This challenge is formalized as 

the Vehicle Routing Problem (VRP), where fleets of 

constrained vehicles service geographically scattered 

customers from a central depot (Polat et al., 2015). Two key 

variants address core practical tensions: the Capacitated 

VRP with strict loading limits and the VRP with Time 

Windows (VRPTW) incorporating customer-specified 

delivery intervals (Ghoseiri & Ghannadpour, 2010; 

Karakatič & Podgorelec, 2015). These formulations 

balance operational efficiency against physical and 

temporal constraints, making them essential for supply 

chain optimization (Dieter et al., 2023). 

Solution methodologies vary with problem complexity 

and scale (Zhang, 2024). Exact methods guarantee 

optimality for smaller instances but become computationally 

infeasible as problems scale (Eiben & Smith, 2015; Guo et 

al., 2024; Yoshizaki, 2009). Consequently, metaheuristics 

are widely adopted, efficiently navigating the solution space 

to deliver near-optimal solutions within practical 

timeframes (Irnich et al., 2014). Examples include multi-

objective genetic algorithms for VRPTW (Ghoseiri & 

Ghannadpour, 2010), disturbance-based VNS for time-

constrained routing (Polat et al., 2015), saving-based 

heuristics for stochastic scenarios (Wang & Zhou, 2016), 

VNS for maritime logistics (Todosijević et al., 2017), GA-

PSO hybrids for VRPTW (Ahkamiraad & Wang, 2018), and 

random-key GAs for Open VRP (Ruiz et al., 2019). 

Effective VRP solutions often employ a structured three-

phase methodology: initial solution construction, controlled 

randomization to avoid local optima, and intensive local 

search. However, current initialization strategies exhibit 

limitations. Random initial solutions often require time-

consuming feasibility repairs (Ghoseiri & Ghannadpour, 

2010; Ahkamiraad & Ruiz et al., 2019; Todosijević et al., 

2017). Additionally, many studies focus solely on 

minimizing travel distance, neglecting operationally 

significant vehicle waiting times (Polat et al., 2015; Ruiz et 

al., 2019; Shahbazian et al., 2024; Todosijević et al., 2017). 

This study presents two improved three-phase 

metaheuristic methods for the Capacitated VRPTW. Both 

share a common framework but employ distinct 

initialization strategies: insertion-based versus savings-

based heuristics. Following initialization, both incorporate 

a perturbation phase for diversification and an intensive 

local search. The objective function minimizes total service 

time (including vehicle waiting times) and fleet size within a 

single scalar formulation, addressing key gaps in practical 

relevance and solution comprehensiveness compared to 

prior work. Performance is evaluated using Solomon's 

benchmark dataset (Solomon, 1987) and compared against 

established Genetic Algorithms. 

The paper is structured as follows: Section 2 details the 

problem formulation. Section 3 presents the methodology. 

Section 4 describes the benchmark dataset. Section 5 

outlines the experimental setup and metrics. Section 6 

discusses findings and concludes. 

2. Problem Description and Mathematical Modeling 

The accelerating pace of urbanization and population 

growth has dramatically expanded service areas, increased 

customer bases, and necessitated larger vehicle fleets for 

distribution. These developments have rendered traditional 

routing approaches increasingly inadequate, creating a 

pressing need for advanced metaheuristic optimization 

methods (Karakatič & Podgorelec, 2015). The Vehicle 

Routing Problem (VRP) addresses this challenge by 

optimizing delivery routes for fleets servicing customers 

from a central depot while minimizing operational costs 

(Irnich et al., 2014). The problem incorporates several 

critical constraints: each vehicle has a finite capacity that 

cannot be exceeded, customers have specific demand 

quantities and service durations, and deliveries must occur 

within predefined time windows. Notably, vehicles arriving 

early must wait until a customer's time window opens - a key 

operational consideration that this study explicitly 

incorporates into its objective function. All routes must 

begin and end at the depot, creating closed-loop itineraries. 

We adopt the Capacitated Vehicle Routing Problem with 

Time Windows (CVRPTW) as our modeling framework due 

to its strong alignment with real-world distribution 

challenges. It captures both the physical constraint of 

limited vehicle capacity and the temporal constraint of 

customer time windows, both of which are essential in last-

mile urban logistics. This formulation is also widely used in 

the literature and supported by standard benchmarks, 

making it suitable for rigorous comparative evaluation. 

Effective mathematical modeling is paramount for 

successful optimization. In our formulation, we represent 

each vehicle's route as an ordered sequence of customer 

IDs, with complete solutions comprising sets of such routes. 

Fig. 1 illustrates this representation through a three-vehicle 

solution example, where Vehicle 1's route (depot → 

customer 5 →  customer 3 →  customer 4 →  depot) 

demonstrates the sequential structure. This modeling 

approach captures both the assignment of customers to 

vehicles and their service sequence, providing a 

computationally tractable framework for optimization while 

maintaining fidelity to real-world operational constraints. 

Figure 1. Problem model 
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The CVRPTW addressed in this study includes several 

key characteristics: each customer has a specific demand 

and a time window [aᵢ, bᵢ] during which service must begin; 

each vehicle has a limited capacity q and must serve 

customers in a continuous tour that starts and ends at the 

depot; and vehicles may arrive early but must wait until the 

customer's time window opens. These constraints reflect 

real-world logistics operations where time-sensitive 

deliveries and fleet limitations are paramount. 

The Capacitated Vehicle Routing Problem with Time 

Windows (CVRPTW) can be formally represented as a 

directed graph G = (N, A), where N denotes the set of nodes 

corresponding to customer locations and the depot, while A 

represents the arcs connecting these nodes with associated 

travel distances. Building upon the foundational work of 

Desaulniers et al. (Desaulniers et al., 2014) and Bräysy et 

al. (Bräysy & Gendreau, 2002), we present a comprehensive 

mathematical formulation comprising constraints (1) 

through (9) that captures the problem's key operational 

constraints and objectives. 

 

𝑚𝑖𝑛 𝑓𝑉𝑅𝑃𝑇𝑊 =  ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘

𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉

+ ∑ 𝑦𝑘

𝑘∈𝑉

 (1) 

∀𝑖 ∈ 𝐶 ∶   ∑ ∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑁𝑘∈𝑉

= 1  (2) 

∀𝑘 ∈ 𝑉 ∶  ∑ 𝑑𝑖

𝑖∈𝐶

∑ 𝑥𝑖𝑗𝑘

𝑗∈𝑁

≤ 𝑞 (3) 

∀𝑘 ∈ 𝑉 ∶   ∑ 𝑥0𝑗𝑘

𝑗∈𝑁

<  𝑦𝑘 (4) 

∀𝑝 ∈ 𝐶. ∀𝑘 ∈ 𝑉 ∶  ∑ 𝑥𝑖𝑝𝑘

𝑖∈𝑁

− ∑ 𝑥𝑝𝑗𝑘

𝑗∈𝑁

= 0 (5) 

∀𝑘 ∈ 𝑉 ∶   ∑ 𝑥𝑖.𝑛+1.𝑘

𝑖∈𝑁

<  𝑦𝑘 (6) 

∀𝑖. 𝑗 ∈ 𝑁. ∀𝑘 ∈ 𝑉:   𝑥𝑖𝑗𝑘(𝑤𝑖𝑘 + 𝑠𝑖 + 𝑡𝑖𝑗 −  𝑤𝑗𝑘) ≤ 0 (7) 

∀𝑖 ∈ 𝑁. ∀𝑘 ∈ 𝑉:   𝑎𝑖 ≤ 𝑤𝑖𝑘 ≤ 𝑏𝑖 (8) 

𝑥𝑖𝑗𝑘 ∈ {0 . 1}.    𝑦𝑘 ∈ {0 . 1}.    𝑤𝑖𝑘 ≥ 0 (9) 

 

Where 𝑉 is the set of vehicles, and 𝑁=𝐶∪{0 , 𝑛+1} is the 

set of all nodes, including the set of customers 𝐶 and the 

depot represented by node 0 (start) and node 𝑛+1 (end). The 

parameter 𝑐𝑖𝑗 denotes the travel cost from node 𝑖 to node 𝑗, 
and 𝑑𝑖  is the demand of customer 𝑖. Each vehicle has a 

capacity limit denoted by 𝑞. The time window during which 

service must begin at node 𝑖 is defined by the interval [𝑎𝑖, 𝑏𝑖], 

and  𝑠𝑖  is the service time at node 𝑖. The travel time from 

node 𝑖 to node 𝑗 is represented by 𝑡𝑖𝑗, and 𝑤𝑖𝑘 is the arrival 

time of vehicle 𝑘 at node 𝑖. 
The mathematical formulation introduces two key 

decision variables to model the vehicle routing and 

scheduling problem with time windows. The binary variable 

𝑥𝑖𝑗𝑘∈{0,1} indicates whether vehicle 𝑘 travels directly from 

node 𝑖 to node 𝑗, while the binary variable 𝑦𝑘∈{0,1} denotes 

whether vehicle 𝑘 is used in the solution. The continuous 

variable 𝑤𝑖𝑘  ≥ 0 represents the arrival time of vehicle 𝑘 at 

node 𝑖, subject to the time window constraints.  

The mathematical model consists of the following key 

relations. Relation (1) defines the objective function to be 

minimized: it integrates both the total routing cost and the 

number of vehicles used in a single-objective framework. 

The first term, ∑ ∑ ∑ 𝑐𝑖𝑗𝑥𝑖𝑗𝑘𝑗∈𝑁𝑖∈𝑁𝑘∈𝑉 , represents the total 

distance-based routing cost, while the second term, ∑ 𝑦𝑘𝑘∈𝑉 , 

penalizes the use of vehicles. The objective function 

integrates two critical components: total travel cost and 

number of vehicles used. This reflects a trade-off between 

minimizing operational distance and reducing fleet size, 

both of which are cost drivers in logistics operations. 

Additionally, the model implicitly penalizes vehicle waiting 

times through the arrival time variable, which improves 

realism in urban settings where early arrivals are frequent. 

All travel distances are computed using the Euclidean 

metric, consistent with Solomon benchmark specifications. 

 Relation (2) ensures that each customer is visited exactly 

once by a single vehicle, avoiding split deliveries. Relation 

(3) enforces the vehicle capacity constraint: for each 

vehicle, the total demand of the served customers must not 

exceed its capacity 𝑞. Relation (4) guarantees that each 

vehicle, if used, departs exactly once from the depot (node 

0), while Relation (5) enforces flow conservation for each 

customer: the number of vehicles entering a customer node 

must equal the number of vehicles leaving it, ensuring route 

continuity. Relation (6) requires that each vehicle returns to 

the depot (node 𝑛+1) if it is used. Relation (7) establishes 

time consistency between service at two consecutively 

visited nodes: if vehicle 𝑘 travels from node 𝑖 to node 𝑗, then 

the arrival time at 𝑗 must be no earlier than the departure 

time from 𝑖, accounting for service time 𝑠𝑖 and travel time 𝑡𝑖𝑗. 

Relation (8) ensures that the arrival time at each node lies 

within its designated time window [ 𝑎𝑖 ,  𝑏𝑖 ], maintaining 

schedule feasibility. Relation (9) defines the binary nature 

of the routing and vehicle usage variables, constraining  𝑥𝑖𝑗𝑘 

and 𝑦𝑘 to take values from {0,1}. Together, these relations 

provide a comprehensive mathematical framework for the 

VRPTW that not only seeks to minimize the total cost of 

routing but also discourages excessive use of vehicles, 

thereby producing more efficient and practical solutions. 

This formulation employs binary decision variables to 

represent route assignments and vehicle usage, and 

continuous variables to model arrival times. This mixed-

integer structure captures the key logistical features of the 

CVRPTW and enables direct modeling of waiting times, an 

aspect often neglected in previous studies. The formulation 

ensures feasible, time-consistent routes while minimizing 

operational cost and fleet size. 

3. Methodology 

    We design a three-phase metaheuristic approach to 

solve the CVRPTW effectively. This structure enables a 

balance between solution quality, computational efficiency, 
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and feasibility. The first phase constructs an initial solution 

using either an insertion-based or savings-based heuristic 

to ensure feasibility from the outset. The second phase 

introduces controlled random perturbations to escape local 

optima, while the third phase applies local search to 

intensify and refine the solution. This combination leverages 

the strengths of both constructive heuristics and 

neighborhood-based metaheuristics. 

This study proposes a three-phase metaheuristic 

approach for solving the Vehicle Routing Problem (VRP), 

comprising (1) initial solution construction, (2) 

perturbation, and (3) local search. The first phase generates 

a feasible initial solution using either an insertion heuristic 

(Hassin & Keinan, 2008) (Lu & Dessouky, 2006) or a 

savings heuristic (Polat et al., 2015) (Wang & Zhou, 2016) 

, ensuring all constraints are satisfied from the outset. This 

strategic initialization promotes faster convergence by 

eliminating the need for subsequent repair operations 

common in random initialization approaches. To escape 

local optima, the second phase incorporates a perturbation 

mechanism through Variable Neighborhood Search (VNS) 

(Hansen & Mladenović, 2001) (Hansen et al., 2017), which 

intentionally introduces controlled randomization to 

diversify the solution space. The third phase employs 

Variable Neighborhood Descent (VND) (Polat et al., 2015) 

(Todosijević et al., 2017) for intensive local search, 

systematically exploring neighborhood structures to identify 

quality improvements. This phased methodology balances 

exploration and exploitation, where VNS broadens the 

search while VND intensively refines promising solutions, 

collectively driving the algorithm toward superior solutions. 

Fig. 2 presents the comprehensive flowchart of the 

proposed three-phase methodology. The algorithmic 

process initiates with the generation of an initial feasible 

solution, followed by the systematic preparation of two 

ordered lists: neighborhood structures for perturbation 

(Section 3.2) and search operators for local improvement 

(Section 3.3). The perturbation phase first applies the initial 

neighborhood structure from the predefined list, 

intentionally introducing controlled diversification that may 

not yield immediate improvements. Subsequently, the local 

search phase sequentially applies its operator list until 

either an improvement is found or all operators are 

exhausted. 

The search mechanism implements an improvement-

driven restart policy: whenever an operator successfully 

enhances the solution, the process reverts to the first 

operator, while unsuccessful attempts progress linearly 

through the operator list. Similarly, improved solutions 

trigger a reset to the initial neighborhood structure, 

whereas unimproved solutions advance to subsequent 

neighborhoods. Crucially, all modifications undergo 

continuous feasibility verification, with strict enforcement of 

vehicle capacity and time window constraints after each 

alteration. This embedded constraint validation eliminates 

the computational overhead of separate repair mechanisms. 

To ensure that all generated solutions remain feasible 

with respect to vehicle capacity and customer time windows, 

our methodology incorporates embedded feasibility checks 

at critical stages of the algorithm. Feasibility is explicitly 

validated during the initial solution construction phase, 

where both the insertion-based and savings-based heuristics 

are designed to add customers only when doing so does not 

violate capacity or time window constraints. This approach 

eliminates the need for post-hoc repair mechanisms, which 

are often computationally expensive and prone to 

introducing unintended bias in the solution space (Li et al., 

2022). During this phase, every candidate insertion or 

merge is evaluated for constraint adherence before it is 

applied, guaranteeing that the initial solution is fully 

feasible by construction. In subsequent phases—

perturbation and local search—feasibility is maintained by 

design. Each neighborhood operator in both the Variable 

Neighborhood Search (VNS) and Variable Neighborhood 

Descent (VND) algorithms performs feasibility validation 

before committing any solution-altering operation (Li et al., 

2022). This ensures that no infeasible move is accepted into 

the current solution set. As a result, there is no need for 

separate feasibility repair procedures after each move, 

which significantly improves computational efficiency and 

preserves the structural integrity of the solution. This 

embedded feasibility enforcement is especially 

advantageous in tightly constrained problems like 

CVRPTW, where infeasible solutions can lead to prolonged 

search times or convergence failure. 

To enhance the effectiveness of the proposed solution 

method, the selection and ordering of neighborhood 

structures in both the perturbation and local search phases 

were guided by principles of algorithmic diversity, 

computational efficiency, and empirical performance. In the 

perturbation phase (VNS), the neighborhood operators were 

chosen to introduce increasing levels of structural 

modification to the current solution. Starting with the 

simplest operations (e.g., one-point crossover and 

relocation) and progressing toward more disruptive 

transformations (e.g., inverted crossover), this sequencing 

supports a controlled diversification mechanism. The 

rationale is that smaller changes help escape shallow local 

optima with minimal disruption, while progressively larger 

changes enable the algorithm to explore distant regions of 

the solution space when necessary. This strategic ordering 

ensures a balance between intensification and 

diversification, which is central to the design philosophy of 

VNS. 

Similarly, the local search phase (VND) employs 

neighborhood structures arranged in increasing complexity 

and computational cost. The ordering from L1 to L5 

prioritizes operators that are faster to evaluate and have a 

high likelihood of improving solution quality early in the 

search. For example, the inversion and 1-opt moves (L1 and 

L2) are applied first because they offer rapid refinement 

with low overhead, often correcting small inefficiencies in 

route structures. More complex moves such as 3-opt and 
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crossover (L4 and L5) are applied later, allowing the 

algorithm to exploit deeper structural improvements only 

when simpler adjustments no longer yield benefits. This 

order also supports the improvement-driven restart 

mechanism used in VND, ensuring that more 

computationally expensive operators are only applied when 

necessary. Overall, the design and ordering of these 

operations reflect a deliberate trade-off between local 

optimization efficiency and global search capability. 

The following sections detail the methodological 

components in sequence: initial solution construction 

techniques, perturbation mechanisms with associated 

neighborhood structures, and finally the local search 

optimization framework. This structured approach ensures 

both rigorous constraint satisfaction and efficient solution 

space exploration. 

Fig. 2. Flowchart of the Three-Phase Algorithm: Initial 

construction of a feasible solution, perturbation using 

neighborhood structures, and local search via a VND 

scheme 

 

3.1. Initial Solution Construction 

As established earlier, a valid solution comprises an 

ordered set of customer sequences representing vehicle 

routes. However, feasibility requires strict adherence to all 

problem constraints, which presents significant 

computational challenges in constrained routing problems 

such as the CVRPTW, where both vehicle capacity and 

customer time windows must be simultaneously satisfied 

(Da Silva & Urrutia, 2010). To address this complexity, we 

employ two distinct heuristic approaches for generating 

initial feasible solutions: an insertion-based method 

utilizing insertion heuristics and a savings-based method 

applying savings heuristics. These approaches are 

subsequently evaluated through comparative performance 

analysis, providing insights into their respective strengths 

under varying problem conditions. 

 

Insertion Heuristic 

The insertion heuristic initiates by constructing an initial 

route where a vehicle departs from the depot, services the 

most distant unvisited customer, and returns directly to the 

depot. Subsequent customers are systematically inserted 

into existing routes based on three critical criteria: temporal 

feasibility (time windows), spatial proximity (distances), and 

residual vehicle capacity. The algorithm progresses 

iteratively, evaluating potential insertions through a 

tripartite cost assessment that considers: (a) candidate 

customers eligible for insertion, (b) feasible insertion 

positions within existing routes, and (c) the corresponding 

route cost implications (Hassin & Keinan, 2008) (Lu & 

Dessouky, 2006). 

At each iteration, the algorithm selects the insertion 

yielding the minimal cost increase, with the process 

continuing until either vehicle capacity constraints prevent 

further insertions or all customers are successfully routed. 

When no additional customers can be accommodated in 

existing routes, new routes are initialized following the same 

farthest-first principle. Fig. 3 illustrates the complete 

algorithmic workflow, demonstrating this systematic 

balance between spatial efficiency and constraint 

satisfaction. 

 

Fig. 3. Flowchart of the Insertion Heuristic Algorithm 
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Savings Heuristic 

The savings heuristic, first introduced by Clarke and 

Wright (Wang & Zhou, 2016), is a classical approach for 

constructing cost-efficient vehicle routes through the 

iterative merging of customer-specific tours. Initially, each 

customer is assigned a dedicated route where a vehicle 

departs from the depot, visits a single customer, and 

returns—yielding routes of the form Depot → Customer → 

Depot. 

The core idea of the algorithm lies in computing a 

savings value for each pair of customers 𝑖 and 𝑗, which 

quantifies the potential cost reduction achieved by 

combining their individual routes into a single tour. This 

savings value is computed as: 

0 0Cos i j ijSaving t Dist Dist Dist     (12) 

where: 

𝐷𝑖𝑠𝑡𝑖0 is the distance from customer 𝑖 to the depot, 

𝐷𝑖𝑠𝑡0𝑗 is the distance from the depot to customer 𝑗, 
𝐷𝑖𝑠𝑡𝑖𝑗  is the distance between customers 𝑖 and 𝑗. 

 

All possible savings values are calculated and stored in 

a Savings List, which is then sorted in descending order so 

that the most beneficial route mergers (those with the 

highest savings) are considered first. 

The merging process, illustrated in Fig. 4, proceeds as 

follows: 

1. Select the top entry from the Savings List, 

corresponding to a potential merge between 

customers 𝑖 and 𝑗. 
2. Check feasibility of the merge by verifying that: 

 The customers are at the ends of their 

respective routes. 

 Combining the routes does not violate vehicle 

capacity or time window constraints. 
3. If feasible, merge the two routes into a single tour. 

4. Update the solution and the Savings List: 

 Remove or update entries involving customers 

𝑖 or 𝑗, as their routes have changed. 

 Recalculate savings values for any new 

feasible route combinations involving the 

merged route. 

5. If not feasible, discard the current savings entry 

and proceed to the next highest one. 

This process continues until the Savings List is 

exhausted—that is, when no further feasible merges can be 

performed. The final solution consists of a set of routes that 

aim to minimize the overall travel cost while adhering to all 

operational constraints, including vehicle capacity and 

customer time windows. 

 

 

 

 

 

 

 

 

Fig. 4. Flowchart of the Heuristic Savings Algorithm 

3.2. Perturbation Algorithm 

Following initial solution construction, we employ the 

Variable Neighborhood Search (VNS) algorithm 

(Mladenović & Hansen, 1997) to enhance solution quality 

through systematic diversification. The VNS approach, 

originally developed by Mladenović and Hansen, operates 

by cyclically exploring predefined neighborhood structures 

that each impose distinct modifications to the current 

solution (Mladenović & Hansen, 1997). This strategic 

alternation between different neighborhood types facilitates 

comprehensive exploration of the solution space while 

mitigating premature convergence to local optima. 

As detailed in Table 1, our implementation utilizes five 

specific neighborhood structures, applied sequentially in the 

following order: N1 → N2 → N3 → N4 → N5. This ordered 

progression ensures methodical exploration of increasingly 

complex solution modifications while maintaining 

algorithmic efficiency. Each neighborhood transition 

occurs only after exhaustive search within the current 

neighborhood structure, following the fundamental VNS 

principle of balanced intensification and diversification. 
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Table. 1. Neighborhood Structures 

(N1) 

One-point 

crossover 

Randomly selects two routes, swaps parts of them at a single point 

 

(N2) 
Relocation 

Randomly selects a customer from one route and inserts it into another 

 

 

(N3) 
Exchange 

Exchanges customers between two different routes 

 

(N4) 
2 Point Cross 

Over 

Swaps segments between two routes, each defined by two cut points 

 

 Similar to two-point crossover, but the segments are reversed before being swapped 
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(N5) 
Inverted crossover 

 
 

The selection of five neighborhood structures was driven 

by the need to balance diversification and intensification in 

the search process. Each operator introduces a distinct form 

of perturbation, allowing for broader exploration of the 

solution space without introducing excessive computational 

burden. Empirical evaluation indicated that this number 

provides a good trade-off between solution quality and 

runtime. Therefore, the number of local search operators 

has been deliberately limited to five to maintain algorithmic 

efficiency while avoiding diminishing returns from 

additional neighborhoods. 

3.3. Local Search Algorithm 

 Following the perturbation phase, the Variable 

Neighborhood Descent (VND) algorithm performs 

systematic solution refinement through exhaustive 

neighborhood exploration. Unlike its VNS counterpart 

which introduces stochastic perturbations, VND employs a 

deterministic approach, sequentially applying local search 

operators in a predefined order (L1 → L2 → L3 → L4 → 

L5) to ensure comprehensive local optimization (Hansen et 

al., 2017). The algorithm implements an improvement-

driven restart mechanism: whenever any operator yields an 

enhanced solution, the search reverts to the initial operator 

(L1), enabling deeper exploration of promising solution 

spaces. Crucially, all neighborhood moves maintain 

solution feasibility by design, eliminating the computational 

burden associated with repair mechanisms while preserving 

constraint satisfaction. This embedded feasibility guarantee 

contributes significantly to the method's computational 

efficiency throughout the intensification process. 

 

 

Table 2. Local Search Operators 

 (L1) 
Inversion This operator systematically examines all feasible inversion operations across every route in the current 

solution. For each candidate route, the algorithm evaluates every possible pair of customer positions, 

calculating the potential improvement in the objective function that would result from reversing the 

customer sequence between each position pair. The optimal inversion, defined as the pair yielding the 

maximum improvement, is then implemented. The inversion mechanism operates by selecting a target route 

and two distinct customer positions within it, then reversing the subsequence bounded by these positions. 

This transformation is applied exhaustively across all routes in the solution, ensuring a comprehensive 

exploration of the inversion neighborhood space. The operator ultimately selects and retains only the most 

beneficial inversion found during this process, thereby guaranteeing local optimality to this particular 

neighborhood structure. 
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 (L2 == 1-

opt) 

(L3 == 2-

opt) 

(L4 == 3-

opt) 
k-opt 

This operator performs an exhaustive evaluation of all possible k-opt moves across each route in the current 

solution. For every route, it identifies the optimal k-opt transformation, the relocation of a sequence of k 

consecutive customers to a new position within the same route, that maximizes improvement in the objective 

function while maintaining their original order. The selected move is then implemented to refine the 

solution. The operator systematically explores the neighborhood space by assessing potential relocations 

(either forward or backward along each route) for every valid k-length customer sequence. This 

comprehensive search ensures identification of the most beneficial intra-route restructuring, thereby 

guaranteeing local optimality to the k-opt neighborhood structure. 

 

This operator systematically explores all feasible one-point crossover operations between route pairs in 

the current solution. For each potential route combination, it identifies the optimal crossover point that 

maximizes improvement in the objective function. The operation selects two distinct routes and a customer 

position within each, then generates new route configurations by exchanging the subsequences preceding 

the selected positions while preserving the remaining segments. The operator exhaustively evaluates all 

possible route pairings and crossover positions, implementing only the most beneficial configuration found. 

This comprehensive search strategy ensures thorough exploration of the crossover neighborhood space, 

while the preservation of subsequence order maintains solution feasibility. Through this process, the 

operator guarantees identification of locally optimal solutions to the one-point crossover transformation. 

(L5) 
One-point 

crossover 

To ensure optimal performance of the proposed three-

phase metaheuristics, a systematic parameter tuning 

procedure was conducted. The goal was to determine 

effective configurations for the neighborhood structures 

used during the perturbation phase (VNS) and the local 

search operators in the refinement phase (VND), as well as 

to optimize other key parameters such as the number of 

iterations, perturbation strength, and runtime limits. Tuning 

was performed using a representative subset of Solomon's 

benchmark instances (R101, C101, RC101) to capture 

varying spatial distributions. A full-factorial grid search 

was applied, and each configuration was evaluated under a 

fixed time limit of 120 seconds using two performance 

metrics: total travel cost and the number of vehicles used. 

The final configuration—500 iterations, perturbation 

strength of 3, and a sequential VNS structure (N1 → N3 → 

N2 →  N4 →  N5) — proved most effective. The VND 

operators were applied in a fixed order (L2 → L3 → L1 → 

L4 →  L5), progressing from simple to more complex 

heuristics. This structure balanced diversification and 

intensification, enabling robust solution quality while 

maintaining computational efficiency. Increasing iterations 

beyond 500 yielded minimal improvement, and moderate 

perturbation strength avoided destabilizing the search. The 

selected settings enabled consistent convergence across 

instance types, demonstrating the importance of structured 

tuning in heuristic design. 

 

4. Data Used 

This study employs Solomon’s benchmark datasets 

(Solomon, 1987), which are widely used for evaluating 

solutions to the Vehicle Routing Problem with Time 

Windows (VRPTW). These datasets offer a range of problem 

instances with varying sizes and configurations, each 

including precise geographical coordinates for the depot 

and customer locations. Operational parameters such as 

fleet size, vehicle capacity, individual customer demands, 

and time window constraints—including earliest service 

start time, latest acceptable arrival time, and service 

duration—are clearly specified. Fig. 5 illustrates a 

representative data file structure from Solomon’s collection, 

demonstrating the standardized format used for these 

benchmark problems. 
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Fig. 5. Structure of Solomon’s data 

 

The datasets are systematically organized into three 

main classes based on customer spatial distribution: 

Random (R), Clustered (C), and Random-Clustered (RC) 

configurations (Solomon, 1987). Each class includes two 

variants distinguished by the strictness of time windows. The 

“1” series (e.g., R1, C1, RC1) features tight time windows, 

limiting the number of customers per route due to narrower 

service periods. Conversely, the “2” series (e.g., R2, C2, 

RC2) incorporates relaxed time windows, which allow for 

more flexible scheduling and the possibility of longer routes 

serving more customers (Ghoseiri & Ghannadpour, 2010). 

This structure enables a comprehensive evaluation of 

algorithmic performance under varying temporal and 

spatial constraints. 

The distinction among the R, C, and RC configurations 

lies in the spatial arrangement of customer locations and 

reflects different real-world distribution scenarios. In the 

Random (R) instances, customer locations are spread 

uniformly across the service area without any discernible 

spatial pattern. This setting simulates environments such as 

rural or low-density suburban regions, where demand 

points are dispersed, and routing solutions must account for 

greater travel distances and less predictable routing paths. 

In contrast, the Clustered (C) instances consist of 

customers grouped into well-defined clusters or zones, often 

concentrated around specific points. These clusters may 

represent business districts, urban delivery zones, or other 

high-density demand centers where delivery locations are 

geographically close to one another. This spatial 

configuration allows for shorter intra-cluster travel but 

poses challenges in inter-cluster transitions and vehicle 

load balancing. 

The Random-Clustered (RC) configuration is a hybrid 

that combines features of both previous types. In these 

instances, some customers are arranged in clusters while 

others are distributed randomly throughout the service area. 

This mixed layout closely resembles real-world distribution 

systems where urban deliveries (clusters) coexist with 

suburban or rural outliers (random points). As such, RC 

instances are generally considered more complex due to the 

need to simultaneously manage intra-cluster efficiency and 

inter-cluster routing diversity. 

These variations in spatial distribution are critical to 

testing the robustness of VRP algorithms. Algorithms may 

perform well in clustered environments due to route density 

but struggle in random or mixed configurations that require 

more flexible and adaptive strategies. Therefore, the 

Solomon datasets remain a benchmark not only for 

performance comparison but also for analyzing algorithm 

sensitivity to different spatial structures. 

5. Implementation and Numerical Evaluation 

This study comparatively evaluates two three-phase 

solution approaches differentiated by their initial solution 

construction algorithms: an insertion-based method 

utilizing insertion heuristics and a savings-based method 

employing savings heuristics. Both implementations were 

developed in Python 3.6 and executed on standardized 

hardware (Intel Core i3 1.70GHz processor, 4GB RAM) to 

ensure consistent performance measurement. The 

experimental evaluation employed Solomon's benchmark 

datasets comprising 100 customer instances, with solution 

quality assessed across all problem categories. Fig. 6 

demonstrates representative output visualizations for 

datasets R112, C105, and RC106, where distinct color-

coding illustrates the optimized vehicle routes generated by 

each method. This comparative visualization facilitates 

direct observation of the routing patterns emerging from 

each algorithmic approach. 

 

 

  

RC106 R112 C105 

Fig. 6. Example Output 
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Table 3: Comparison Between Insertion-Based and Savings-Based Methods 

data 
Savings-Based Method Insertion-Based Method 

Processing 
Time 

Total Service 
Time 

Number of 
Vehicles 

Processing 
Time 

Total Service 
Time 

Number of 
Vehicles 

R101 169.98 1729.80 24 163.66 1700.70 20 
R102 275.47 1626.03 22 390.27 1514.84 19 
R103 119.20 1328.10 17 293.35 1276.26 15 
R104 119.16 1051.69 13 346.58 1076.09 12 
R105 133.36 1512.10 20 131.07 1428.03 15 
R106 100.44 1374.96 18 221.55 1301.36 13 
R107 134.62 1174.73 14 296.74 1144.21 12 
R108 189.53 1012.83 11 183.36 1013.97 11 
R109 113.12 1228.49 15 179.68 1294.33 14 
R110 75.85 1148.17 13 216.40 1130.49 12 
R111 110.10 1131.89 13 151.19 1154.07 12 
R112 94.96 1016.64 10 265.08 1015.55 11 
R201 166.50 1302.18 14 480.78 1316.75 4 
R202 263.81 1121.37 9 714.75 1142.73 4 
R203 312.26 938.69 8 1107.00 941.22 4 
R204 466.89 775.15 6 1474.00 765.76 4 
R205 184.15 1067.49 10 783.00 1015.27 4 
R206 289.65 966.07 8 622.03 969.01 3 
R207 492.61 864.60 6 1036.41 874.76 3 
R208 506.03 729.51 4 1517.22 720.16 3 
R209 469.22 916.59 7 731.27 976.88 3 
R210 258.20 957.81 7 7870.80 948.65 4 
R211 306.86 798.32 6 766.86 836.11 3 
C101 50.36 828.94 10 104.10 828.94 10 
C102 94.52 866.00 11 249.47 834.64 10 
C103 68.52 829.86 10 284.90 884.48 11 
C104 65.30 830.02 10 457.09 866.68 10 
C105 52.78 866.00 11 101.99 828.94 10 
C106 59.93 828.94 10 183.08 828.94 10 
C107 50.07 866.00 11 120.58 829.70 10 
C108 66.15 832.27 10 141.28 828.94 10 
C109 65.06 849.25 10 129.69 836.33 10 
C201 216.17 591.56 3 228.81 591.56 3 
C202 463.21 591.56 3 530.29 591.56 3 
C203 421.48 591.17 3 848.47 591.17 3 
C204 447.84 590.60 3 836.91 602.95 3 
C205 244.64 588.88 3 340.13 588.88 3 
C206 289.92 588.49 3 394.85 588.49 3 
C207 251.42 588.29 3 438.26 588.29 3 
C208 423.55 588.32 3 347.66 588.32 3 

RC101 153.63 1785.74 19 117.20 1722.51 17 
RC102 157.87 1577.49 16 97.79 1548.48 14 
RC103 107.63 1412.48 14 181.02 1381.06 13 
RC104 89.88 1212.10 12 133.26 1223.67 11 
RC105 140.76 1646.27 17 140.89 1600.80 17 
RC106 86.86 1537.21 16 86.15 1421.89 13 
RC107 119.77 1324.26 13 215.25 1337.86 13 
RC108 79.04 1165.59 11 127.16 1199.60 12 
RC201 192.00 1469.97 13 460.56 1436.35 5 
RC202 366.47 1213.57 10 559.01 1174.06 5 
RC203 350.84 1005.38 7 866.84 973.73 4 
RC204 391.03 848.78 6 1263.72 809.36 4 
RC205 330.46 1279.14 9 555.81 1249.28 6 
RC206 251.60 1157.00 8 643.71 1097.04 5 
RC207 295.21 1045.10 8 639.32 1048.95 5 
RC208 262.23 791.56 5 898.74 869.62 4 

Average 216.15 1033.29 10.04 590.97 1022.72 8.15 
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Table 4. Comparison Between Insertion-Based Method and Genetic Algorithm(Ghoseiri & Ghannadpour, 2010) 

data 
Genetic Algorithm (Ghoseiri & Ghannadpour, 2010) Baseline Insertion Method 

Number of Vehicles Total Service Time Number of Vehicles Total Service Time 
R101 19 1677 20 1700.70 
R102 18 1511.8 19 1514.84 
R103 14 1287 15 1276.26 
R104 10 974.24 12 1076.09 
R105 15 1424.6 15 1428.03 
R106 13 1270.3 13 1301.36 
R107 11 1108.8 12 1144.21 
R108 10 971.91 11 1013.97 
R109 12 1212.3 14 1294.33 
R110 12 1156.5 12 1130.49 
R111 11 1111.9 12 1154.07 
R112 10 1036.9 11 1015.55 
R201 4 1351.4 4 1316.75 
R202 4 1091.22 4 1142.73 
R203 3 1041 4 941.22 
R204 3 1130.1 4 765.76 
R205 4 1087.8 4 1015.27 
R206 3 940.12 3 969.01 
R207 3 904.9 3 874.76 
R208 3 774.18 3 720.16 
R209 4 1008 3 976.88 
R210 3 938.58 4 948.65 
R211 4 1101.5 3 836.11 
C101 10 828.94 10 828.94 
C102 10 828.94 10 834.64 
C103 10 828.06 11 884.48 
C104 10 824.78 10 866.68 
C105 10 828.94 10 828.94 
C106 10 828.94 10 828.94 
C107 10 828.94 10 829.70 
C108 10 828.94 10 828.94 
C109 10 828.94 10 836.33 
C201 3 591.56 3 591.56 
C202 3 591.56 3 591.56 
C203 3 591.17 3 591.17 
C204 3 599.96 3 602.95 
C205 3 588.88 3 588.88 
C206 3 588.88 3 588.49 
C207 3 591.56 3 588.29 
C208 3 588.32 3 588.32 

RC101 15 1690.6 17 1722.51 
RC102 14 1509.4 14 1548.48 
RC103 12 1331.8 13 1381.06 
RC104 11 1177.2 11 1223.67 
RC105 15 1611.5 17 1600.80 
RC106 13 1437.6 13 1421.89 
RC107 11 1222.1 13 1337.86 
RC108 11 1156.5 12 1199.60 
RC201 4 1423.7 5 1436.35 
RC202 4 1369.8 5 1174.06 
RC203 4 1060 4 973.73 
RC204 3 901.46 4 809.36 
RC205 4 1410.3 6 1249.28 
RC206 4 1194.8 5 1097.04 
RC207 4 1040.6 5 1048.95 
RC208 3 898.5 4 869.62 

Average 7.84 1048.84 8.15 1022.72 
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Table 3 compares the insertion-based and savings-based 

methods using the Solomon dataset. The first column lists 

the dataset identifiers, followed by three columns for each 

method: the number of vehicles used, total service time, and 

processing time. The results show that the insertion-based 

method outperforms the savings-based approach in solution 

quality, with lower average total costs (1022.72 vs. 1033.29) 

and fewer vehicles used (8.15 vs. 10.04). Additionally, the 

insertion-based method yielded better results in 66.1% of 

the datasets, demonstrating its superiority in cost-efficiency 

and routing performance. However, the savings-based 

method was significantly faster, with an average processing 

time of 216.15 compared to 590.97 for the insertion-based 

approach. 

Table 4 compares the performance of the insertion-based 

method and a Genetic Algorithm (GA) (Ghoseiri & 

Ghannadpour, 2010) in terms of vehicle count and total 

service time. The insertion-based method achieved better 

solutions in 53.6% of the datasets, with lower average total 

costs (1022.72 vs. 1048.84) compared to the GA. However, 

the GA required slightly fewer vehicles on average (7.84 vs. 

8.15), suggesting a trade-off between cost efficiency and 

fleet size optimization. 

The results demonstrate that the choice between the 

insertion-based and savings-based methods depends on the 

specific priorities of the application. The insertion-based 

method is more effective when optimizing for solution 

quality and cost minimization, whereas the savings-based 

method is advantageous for scenarios requiring faster 

computational performance. 

It is worth noting that the GA results used for comparison 

were drawn from the work of Ghoseiri and Ghannadpour 

(Ghoseiri & Ghannadpour, 2010), where a multi-objective 

VRPTW model was solved using a goal programming 

approach and a customized Genetic Algorithm. Their GA 

incorporated advanced mechanisms such as the Push 

Forward Insertion Heuristic and λ-interchange in the 

initialization phase, along with Pareto-based selection and 

local improvement strategies during evolution. 

Chromosomes represented customer sequences, and order-

based crossover and mutation were used to maintain 

diversity. The authors tuned GA parameters empirically and 

tested their method on Solomon’s benchmark datasets. Since 

our study uses their published results without re-

implementation, the comparison in Table 4 reflects 

differences in approach and performance rather than direct 

execution under identical settings. 

6. Discussion and Conclusion 

This study addresses the Vehicle Routing Problem with Time 

Windows (VRPTW) under vehicle capacity constraints, with 

objectives to minimize total service time, reduce fleet size, and 

account for vehicle waiting times. The proposed solution adopts 

a three-phase optimization framework combining initial 

solution construction, perturbation, and local search. The 

initial phase utilizes either insertion or savings heuristics to 

generate feasible solutions, thereby preventing cold starts and 

improving convergence efficiency. The subsequent 

perturbation phase employs Variable Neighborhood Search 

(VNS), which introduces solution diversity through mechanisms 

comparable to mutation operators in genetic algorithms, 

effectively avoiding local optima. Finally, the Variable 

Neighborhood Descent (VND) method refines solutions 

through systematic local search. This combined approach 

leverages both exploratory capabilities and intensive local 

optimization to effectively solve the VRPTW. 

The two methods differ primarily in their initial solution 

construction: the insertion-based approach employs the 

insertion heuristic, while the savings-based method utilizes the 

savings heuristic. Both approaches share identical 

perturbation and local search phases, employing neighborhood 

structures including one-point crossover, relocation, swap, 

two-point crossover, and inverse crossover during 

perturbation, and operators such as inversion, 1-opt (including 

repeated application), and one-point crossover during local 

search. 

Evaluation on Solomon's benchmark datasets (random, 

clustered, and random-clustered configurations, each 

containing 100 customers) revealed distinct performance 

characteristics. The insertion-based method demonstrated 

superior solution quality, achieving lower average total costs 

(1022.72 vs. 1033.29) and requiring fewer vehicles (8.15 vs. 

10.04), while producing optimal solutions in 66.1% of cases. 

However, the savings-based method showed significantly faster 

computation times (216.15 seconds vs. 590.90 seconds per 

instance), as shown in Table 3. 

This performance difference stems from fundamental 

algorithmic distinctions. The savings heuristic maintains 

computational efficiency by computing the savings list once 

(with subsequent resorting) and simplifying route merges by 

considering only route endpoints. Conversely, the insertion 

heuristic's exhaustive evaluation of all possible customer 

insertion positions results in greater computational overhead, 

though yielding better quality solutions. 

Comparative analysis reveals the insertion-based method 

achieved superior cost efficiency (average total cost: 1022.72 

vs. 1048.84) compared to the genetic algorithm approach 

(Ghoseiri & Ghannadpour, 2010), though the genetic 

algorithm demonstrated marginally better vehicle utilization 

(7.84 vs. 8.15 vehicles). The three-phase methodology 

developed in this study offers several advantages over 

conventional approaches. By employing heuristic-based initial 

solutions rather than random starts, the method achieves faster 

convergence and more efficient optimization. The 

incorporation of a perturbation phase effectively prevents 

convergence to local optima, with the framework occasionally 

outperforming existing genetic algorithm implementations. 

A key innovation lies in the systematic validation of solution 

feasibility throughout each phase, eliminating the need for 

post-hoc correction procedures and their associated 

computational costs. The comprehensive exploration of 

neighborhood structures and local search operators in this 

work suggests several productive directions for future 

research, including: (1) systematic evaluation of individual 
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operator contributions, (2) investigation of alternative operator 

combinations, and (3) integration with real-world routing 

constraints such as dynamic traffic conditions. Furthermore, 

the potential synergies between the proposed approach and 

established metaheuristics (e.g., particle swarm optimization, 

tabu search) warrant examination in subsequent studies. 
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