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Land Surface Temperature (LST) is a key parameter in climate and environmental studies, 

influencing ecosystem processes and biological dynamics at various scales. This study aims to 

address the limitation of spatial coverage in ground-based LST observations and the challenge 

of cloud-induced data gaps in satellite thermal remote sensing. 

A novel hybrid approach was developed to reconstruct LST in cloudy regions using MODIS 

satellite data and ground-based meteorological observations. The methodology involves 

training a Random Forest (RF) regression model on MODIS brightness temperature bands 

(31 and 32) and ground station data. For cloud-covered regions, two reconstruction scenarios 

were implemented: (1) interpolation-based estimation using Inverse Distance Weighting 

(IDW) refined by RF, and (2) index-based estimation using MODIS-derived indices such as 

NDVI, NDBI, and NDMI. A genetic algorithm (GA) was employed to combine the outputs of 

both scenarios by optimizing their weights to minimize estimation error. 

The hybrid approach achieved an RMSE of 0.78°C, representing an improvement of 

approximately 0.8°C over the individual reconstruction scenarios. The optimized integration 

of RF and GA effectively enhanced the accuracy and continuity of reconstructed LST under 

cloudy conditions. 

This study demonstrates that combining satellite data with ground-based observations through 

a machine learning–driven hybrid framework can effectively overcome the limitations of 

cloud-contaminated pixels. The proposed method provides a reliable solution for generating 

continuous and accurate LST maps and holds significant potential for improving thermal 

remote sensing applications in complex environments. 
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1. Introduction 

    Remote Sensing (RS) has a wide range of applications, 

including urban planning, forest and wetland management, 

and global warming studies. LST plays a crucial role in both 

ecosystems and the Earth's atmospheric system (Mo et al., 

2021; X. Yu et al., 2014; Zhou et al., 2019). LST is widely 

used in various applications such as urban heat island 

analysis, health studies, and drought monitoring (Huang et 

al., 2013; Liu & Weng, 2009; Mallick et al., 2013; Ullah et 

al., 2020). Additionally, LST serves as a key variable in 

ecological, meteorological, and biological models of the 

Earth's system. 

    Traditionally, LST is measured at weather stations with 

high temporal resolution as point-based values. However, 

due to the high cost and labor required for their 

maintenance, the number of these stations is limited (Cho et 

al., 2022). Remote sensing provides an effective alternative 

by enabling large-scale, continuous LST measurements (Mo 

et al., 2021). Various methods have been developed for LST 

retrieval, including the single-channel method (Jiménez-

Muñoz & Sobrino, 2003), the Wan–Dozier split-window 

method (Wan & Dozier, 1996), the Jiménez–Muñoz split-

window method (Jiménez-Muñoz et al., 2014), and the 

Rozenstein split-window method (Rozenstein et al., 2014). 

Moreover, several satellite datasets, such as MODIS (Wan, 

2008), ASTER (Gillespie et al., 1998), and CGLS (Freitas et 

al., 2013) have been widely used as sources of Thermal 

Infrared (TIR) data for LST retrieval. MODIS LST, in 

particular, is a primary source due to its wide coverage, free 

access, and optimal temporal resolution (Zhao et al., 2020). 

    One of the key advantages of remotely sensed LST data is 

its global coverage. However, at a local scale, cloud cover 

remains a major challenge, as clouds obscure TIR signals, 

leading to missing LST values in affected areas (Jin & 

Dickinson, 1999; L. Lu et al., 2011). As a result, gap-filling 

techniques to estimate LST in cloud-covered regions have 

become a crucial area of research in remote sensing (Mo et 

al., 2021). 

    Numerous studies have proposed two main approaches 

for filling gaps in LST datasets caused by cloud cover (Zhao 

et al., 2020). The first approach estimates missing pixels 

based on spatial and temporal interpolation techniques, 

using neighboring high-quality MODIS LST data. These 

methods include Fourier transform, Harmonic Analysis of 

Time Series (HANTS), and Savitzky–Golay (S–G) filtering 

(Na et al., 2014; Scharlemann et al., 2008; Xu & Shen, 

2013). Geostatistical interpolation methods such as spline 

and kriging interpolation have also been employed. Some 

studies have used temporal interpolation to estimate missing 

LST values from the Aqua satellite (afternoon overpass) 

based on Terra satellite data (morning overpass) (Crosson 

et al., 2012). Additionally, (W. Yu et al., 2015) proposed a 

method using a transfer function with the most similar pixels 

to estimate missing values. While these approaches 

effectively utilize neighboring spatial or temporal 

information, they often fail in topographically complex 

areas or regions with large data gaps, where sparse data 

limits reliable estimation (Zhao et al., 2020). 

    The second approach addresses cloud-induced gaps by 

leveraging correlation models and auxiliary datasets. Some 

studies have used Digital Surface Models (DSM) to 

reconstruct MODIS LST values based on long-term 

temperature gradients, achieving reliable results in 

mountainous regions (Neteler, 2010). Others have employed 

regression models incorporating auxiliary predictors such 

as longitude, latitude, altitude, and NDVI to estimate 

missing LST values in 8-day composite datasets (Fan et al., 

2014). Additional auxiliary datasets—including land cover 

maps, MODIS Band 7, solar radiation, slope, distance from 

forests and oceans—have also been utilized to enhance 

estimation accuracy. These auxiliary datasets provide 

valuable information for reconstructing missing LST values 

by considering terrain complexity and spatial heterogeneity 

(Zhao et al., 2020). 

    In recent years, deep learning methods have shown 

promising results in LST reconstruction under cloud-

covered conditions. For instance, (Wu et al., 2022) 
introduced a method using convolutional neural networks 

(CNN) in combination with spatiotemporal fusion of MODIS 

and Landsat data to reconstruct high-resolution LST in 

cloudy scenes. Similarly, (Gong et al., 2023) proposed a 

spatiotemporal attention-based deep learning framework 

that effectively modeled complex spatial-temporal 

dependencies to estimate LST under cloudy conditions with 

high accuracy. Although these approaches demonstrate 

state-of-the-art performance, they often require large 

training datasets, significant computational resources, and 

may suffer from limited interpretability, making them less 

accessible for operational or region-specific applications. 

    while previous studies have made progress using either 

interpolation or regression-based gap-filling techniques, 

several limitations remain. Physically-based models often 

depend on complex energy balance equations and require 

numerous atmospheric and surface parameters, which may 

not be available or accurate under cloudy conditions (Fu et 

al., 2019). Deep learning approaches have also been 

explored; however, they typically demand extensive labeled 

datasets, involve high computational costs, and often 

function as black boxes, reducing interpretability(Kustura et 

al., 2025). In contrast, RF, a non-parametric ensemble 
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learning method, handles non-linearities and high-

dimensional heterogeneous data effectively with relatively 

low computational requirements. Its robustness, 

interpretability, and ability to integrate multiple data 

sources make it a suitable choice for this study(Wang et al., 

2024). Furthermore, most existing methods do not fully 

leverage a hybrid strategy that integrates spatial 

interpolation, spectral indices, and machine learning, 

optimized by evolutionary algorithms. The proposed method 

addresses these gaps by combining the strengths of multiple 

approaches into a unified, flexible framework 

    In this study, we introduce a novel method that integrates 

both interpolation-based and auxiliary-data-based 

approaches to reconstruct under-cloud LST values using 

MODIS satellite imagery and ground station data. A RF 

model is employed to map MODIS Brightness Temperature 

data to ground-based temperature measurements, 

generating a continuous LST map for Iran. For cloud-

covered regions, advanced interpolation techniques and 

satellite-derived indices are applied, with their outputs 

optimally combined using a GA. 

2. Study Area 

    The initial step of this study involved modeling near-

surface temperatures across Iran (Figure 1). This was 

achieved using brightness temperatures derived from bands 

31 and 32 of the MODIS satellite, alongside daily ground 

temperature observations collected from meteorological 

stations. Data from 820 meteorological stations distributed 

across Iran were utilized for this purpose. 

 

 
Figure 1. Study Area (Iran) 

 

    Iran encompasses a diverse range of climatic zones, 

including arid, semi-arid, Mediterranean, subtropical, cold 

and mountainous, desert, and continental and steppe. The 

central and eastern regions are predominantly arid and 

semi-arid, characterized by low annual precipitation and 

high temperatures, making agriculture and water resources 

a challenge.  

    The Varamin Plain, located southeast of Tehran, features 

an arid to semi-arid climate, characterized by low annual 

precipitation and considerable temperature variability. Its 

flat topography and fertile soils have historically supported 

extensive agricultural activities, making it a significant 

region within Tehran Province. Given these characteristics, 

Varamin (Figure 2) was selected as a representative case 

study to evaluate the performance of the proposed under-

cloud temperature reconstruction method. 

    A virtual cloud mask was created for this region, and the 

under-cloud temperature was then reconstructed using the 

proposed method. This area was chosen as a representative 

case to evaluate and demonstrate the performance of the 

proposed approach. 

 

Figure 2. Cloud mask region for virtual cloud 

simulation (Varamin City) 

3. Dataset Description 

    This study utilized two datasets: daily temperature data 

from meteorological stations and MODIS satellite imagery. 

A detailed explanation of each dataset is provided below. 

3.1. Weather Station Data 

    Daily temperature data from 820 ground meteorological 

stations across Iran were collected for the period from 2000 

to 2022. These data were considered highly reliable and 

were used as a reference for reconstructing LST using 

MODIS imagery. Figure 3 illustrates the distribution of 

these stations across Iran. 
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Figure 3. Distribution of Ground-based Meteorological 

Stations in the Study Area 

3.2. Satellite Data 

    This study used satellite imagery from the MODIS sensor. 

The MODIS instrument, which is on the Terra and Aqua 

satellites by NASA, has a wide spectral and spatial 

resolution to observe the Earth. The bands and products 

used are detailed below: 

Brightness Temperature Bands: The bands 31 (10.78–

11.28 μm) and 32 (11.77–12.27 μm) in the thermal infrared 

range. These bands are well applied in order to derive 

surface temperature of the Earth because of their high 

response to thermal radiation emitted by the surface. 

Products: NDVI, NDBI, NDMI, NDSI, and Land Cover (LC) 

products. 

Spatial Resolution: The thermal bands used have a spatial 

resolution of 1 km. All other products were resampled to the 

same spatial resolution for consistency. 

Temporal Resolution: MODIS imagery provides daily 

global coverage, making it highly suitable for calculating 

LST. 

 

3.2.1. Advantages of MODIS Data for LST Calculation 

    High Temporal Frequency: Daily coverage allows for     

continuous monitoring of temperature patterns. 

Spectral Sensitivity: Bands 31 and 32 are specifically 

designed for thermal emission, ideal for LST retrieval. 

Accessibility: MODIS data is freely available at no cost. 

3.2.2. Time Coverage 

Three specific dates were selected to analyze varying cloud 

conditions and validate the proposed method: 

 June 12, 2022 

 June 19, 2022 

 June 21, 2022 

4. Methodology 

    This study aims to reconstruct LST under clouds using a 

novel hybrid approach that integrates ground-based 

meteorological station data, MODIS Brightness 

Temperature (BT) and products, advanced interpolation 

techniques, and machine learning models. The methodology 

is detailed in the following sections and is illustrated in the 

accompanying flowcharts (Figures 4, 5, and 6). 

 
Figure 4. Overall Workflow for LST  

Reconstruction in Cloud-Covered Regions 
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Figure 5. Scenario 1: Interpolation based LST 

Reconstruction 

 

 

 
Figure 6. Scenario 2: Index based LST Reconstruction 

 

    The overall flowchart of this study, illustrating the 

framework and main processes, is presented in Figure 4. 

This framework encompasses data collection and LST 

reconstruction under two different scenarios. Detailed 

explanations of each scenario are provided separately in 

Figures 5 and 6. 

 

4.1. Data Collection and Preprocessing 

 

4.1.1. Ground-Based Data Collection 

    In this study, daily near-surface temperature data from 

820 meteorological stations across Iran were utilized, 

covering the period from 2000 to 2022. These stations 

provided point-based temperature observations with high 

temporal resolution. For each station, the corresponding 

pixel was extracted from the MODIS brightness temperature 

(BT) data—specifically from bands 31 and 32—on cloud-

free days. These ground observations were later used both 

for training the RF model and for evaluating the accuracy 

of reconstructed LST in cloud-covered areas. 

 

4.1.2. Satellite Data Preprocessing 

    To ensure the quality and consistency of the satellite data 

used in the reconstruction framework, several 

preprocessing steps were applied. MODIS LST products 

(MOD11A1) and MODIS surface reflectance products 

(MOD09GA) were used as the primary satellite inputs. 

Only clear-sky pixels were retained based on MODIS 

quality assurance (QA) flags. Pixels identified as cloudy, 

low-quality, or with uncertain retrieval conditions were 

excluded. All reflectance products used for calculating 

indices (e.g., NDVI, NDBI, NDMI, NDSI) are 

atmospherically corrected using standard MODIS 

algorithms. 

    Spatially, all satellite layers were resampled to a 

consistent 1 km resolution, reprojected to the WGS84 

coordinate system, and cropped to the extent of the study 

area.  Furthermore, all satellite inputs were temporally 

aligned to ensure consistency in model reconstruction and 

evaluation. These steps were essential to improve data 

reliability, reduce noise, and enable accurate LST modeling. 
 

4.2. Random Forest 

    RF regression is a machine learning technique that 

combines an ensemble of regression trees on the principles 

of ensemble learning(Breiman, 2001). The model is based 

on the "random association of trees" algorithm, an ensemble 

technique of decision trees. It is a highly suitable technique 

for high-dimensional data with a large number of features 

and suits both classification and regression tasks. 

In this approach, each tree independently predicts a subset 

of the training data, and the predictions are combined. The 

algorithm ensembles a set of independent decision trees, 
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where each tree randomly samples the data and organizes it 

hierarchically to make a prediction. By fitting each tree to a 

different subset of the data, the algorithm gains model 

diversity and makes overfitting less likely. The final 

prediction is then made by integrating the output of all the 

trees, giving a better and more credible result. 

 

4.3. Cloud Analysis and Temperature Reconstruction 

    Each pixel in the MODIS imagery was examined to 

determine whether it was cloud-covered. For cloud-free 

pixels, the modelled ground-level temperatures were 

retained. For cloud-covered pixels, the methodology 

included two scenarios depending on the availability of 

ground station data for the corresponding pixel location: 

 If ground station data were available: The measured 

ground temperature from the station was directly 

substituted for the cloud-covered pixel. 

 If ground station data were unavailable: Two 

alternative reconstruction scenarios were implemented 

to estimate under-cloud temperatures. 

4.4. Scenario 1: Interpolation with Enhanced Accuracy 

In this scenario, the cloud-covered area was analysed 

using a spatial neighborhood window: 

1. An initial estimation of under-cloud temperatures was 

performed using Inverse Distance Weighting (IDW) 

interpolation, based on the surrounding cloud-free 

pixels. 

2. To improve accuracy, the same interpolation process 

was applied to the corresponding neighborhood in the 

MODIS image from the most recent cloud-free day. 

3. A RF regression model was developed to establish a 

relationship between the interpolated values and the 

actual ground temperatures on the cloud-free day. This 

model was then applied to the interpolated 

temperatures on the cloudy day, refining the under-

cloud temperature estimates. 

4.4.1. Inverse Distance Weighting (IDW)  

    IDW is an interpolation method used to estimate the value 

of an unknown point in space based on the values of 

surrounding known points. In this approach, the 

contribution of each known point is weighted inversely 

proportional to its distance from the target point. Closer 

points have a greater influence on the estimation, while 

farther points contribute less. This makes IDW effective for 

spatial data analysis where proximity is a key factor(G. Y. 

Lu & Wong, 2008). 

𝑍 =
∑ (

𝑧𝑖

𝑑𝑖
)𝑛

𝑖=1

∑ (
1
𝑑𝑖

)𝑛
𝑖=1

 
(1) 

4.5. Scenario 2: Index-Based Modelling 

    For this scenario, MODIS-derived indices NDVI, NDBI, 

NDMI, and NDWI, along with land cover classification 

information, were extracted from the MODIS products for 

the most recent cloud-free day. On the cloudy day, the 

spatial neighborhood of the cloud-covered region was 

defined, and a RF regression model was developed using the 

indices on the cloud-free day as predictors and ground 

temperatures as the response variable. Since the index 

values were already calculated for the cloud-covered 

region, this model was employed to reconstruct the under-

cloud temperatures on the cloudy day. 

 
4.6. Hybrid Model Integration Using GA  

    To improve the accuracy of under-cloud LST 

reconstruction, the outputs of Scenario 1 (interpolation-

based) and Scenario 2 (index-based) were combined using 

a GA. The goal was to determine an optimal set of weights 

(w₁  and w₂ ) assigned to each scenario’s LST output in a 

weighted linear combination, such that: 

𝐿𝑆𝑇𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = 𝑤1 ∗ 𝐿𝑆𝑇𝑆1 + 𝑤2 ∗ 𝐿𝑆𝑇𝑆2 ,     
𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜    𝑤1 + 𝑤2 = 1 

(2) 

The optimization objective was to minimize the RMSE 

between the combined LST and ground-truth LST values 

within the virtual cloud mask area. The RMSE served as the 

fitness function for the GA. The algorithm iteratively evolved 

candidate weight pairs over 100 generations using standard 

crossover and mutation operations to find the weight 

configuration that minimized error. 

This integration enabled the method to benefit from the local 

accuracy of interpolation (Scenario 1) and the 

generalization capability of spectral indices across 

heterogeneous landscapes (Scenario 2). Table 5 presents the 

final weights derived from the GA, while Table 6 

demonstrates the improved performance of the integrated 

approach. 

4.7. Model Evaluation 

    The performance of the proposed methodology was 

evaluated using standard statistical metrics, including Root 
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Mean Square Error (RMSE), correlation coefficient (R), and 

the coefficient of determination (R²). These metrics were 

used to compare the reconstructed under-cloud 

temperatures with the LST map created from the initial 

model using ground station data and MODIS BT values. By 

using RMSE, R, and R², the evaluation provided a 

comprehensive understanding of the model's effectiveness in 

estimating accurate under-cloud temperatures. 

 
4.8. Optimization of Scenario Weights Using GA 
    To optimally combine the outputs from Scenario 1 and 

Scenario 2, a GA was employed. The objective was to 

determine the best weighting scheme for the two LST 

reconstruction methods, such that the Root Mean Square 

Error (RMSE) between the combined image and actual 

ground-truth LST is minimized. The GA was implemented 

with the settings listed in Table 1. 

 

 

 

Table 1. Hyperparameters of the GA 

Parameter Value Description 

Population size 100 
Number of solutions in 

each generation 

Number of generations 100 
Number of evolutionary 

cycles 

Lower bounds (lb) [0, 0] 
Minimum allowed 

weights for each scenario 

Upper bounds (ub) [1, 1] 
Maximum allowed 

weights for each scenario 

Number of variables 2 
Two weights (Scenario 1 

and Scenario 2) 

Fitness function RMSE 
Based on difference 

between predicted and 

actual LST 

Crossover function 
Default (2-

point) 
Combines weights from 

parent solutions 

Mutation rate Automatic default adaptive mutation 

Random seed 6 To ensure reproducibility 

 

5.Result and Discussion 

    This section analyzes the temperature reconstruction 

results for the under-cloud region in two scenarios. Table 1 

summarizes the evaluation results for each scenario and the 

combined method using various validation criteria. 

 

5.1. RF Model for LST Prediction 

    In the first step, a RF model was developed using data 

from meteorological ground stations and the brightness 

temperatures of MODIS bands 31 and 32. Once the model 

was built, the LST for the entire country of Iran was 

generated. The resulting LST map is shown in Figure 7, 

which provides a continuous prediction of the near-surface 

temperature across Iran. The model's performance was 

assessed using RMSE, R, and R² criteria. The evaluation 

results are presented in Table 2. 

Table 2. Model Evaluation Metrics for LST Prediction 

 RMSE(C°) R R2 

BT31 4.69 0.88 0.78 

BT32 2.75 0.96 0.92 

BT31&BT32 2.39 0.97 0.93 

The output map of the LST for the entire country of Iran is 

presented in Figure 7. 

 
Figure 7. Predicted LST map for Iran 

5.2. Cloud Coverage Detection and Creation of Virtual Cloud 

Mask 

    Since it was not possible to validate the model using 

cloud-covered areas, a virtual cloud mask was created for a 

sunny day to evaluate the results of the proposed method. 

The selected area for creating the virtual cloud is the city of 

Varamin. The black and white cloud mask created is shown 

in Figure 8, where cloud-covered cells are shown in white 

and clear sky pixels are shown in black. 
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Figure 8. Binary cloud mask used for evaluation 

purposes, created using the administrative boundary of 

Varamin city. White areas represent simulated cloud-

covered pixels, while black areas indicate clear-sky 

pixels. This mask was applied to simulate missing LST 

data in a controlled environment. 

Virtual Cloud Mask and Evaluation Strategy:    

    Since accurate ground truth data are not typically 

available under actual cloud-covered conditions, a virtual 

cloud mask was generated to enable quantitative model 

validation. For this purpose, the administrative boundary of 

Varamin city was used as the masked region. All pixels 

within this boundary were labelled as "cloud-covered", and 

the surrounding pixels were treated as clear-sky reference 

data. 

    Although this mask does not replicate the spatial and 

spectral complexity of natural cloud formations, it provides 

a controlled and consistent framework for evaluating the 

accuracy of LST reconstruction.  

This approach allowed us to objectively compare the 

reconstructed LST values against known true values within 

the masked region. While the mask does not mimic the 

physical behaviour of actual cloud cover, it allows for 

consistent and reproducible evaluation of model 

performance in the presence of artificially induced data 

gaps. Therefore, the conclusions drawn from this validation 

setup should be interpreted as indicative of the model’s 

potential rather than a definitive assessment under real 

cloud dynamics. 
5.3. Scenario 1: IDW Interpolation and RF Adjustment 

    IN Scenario 1, a neighborhood window was defined 

around the cloud-covered region to support spatial 

interpolation from adjacent cloud-free pixels. The defined 

one-pixel-wide neighborhood is shown in Figure 9. To 

optimize performance, two sensitivity analyses were 

conducted. First, various neighborhood window sizes 

(ranging from 1 to 11 pixels) were tested to evaluate their 

effect on interpolation accuracy. Second, the number of 

decision trees in the RF model was varied to identify the 

optimal setting for regression accuracy. As illustrated in 

Figure 10a, the minimum RMSE was achieved using 9 trees 

in the RF model. Figure 10b shows that the lowest RMSE 

occurred when using a one-pixel-wide neighborhood, 

confirming its suitability for fine-scale spatial estimation. 

These parameter settings were therefore adopted for the 

final implementation of Scenario 1. 

 

 
Figure 9. A binary mask illustrating the defined 

neighborhood (one-pixel-wide strip around the cloudy 

area) for Scenario 1, applied in the IDW interpolation 

process for cloud-covered pixels 

 

Figure 10a. RMSE values for different numbers of 

trees in the RF model for Scenario 1. The minimum 

RMSE was achieved with 9 trees. 

 
Figure 10b. Relationship between neighborhood 

window size and interpolation accuracy (RMSE) in 

Scenario 1. The one-pixel window yielded the 

highest accuracy. 
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    The sensitivity analyses demonstrate that the 

interpolation accuracy improves when optimal RF 

configuration and spatial context are selected. A one-pixel 

neighborhood provided the highest local relevance for IDW, 

while a 9-tree RF effectively modeled the relationship 

between interpolated and actual values. 

The accuracy of the initial IDW interpolation and the 

refined values from the RF model was compared using 

standard evaluation metrics (RMSE, R, and R²). The results, 

summarized in Table 3, confirm that the improved IDW 

method significantly enhanced estimation accuracy, 

reducing RMSE by approximately 0.8°C. 

Table 3. Comparison of initial and improved IDW 

interpolation accuracy using RMSE, R, and R² metrics 

 RMSE (C°) R R2 

IDW 2.33 0.72 0.52 

Improved 

IDW 
1.53 0.82 0.67 

 

5.4. Scenario 2: Vegetation and Land Cover-Based 

Reconstruction 

    Index Calculation: For Scenario 2, various indices—

including NDVI, NDBI, NDMI, NDWI, and a land cover 

classification map—were obtained from MODIS products 

for the last cloud-free day preceding the study date. These 

indices were selected due to their known relevance to 

surface thermal behavior and their ability to capture spatial 

variations in vegetation, surface moisture, built-up areas, 

water bodies, and land use types. Specifically, NDVI and 

NDMI reflect vegetation health and moisture content, NDBI 

captures built-up surfaces, NDWI identifies water-related 

features, and land cover categorizes surface types. These 

features were used as predictors in the Random Forest 

model to estimate land surface temperatures in cloud-

covered regions. The calculated indices are presented in 

Figure 11, which illustrates their spatial distribution across 

Tehran Province. These spatial distributions illustrate the 

variability in land surface characteristics across the study 

area. As the indices shown in Figure 11 were used as 

predictors in the Random Forest model for Scenario 2, their 

spatial heterogeneity directly contributed to improving the 

accuracy of under-cloud LST reconstruction. The 

effectiveness of using such indices in LST modeling has also 

been confirmed in previous studies (Xiao et al., 2021; Yang 

et al., 2017). 

 

 

 

 
NDVI 

 
NDBI 

                 
Land Cover 

 
NDMI 
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NDWI 

Figure11.Spatial distribution of the selected indices and 

land cover over the study area, derived from MODIS 

data for the most recent cloud-free day prior to the study 

date 

 

    Neighborhood Window Selection: Following the 

extraction of spectral indices (NDVI, NDBI, NDMI, NDSI) 

and land cover information for the last cloud-free day (as 

illustrated in Figure 11), these variables were used as 

predictors to estimate LST over cloud-covered areas. To 

optimize model performance, two sensitivity analyses were 

conducted: 

(1) evaluating the effect of the number of decision trees in 

the RF model, and 

(2) determining the optimal neighborhood window size to 

define the spatial training context. 

    As shown in Figure 13a, the minimum RMSE was 

obtained with 45 trees in the RF model. Similarly, Figure 

13b presents the RMSE trend with different neighborhood 

sizes, where the optimal performance was achieved using a 

7-pixel-wide neighborhood window. 

 
Figure 12. A binary mask illustrating the defined 

neighborhood (7-pixel-wide strip around the cloudy 

area) for Scenario 2 

 
Figure 13a. Sensitivity of RMSE to the number of trees 

in the RF model for Scenario 2. A minimum RMSE was 

observed at 45 trees. 

 
Figure 13b. RMSE as a function of neighborhood 

window size in Scenario 2. The 7-pixel window provided 

optimal accuracy. 

    Accuracy of the RF-Based Method: The accuracy of LST 

prediction using the RF regression model for Scenario 2 is 

showed in Table 4. The results show that the RF model 

effectively reconstructed the LST for cloud-covered regions 

using the available vegetation and land cover indices. 

Table 4. Accuracy metrics (RMSE, R, R²) of the RF model 

in Scenario 2 for under-cloud LST reconstruction using 

spectral indicess 

 RMSE(C°) R R2 

Index Based 1.48 0.78 0.61 

 

5.5. Scenario Combination Using GA 

    The final step of this study involved combining the outputs 

of the two scenarios using a GA. This algorithm determined 

the optimal weights for each scenario based on the RMSE 

cost function of the LST map. The optimization process of 

the GA, including the best and mean values, is illustrated in 

Figure 14. The final LST reconstruction map for the cloud-
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covered area is shown alongside the actual LST map in 

Figure 15. 

 
Figure 14. Best and mean values of the GA's optimization 

process for determining 

 the weights of the two scenarios. 

 
(a) 

 
(b) 

Figure 15. Comparison of (a) the actual LST map obtained from 

MODIS observations on a cloud-free day, and (b) the predicted LST 

map generated using the proposed hybrid approach. The prediction was 

obtained by optimally combining Scenario 1 (interpolation-based) and 

Scenario 2 (index-based) outputs using a GA. Both maps are displayed 

in degrees Celsius, with color bars indicating LST values. The 

reconstructed areas correspond to the simulated cloud-covered region 

defined in the virtual mask. 

 

    Weighting and Final Results: The weights assigned to 

each scenario are shown in Table 5. Table 6 compares the 

accuracy of each individual scenario (1 and 2) with the 

combined approach using the GA. The results reveal that 

combining the two scenarios reduced the RMSE by about 

0.8°C compared to using each scenario separately, 

highlighting the improved accuracy of the LST 

reconstruction when both methods are combined. 

 

. Table 5. The weights derived from the GA method for 

Scenarios 1 and 2 

Scenario I Scenario II 

0.23 0.77 

 

Table 6. Comparison of the accuracy of Scenarios 1 and 

2 and their combination 

 RMSE(C°) R R2 

Improved IDW 1.54 0.82 0.67 

Index Based 1.48 0.78 0.60 

GA-Based 

Integration 
0.79 0.94 0.88 

6. Conclusion and Discussion 

    Applications that analyse satellite images of indices such 

as     LST depend fundamentally on the seasons, i.e., they are 

limited to carrying out investigations in specific periods due 

to the presence of cloud cover blocking substantial 

information that can cause inconsistencies in the analysis. 

    The aim of this study was to introduce a novel method for 

reconstructing under-cloud surface temperature using 

ground station data and combining two different scenarios.  

for this purpose, in the first scenario, an improved IDW 

method was used to reconstruct the under-cloud LST. 

According to what was shown in table 3, the RMSE value of 

this method was 1.53°C, which showed an improvement of 

0.8°C compared to the IDW method. In the second scenario, 

the index-based method and RF algorithm were used for 

under-cloud LST reconstruction.  

According to Table 4, the RMSE value in this method was 

1.48°C. In both scenarios the last cloud - free image and 

neighborhood pixels on a cloudy day were used for 

reconstruction.  

To optimize performance, in each of the two scenarios, 
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sensitivity analysis was tested for different window sizes to 

evaluate their impact on interpolation accuracy (Figures 9 

and 12), and the best neighborhood window size were 

selected. For weighted combination of the results of two 

scenarios, GA algorithm was used. 

    The results demonstrated that the use of a GA to combine 

the two scenarios was effective in improving under-cloud 

surface temperature reconstruction. By combining the two 

scenarios, the RMSE of the final LST reconstruction map 

was reduced by 0.8°C compared to each scenario 

individually, with the final RMSE of the reconstructed LST 

map being 0.78°C. Another advantage of the presented 

method is the conversion of LST obtained from the satellite 

to near ground LST, for which data from ground stations 

and the RF method were used, and the results of its 

evaluation are shown in Table 2. 

The comparison of methods revealed that the RF approach, 

utilizing features such as NDVI and land cover maps, is a 

powerful tool for reconstructing LST in cloud-covered 

areas. Furthermore, applying machine learning methods 

like RF significantly outperformed traditional interpolation 

techniques. The method presented in this study can be 

applied to future research in regions experiencing cloud 

cover challenges.  

 

 

Limitations and Future Work 

    As a limitation, comparing the proposed method with 

deep learning methods was not possible due to the 

unavailability of sufficient training data and relevant codes. 

Another limitation of this study is that the performance 

evaluation was primarily conducted in a relatively flat 

region (Varamin). As topographic complexity can influence 

both the accuracy of interpolation techniques and the 

behaviour of spectral indices used in LST modelling, further 

validation is necessary in mountainous and topographically 

diverse regions. Future work should include case studies 

from such environments to assess the generalizability and 

robustness of the proposed hybrid approach under varying 

terrain conditions. 

    The next limitation lies in the method’s reliance on 

ground station data for calibration and evaluation. In 

regions where such data are sparse or unavailable, the 

effectiveness of the model may be reduced. In addition, when 

cloud cover is very dense or widespread, some remote 

sensing indices may not be available for a significant 

portion of the image, leading to decreased reconstruction 

accuracy. 

    To address these issues, future studies should explore 

strategies that reduce dependence on in-situ observations, 

such as integrating multi-source satellite data (e.g., 

combining MODIS with Landsat or Sentinel imagery), or 

developing generalized models that can be applied across 

various land cover and climatic zones. These enhancements 

would help improve the flexibility and applicability of the 

method in more challenging environmental conditions. 

Furthermore, to enhance the proposed approach, future 

work could investigate refined strategies for selecting 

neighborhood window sizes based on local spatial 

characteristics. The inclusion of additional predictive 

features, such as surface albedo or land surface emissivity, 

may also improve model performance. Applying this method 

in regions with a denser network of ground meteorological 

stations could facilitate more detailed validation and 

potentially increase the accuracy of under-cloud LST 

reconstruction. 
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