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Land Surface Temperature (LST) is a key parameter in climate and environmental studies,
influencing ecosystem processes and biological dynamics at various scales. This study aims to
address the limitation of spatial coverage in ground-based LST observations and the challenge
of cloud-induced data gaps in satellite thermal remote sensing.

A novel hybrid approach was developed to reconstruct LST in cloudy regions using MODIS
satellite data and ground-based meteorological observations. The methodology involves
training a Random Forest (RF) regression model on MODIS brightness temperature bands
(31 and 32) and ground station data. For cloud-covered regions, two reconstruction scenarios
were implemented: (1) interpolation-based estimation using Inverse Distance Weighting
(IDW) refined by RF, and (2) index-based estimation using MODIS-derived indices such as
NDVI, NDBI, and NDMI. A genetic algorithm (GA) was employed to combine the outputs of
both scenarios by optimizing their weights to minimize estimation error.

The hybrid approach achieved an RMSE of 0.78°C, representing an improvement of
approximately 0.8°C over the individual reconstruction scenarios. The optimized integration
of RF and GA effectively enhanced the accuracy and continuity of reconstructed LST under
cloudy conditions.

This study demonstrates that combining satellite data with ground-based observations through
a machine learning—driven hybrid framework can effectively overcome the limitations of
cloud-contaminated pixels. The proposed method provides a reliable solution for generating
continuous and accurate LST maps and holds significant potential for improving thermal
remote sensing applications in complex environments.
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Introduction

Remote Sensing (RS) has a wide range of applications,
including urban planning, forest and wetland management,
and global warming studies. LST plays a crucial role in both
ecosystems and the Earth's atmospheric system (Mo et al.,
2021; X. Yu et al., 2014; Zhou et al., 2019). LST is widely
used in various applications such as urban heat island
analysis, health studies, and drought monitoring (Huang et
al., 2013; Liu & Weng, 2009; Mallick et al., 2013; Ullah et
al., 2020). Additionally, LST serves as a key variable in
ecological, meteorological, and biological models of the
Earth's system.

Traditionally, LST is measured at weather stations with
high temporal resolution as point-based values. However,
due to the high cost and labor required for their
maintenance, the number of these stations is limited (Cho et
al., 2022). Remote sensing provides an effective alternative
by enabling large-scale, continuous LST measurements (Mo
et al., 2021). Various methods have been developed for LST
retrieval, including the single-channel method (Jiménez-
Mufioz & Sobrino, 2003), the Wan-Dozier split-window
method (Wan & Dozier, 1996), the Jiménez—Mufioz split-
window method (Jiménez-Mufioz et al., 2014), and the
Rozenstein split-window method (Rozenstein et al., 2014).
Moreover, several satellite datasets, such as MODIS (Wan,
2008), ASTER (Gillespie et al., 1998), and CGLS (Freitas et
al., 2013) have been widely used as sources of Thermal
Infrared (TIR) data for LST retrieval. MODIS LST, in
particular, is a primary source due to its wide coverage, free
access, and optimal temporal resolution (Zhao et al., 2020).

One of the key advantages of remotely sensed LST data is
its global coverage. However, at a local scale, cloud cover
remains a major challenge, as clouds obscure TIR signals,
leading to missing LST values in affected areas (Jin &
Dickinson, 1999; L. Lu et al., 2011). As a result, gap-filling
techniques to estimate LST in cloud-covered regions have
become a crucial area of research in remote sensing (Mo et
al., 2021).

Numerous studies have proposed two main approaches
for filling gaps in LST datasets caused by cloud cover (Zhao
et al., 2020). The first approach estimates missing pixels
based on spatial and temporal interpolation techniques,
using neighboring high-quality MODIS LST data. These
methods include Fourier transform, Harmonic Analysis of
Time Series (HANTS), and Savitzky—Golay (S-G) filtering
(Na et al., 2014; Scharlemann et al., 2008; Xu & Shen,
2013). Geostatistical interpolation methods such as spline
and kriging interpolation have also been employed. Some
studies have used temporal interpolation to estimate missing
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LST values from the Aqua satellite (afternoon overpass)
based on Terra satellite data (morning overpass) (Crosson
et al., 2012). Additionally, (W. Yu et al., 2015) proposed a
method using a transfer function with the most similar pixels
to estimate missing values. While these approaches
effectively utilize neighboring spatial or temporal
information, they often fail in topographically complex
areas or regions with large data gaps, where sparse data
limits reliable estimation (Zhao et al., 2020).

The second approach addresses cloud-induced gaps by
leveraging correlation models and auxiliary datasets. Some
studies have used Digital Surface Models (DSM) to
reconstruct MODIS LST values based on long-term
temperature gradients, achieving reliable results in
mountainous regions (Neteler, 2010). Others have employed
regression models incorporating auxiliary predictors such
as longitude, latitude, altitude, and NDVI to estimate
missing LST values in 8-day composite datasets (Fan et al.,
2014). Additional auxiliary datasets—including land cover
maps, MODIS Band 7, solar radiation, slope, distance from
forests and oceans—have also been utilized to enhance
estimation accuracy. These auxiliary datasets provide
valuable information for reconstructing missing LST values
by considering terrain complexity and spatial heterogeneity
(Zhao et al., 2020).

In recent years, deep learning methods have shown
promising results in LST reconstruction under cloud-
covered conditions. For instance, (Wu et al., 2022)
introduced a method using convolutional neural networks
(CNN) in combination with spatiotemporal fusion of MODIS
and Landsat data to reconstruct high-resolution LST in
cloudy scenes. Similarly, (Gong et al., 2023) proposed a
spatiotemporal attention-based deep learning framework
that effectively modeled complex spatial-temporal
dependencies to estimate LST under cloudy conditions with
high accuracy. Although these approaches demonstrate
state-of-the-art performance, they often require large
training datasets, significant computational resources, and
may suffer from limited interpretability, making them less
accessible for operational or region-specific applications.

while previous studies have made progress using either
interpolation or regression-based gap-filling techniques,
several limitations remain. Physically-based models often
depend on complex energy balance equations and require
numerous atmospheric and surface parameters, which may
not be available or accurate under cloudy conditions (Fu et
al., 2019). Deep learning approaches have also been
explored; however, they typically demand extensive labeled
datasets, involve high computational costs, and often
function as black boxes, reducing interpretability(Kustura et
al., 2025). In contrast, RF, a non-parametric ensemble
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learning method, handles non-linearities and high-
dimensional heterogeneous data effectively with relatively
low computational requirements. Its  robustness,
interpretability, and ability to integrate multiple data
sources make it a suitable choice for this study(Wang et al.,
2024). Furthermore, most existing methods do not fully
leverage a hybrid strategy that integrates spatial
interpolation, spectral indices, and machine learning,
optimized by evolutionary algorithms. The proposed method
addresses these gaps by combining the strengths of multiple
approaches into a unified, flexible framework

In this study, we introduce a novel method that integrates
both interpolation-based and auxiliary-data-based
approaches to reconstruct under-cloud LST values using
MODIS satellite imagery and ground station data. A RF
model is employed to map MODIS Brightness Temperature
data to ground-based temperature measurements,
generating a continuous LST map for Iran. For cloud-
covered regions, advanced interpolation techniques and
satellite-derived indices are applied, with their outputs
optimally combined using a GA.

2. Study Area

The initial step of this study involved modeling near-
surface temperatures across Iran (Figure 1). This was
achieved using brightness temperatures derived from bands
31 and 32 of the MODIS satellite, alongside daily ground
temperature observations collected from meteorological
stations. Data from 820 meteorological stations distributed
across Iran were utilized for this purpose.

0385470 340 510 680 B RN
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Figure 1. Study Area (Iran)

Iran encompasses a diverse range of climatic zones,
including arid, semi-arid, Mediterranean, subtropical, cold
and mountainous, desert, and continental and steppe. The
central and eastern regions are predominantly arid and

semi-arid, characterized by low annual precipitation and
high temperatures, making agriculture and water resources
a challenge.

The Varamin Plain, located southeast of Tehran, features
an arid to semi-arid climate, characterized by low annual
precipitation and considerable temperature variability. Its
flat topography and fertile soils have historically supported
extensive agricultural activities, making it a significant
region within Tehran Province. Given these characteristics,
Varamin (Figure 2) was selected as a representative case
study to evaluate the performance of the proposed under-
cloud temperature reconstruction method.

A virtual cloud mask was created for this region, and the
under-cloud temperature was then reconstructed using the
proposed method. This area was chosen as a representative
case to evaluate and demonstrate the performance of the
proposed approach.

Figure 2. Cloud mask region for virtual cloud
simulation (Varamin City)

3. Dataset Description

This study utilized two datasets: daily temperature data
from meteorological stations and MODIS satellite imagery.
A detailed explanation of each dataset is provided below.

3.1. Weather Station Data

Daily temperature data from 820 ground meteorological
stations across Iran were collected for the period from 2000
to 2022. These data were considered highly reliable and
were used as a reference for reconstructing LST using
MODIS imagery. Figure 3 illustrates the distribution of
these stations across Iran.
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Figure 3. Distribution of Ground-based Meteorological
Stations in the Study Area

3.2. Satellite Data

This study used satellite imagery from the MODIS sensor.
The MODIS instrument, which is on the Terra and Aqua
satellites by NASA, has a wide spectral and spatial
resolution to observe the Earth. The bands and products
used are detailed below:
Brightness Temperature Bands: The bands 31 (10.78-
11.28 um) and 32 (11.77-12.27 um) in the thermal infrared
range. These bands are well applied in order to derive
surface temperature of the Earth because of their high
response to thermal radiation emitted by the surface.
Products: NDVI, NDBI, NDMI, NDSI, and Land Cover (LC)
products.
Spatial Resolution: The thermal bands used have a spatial
resolution of 1 km. All other products were resampled to the
same spatial resolution for consistency.
Temporal Resolution: MODIS imagery provides daily
global coverage, making it highly suitable for calculating
LST.
3.2.1. Advantages of MODIS Data for LST Calculation

High Temporal Frequency: Daily coverage allows for
continuous monitoring of temperature patterns.
Spectral Sensitivity: Bands 31 and 32 are specifically
designed for thermal emission, ideal for LST retrieval.
Accessibility: MODIS data is freely available at no cost.
3.2.2.  Time Coverage
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Three specific dates were selected to analyze varying cloud
conditions and validate the proposed method:

e June 12, 2022

e June 19, 2022

e June 21, 2022

4. Methodology

This study aims to reconstruct LST under clouds using a
novel hybrid approach that integrates ground-based
meteorological ~ station data, MODIS Brightness
Temperature (BT) and products, advanced interpolation
techniques, and machine learning models. The methodology
is detailed in the following sections and is illustrated in the
accompanying flowcharts (Figures 4, 5, and 6).

Ground BT31 & BT32
Station Data of Modis

Replace With
Cloudy Pixel

Genetic-Based
Scenario Integration
Reconstructed LST Map

Figure 4. Overall Workflow for LST
Reconstruction in Cloud-Covered Regions
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Figure 5. Scenario 1: Interpolation based LST
Reconstruction

EF Model

Reconstructed LST

Accuracy assessment
Figure 6. Scenario 2: Index based LST Reconstruction

The overall flowchart of this study, illustrating the
framework and main processes, is presented in Figure 4.

This framework encompasses data collection and LST
reconstruction under two different scenarios. Detailed
explanations of each scenario are provided separately in
Figures 5 and 6.

4.1. Data Collection and Preprocessing

4.1.1. Ground-Based Data Collection

In this study, daily near-surface temperature data from
820 meteorological stations across Iran were utilized,
covering the period from 2000 to 2022. These stations
provided point-based temperature observations with high
temporal resolution. For each station, the corresponding
pixel was extracted from the MODIS brightness temperature
(BT) data—specifically from bands 31 and 32—on cloud-
free days. These ground observations were later used both
for training the RF model and for evaluating the accuracy
of reconstructed LST in cloud-covered areas.

4.1.2. Satellite Data Preprocessing

To ensure the quality and consistency of the satellite data
used in the reconstruction framework, several
preprocessing steps were applied. MODIS LST products
(MOD11A1) and MODIS surface reflectance products
(MODO09GA) were used as the primary satellite inputs.
Only clear-sky pixels were retained based on MODIS
quality assurance (QA) flags. Pixels identified as cloudy,
low-quality, or with uncertain retrieval conditions were
excluded. All reflectance products used for calculating

indices (e.g., NDVI, NDBI, NDMI, NDSI) are
atmospherically corrected wusing standard MODIS
algorithms.

Spatially, all satellite layers were resampled to a
consistent 1 km resolution, reprojected to the WGS84
coordinate system, and cropped to the extent of the study
area. Furthermore, all satellite inputs were temporally
aligned to ensure consistency in model reconstruction and
evaluation. These steps were essential to improve data
reliability, reduce noise, and enable accurate LST modeling.

4.2. Random Forest

RF regression is a machine learning technique that
combines an ensemble of regression trees on the principles
of ensemble learning(Breiman, 2001). The model is based
on the "random association of trees" algorithm, an ensemble
technique of decision trees. It is a highly suitable technique
for high-dimensional data with a large number of features
and suits both classification and regression tasks.
In this approach, each tree independently predicts a subset
of the training data, and the predictions are combined. The
algorithm ensembles a set of independent decision trees,
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where each tree randomly samples the data and organizes it
hierarchically to make a prediction. By fitting each tree to a
different subset of the data, the algorithm gains model
diversity and makes overfitting less likely. The final
prediction is then made by integrating the output of all the
trees, giving a better and more credible result.

4.3. Cloud Analysis and Temperature Reconstruction

Each pixel in the MODIS imagery was examined to
determine whether it was cloud-covered. For cloud-free
pixels, the modelled ground-level temperatures were
retained. For cloud-covered pixels, the methodology
included two scenarios depending on the availability of
ground station data for the corresponding pixel location:

e If ground station data were available: The measured
ground temperature from the station was directly
substituted for the cloud-covered pixel.

e If ground station data were unavailable: Two
alternative reconstruction scenarios were implemented
to estimate under-cloud temperatures.

4.4. Scenario 1: Interpolation with Enhanced Accuracy
In this scenario, the cloud-covered area was analysed
using a spatial neighborhood window:

1. An initial estimation of under-cloud temperatures was
performed using Inverse Distance Weighting (IDW)
interpolation, based on the surrounding cloud-free
pixels.

2. To improve accuracy, the same interpolation process
was applied to the corresponding neighborhood in the
MODIS image from the most recent cloud-free day.

3. A RF regression model was developed to establish a
relationship between the interpolated values and the
actual ground temperatures on the cloud-free day. This
model was then applied to the interpolated
temperatures on the cloudy day, refining the under-
cloud temperature estimates.

4.4.1. Inverse Distance Weighting (IDW)

IDW is an interpolation method used to estimate the value
of an unknown point in space based on the values of
surrounding known points. In this approach, the
contribution of each known point is weighted inversely
proportional to its distance from the target point. Closer
points have a greater influence on the estimation, while
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farther points contribute less. This makes IDW effective for
spatial data analysis where proximity is a key factor(G. Y.
Lu & Wong, 2008).
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4.5. Scenario 2: Index-Based Modelling

For this scenario, MODIS-derived indices NDVI, NDBI,
NDMI, and NDWI, along with land cover classification
information, were extracted from the MODIS products for
the most recent cloud-free day. On the cloudy day, the
spatial neighborhood of the cloud-covered region was
defined, and a RF regression model was developed using the
indices on the cloud-free day as predictors and ground
temperatures as the response variable. Since the index
values were already calculated for the cloud-covered
region, this model was employed to reconstruct the under-
cloud temperatures on the cloudy day.

4.6. Hybrid Model Integration Using GA

To improve the accuracy of under-cloud LST
reconstruction, the outputs of Scenario 1 (interpolation-
based) and Scenario 2 (index-based) were combined using
a GA. The goal was to determine an optimal set of weights
(w; and w; ) assigned to each scenario’s LST output in a
weighted linear combination, such that:

LSTcombinea = Wy * LSTsy + wy * LSTs,, (2)
subjectto w; +w, =1

The optimization objective was to minimize the RMSE
between the combined LST and ground-truth LST values
within the virtual cloud mask area. The RMSE served as the
fitness function for the GA. The algorithm iteratively evolved
candidate weight pairs over 100 generations using standard
crossover and mutation operations to find the weight
configuration that minimized error.

This integration enabled the method to benefit from the local
accuracy of interpolation (Scenario 1) and the
generalization capability of spectral indices across
heterogeneous landscapes (Scenario 2). Table 5 presents the
final weights derived from the GA, while Table 6
demonstrates the improved performance of the integrated
approach.

4.7. Model Evaluation

The performance of the proposed methodology was
evaluated using standard statistical metrics, including Root
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Mean Square Error (RMSE), correlation coefficient (R), and
the coefficient of determination (R2). These metrics were
used to compare the reconstructed under-cloud
temperatures with the LST map created from the initial
model using ground station data and MODIS BT values. By
using RMSE, R, and R? the evaluation provided a
comprehensive understanding of the model's effectiveness in
estimating accurate under-cloud temperatures.

4.8. Optimization of Scenario Weights Using GA

To optimally combine the outputs from Scenario 1 and
Scenario 2, a GA was employed. The objective was to
determine the best weighting scheme for the two LST
reconstruction methods, such that the Root Mean Square
Error (RMSE) between the combined image and actual
ground-truth LST is minimized. The GA was implemented
with the settings listed in Table 1.

Table 1. Hyperparameters of the GA

generated. The resulting LST map is shown in Figure 7,
which provides a continuous prediction of the near-surface
temperature across Iran. The model's performance was
assessed using RMSE, R, and R2 criteria. The evaluation
results are presented in Table 2.

Table 2. Model Evaluation Metrics for LST Prediction

RMSE(C®) R R?
BT31 4.69 0.88 0.78
BT32 2.75 0.96 0.92
BT31&BT32 2.39 0.97 0.93

Parameter Value Description
L Number of solutions in
Population size 100 each generation
Number of generations 100 Number of evolutionary
cycles
Minimum allowed
Lower bounds (Ib) 0.0] weights for each scenario
Maximum allowed
Upper bounds (ub) (1.1 weights for each scenario
Number of variables 2 Two weights (Sqenarlo 1
and Scenario 2)
Based on difference
Fitness function RMSE between predicted and
actual LST
. Default (2- Combines weights from
Crossover function point) parent solutions
Mutation rate Automatic default adaptive mutation
Random seed 6 To ensure reproducibility

The output map of the LST for the entire country of Iran is
presented in Figure 7.
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5.Result and Discussion

This section analyzes the temperature reconstruction
results for the under-cloud region in two scenarios. Table 1
summarizes the evaluation results for each scenario and the
combined method using various validation criteria.

5.1. RF Model for LST Prediction

In the first step, a RF model was developed using data
from meteorological ground stations and the brightness
temperatures of MODIS bands 31 and 32. Once the model
was built, the LST for the entire country of Iran was

- — s 1
-

Low:4.54
T T T

Figure 7. Predicted LST map for Iran
5.2. Cloud Coverage Detection and Creation of Virtual Cloud

Mask

Since it was not possible to validate the model using
cloud-covered areas, a virtual cloud mask was created for a
sunny day to evaluate the results of the proposed method.
The selected area for creating the virtual cloud is the city of
Varamin. The black and white cloud mask created is shown
in Figure 8, where cloud-covered cells are shown in white
and clear sky pixels are shown in black.
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Figure 8. Binary cloud mask used for evaluation
purposes, created using the administrative boundary of
Varamin city. White areas represent simulated cloud-
covered pixels, while black areas indicate clear-sky
pixels. This mask was applied to simulate missing LST
data in a controlled environment.
Virtual Cloud Mask and Evaluation Strategy:

Since accurate ground truth data are not typically
available under actual cloud-covered conditions, a virtual
cloud mask was generated to enable quantitative model
validation. For this purpose, the administrative boundary of
Varamin city was used as the masked region. All pixels
within this boundary were labelled as "cloud-covered"”, and
the surrounding pixels were treated as clear-sky reference
data.

Although this mask does not replicate the spatial and
spectral complexity of natural cloud formations, it provides
a controlled and consistent framework for evaluating the
accuracy of LST reconstruction.

This approach allowed us to objectively compare the
reconstructed LST values against known true values within
the masked region. While the mask does not mimic the
physical behaviour of actual cloud cover, it allows for
consistent and reproducible evaluation of model
performance in the presence of artificially induced data
gaps. Therefore, the conclusions drawn from this validation
setup should be interpreted as indicative of the model’s
potential rather than a definitive assessment under real
cloud dynamics.

5.3. Scenario 1: IDW Interpolation and RF Adjustment

IN Scenario 1, a neighborhood window was defined
around the cloud-covered region to support spatial
interpolation from adjacent cloud-free pixels. The defined
one-pixel-wide neighborhood is shown in Figure 9. To
optimize performance, two sensitivity analyses were
conducted. First, various neighborhood window sizes
(ranging from 1 to 11 pixels) were tested to evaluate their
effect on interpolation accuracy. Second, the number of
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decision trees in the RF model was varied to identify the
optimal setting for regression accuracy. As illustrated in
Figure 10a, the minimum RMSE was achieved using 9 trees
in the RF model. Figure 10b shows that the lowest RMSE
occurred when using a one-pixel-wide neighborhood,
confirming its suitability for fine-scale spatial estimation.
These parameter settings were therefore adopted for the
final implementation of Scenario 1.

Figure 9. A binary mask illustrating the defined
neighborhood (one-pixel-wide strip around the cloudy
area) for Scenario 1, applied in the IDW interpolation
process for cloud-covered pixels

Effact of Number of Trees on Prediction Accuracy

RMSE

0 10 2 3 4 S0 6 0 8 S 100

Number of Trees

Figure 10a. RMSE values for different numbers of
trees in the RF model for Scenario 1. The minimum
RMSE was achieved with 9 trees.

26

2 7

Figure 10b. Relationship between neighborhood
window size and interpolation accuracy (RMSE) in
Scenario 1. The one-pixel window yielded the

highest accuracy.
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The sensitivity analyses demonstrate that the
interpolation accuracy improves when optimal RF
configuration and spatial context are selected. A one-pixel
neighborhood provided the highest local relevance for IDW,
while a 9-tree RF effectively modeled the relationship
between interpolated and actual values.

The accuracy of the initial IDW interpolation and the
refined values from the RF model was compared using
standard evaluation metrics (RMSE, R, and R2). The results,
summarized in Table 3, confirm that the improved IDW
method significantly enhanced estimation accuracy,
reducing RMSE by approximately 0.8°C.

Table 3. Comparison of initial and improved IDW

interpolation accuracy using RMSE, R, and R2 metrics

RMSE (C°) R R?
IDW 2.33 0.72 0.52
Improved
IDW 1.53 0.82 0.67

5.4. Scenario 2: Vegetation and Land Cover-Based

Reconstruction

Index Calculation: For Scenario 2, various indices—
including NDVI, NDBI, NDMI, NDWI, and a land cover
classification map—were obtained from MODIS products
for the last cloud-free day preceding the study date. These
indices were selected due to their known relevance to
surface thermal behavior and their ability to capture spatial
variations in vegetation, surface moisture, built-up areas,
water bodies, and land use types. Specifically, NDVI and
NDMI reflect vegetation health and moisture content, NDBI
captures built-up surfaces, NDWI identifies water-related
features, and land cover categorizes surface types. These
features were used as predictors in the Random Forest P o
model to estimate land surface temperatures in cloud-
covered regions. The calculated indices are presented in
Figure 11, which illustrates their spatial distribution across
Tehran Province. These spatial distributions illustrate the
variability in land surface characteristics across the study
area. As the indices shown in Figure 11 were used as
predictors in the Random Forest model for Scenario 2, their
spatial heterogeneity directly contributed to improving the
accuracy of under-cloud LST reconstruction. The
effectiveness of using such indices in LST modeling has also
been confirmed in previous studies (Xiao et al., 2021; Yang
etal., 2017).
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NDWI
Figurell.Spatial distribution of the selected indices and
land cover over the study area, derived from MODIS
data for the most recent cloud-free day prior to the study
date

Neighborhood Window Selection: Following the
extraction of spectral indices (NDVI, NDBI, NDMI, NDSI)
and land cover information for the last cloud-free day (as
illustrated in Figure 11), these variables were used as
predictors to estimate LST over cloud-covered areas. To
optimize model performance, two sensitivity analyses were
conducted:

(1) evaluating the effect of the number of decision trees in
the RF model, and

(2) determining the optimal neighborhood window size to
define the spatial training context.

As shown in Figure 13a, the minimum RMSE was
obtained with 45 trees in the RF model. Similarly, Figure
13b presents the RMSE trend with different neighborhood
sizes, where the optimal performance was achieved using a
7-pixel-wide neighborhood window.

Figure 12. A binary mask illustrating the defined
neighborhood (7-pixel-wide strip around the cloudy
area) for Scenario 2
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RMSE vs Number of Trees in Random Forest

RMSE

0 1 20 3 40 50 60 70 8 90 100
Number of Trees

Figure 13a. Sensitivity of RMSE to the number of trees
in the RF model for Scenario 2. A minimum RMSE was
observed at 45 trees.

2 3 4 5 6 7 8 8 10 10
Neighborhood window size

Figure 13b. RMSE as a function of neighborhood
window size in Scenario 2. The 7-pixel window provided
optimal accuracy.

Accuracy of the RF-Based Method: The accuracy of LST
prediction using the RF regression model for Scenario 2 is
showed in Table 4. The results show that the RF model
effectively reconstructed the LST for cloud-covered regions
using the available vegetation and land cover indices.

Table 4. Accuracy metrics (RMSE, R, R?) of the RF model
in Scenario 2 for under-cloud LST reconstruction using
spectral indicess

RMSE(C®) R R?

Index Based 1.48 0.78 0.61

5.5. Scenario Combination Using GA

The final step of this study involved combining the outputs
of the two scenarios using a GA. This algorithm determined
the optimal weights for each scenario based on the RMSE
cost function of the LST map. The optimization process of
the GA, including the best and mean values, is illustrated in
Figure 14. The final LST reconstruction map for the cloud-
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covered area is shown alongside the actual LST map in
Figure 15.

Best: 1.8369 Mean: 1.83706

Fitness value

0 10 2(1 m -Iﬂ ’)ﬂ EO 7(1 80 f{l 100

Generation
Figure 14. Best and mean values of the GA's optimization
process for determining

the weights of the two scenarios.
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(b)
Figure 15. Comparison of (a) the actual LST map obtained from
MODIS observations on a cloud-free day, and (b) the predicted LST
map generated using the proposed hybrid approach. The prediction was
obtained by optimally combining Scenario 1 (interpolation-based) and
Scenario 2 (index-based) outputs using a GA. Both maps are displayed
in degrees Celsius, with color bars indicating LST values. The
reconstructed areas correspond to the simulated cloud-covered region

defined in the virtual mask.

Weighting and Final Results: The weights assigned to
each scenario are shown in Table 5. Table 6 compares the
accuracy of each individual scenario (1 and 2) with the
combined approach using the GA. The results reveal that
combining the two scenarios reduced the RMSE by about
0.8°C compared to using each scenario separately,
highlighting the improved accuracy of the LST
reconstruction when both methods are combined.

Table 5. The weights derived from the GA method for
Scenarios 1 and 2

Scenario | Scenario 11

0.23 0.77

Table 6. Comparison of the accuracy of Scenarios 1 and
2 and their combination

RMSE(C®) R R?

Improved IDW 1.54 0.82 0.67
Index Based 1.48 0.78 0.60

IﬁtAe:::;eodn 0.79 0.94 0.88

6. Conclusion and Discussion

Applications that analyse satellite images of indices such
as LST depend fundamentally on the seasons, i.e., they are
limited to carrying out investigations in specific periods due
to the presence of cloud cover blocking substantial
information that can cause inconsistencies in the analysis.

The aim of this study was to introduce a novel method for
reconstructing under-cloud surface temperature using
ground station data and combining two different scenarios.
for this purpose, in the first scenario, an improved IDW
method was used to reconstruct the under-cloud LST.
According to what was shown in table 3, the RMSE value of
this method was 1.53°C, which showed an improvement of
0.8°C compared to the IDW method. In the second scenario,
the index-based method and RF algorithm were used for
under-cloud LST reconstruction.

According to Table 4, the RMSE value in this method was
1.48°C. In both scenarios the last cloud - free image and
neighborhood pixels on a cloudy day were used for
reconstruction.

To optimize performance, in each of the two scenarios,

7
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sensitivity analysis was tested for different window sizes to
evaluate their impact on interpolation accuracy (Figures 9
and 12), and the best neighborhood window size were
selected. For weighted combination of the results of two
scenarios, GA algorithm was used.

The results demonstrated that the use of a GA to combine

the two scenarios was effective in improving under-cloud
surface temperature reconstruction. By combining the two
scenarios, the RMSE of the final LST reconstruction map
was reduced by 0.8°C compared to each scenario
individually, with the final RMSE of the reconstructed LST
map being 0.78°C. Another advantage of the presented
method is the conversion of LST obtained from the satellite
to near ground LST, for which data from ground stations
and the RF method were used, and the results of its
evaluation are shown in Table 2.
The comparison of methods revealed that the RF approach,
utilizing features such as NDVI and land cover maps, is a
powerful tool for reconstructing LST in cloud-covered
areas. Furthermore, applying machine learning methods
like RF significantly outperformed traditional interpolation
techniques. The method presented in this study can be
applied to future research in regions experiencing cloud
cover challenges.

Limitations and Future Work

As a limitation, comparing the proposed method with
deep learning methods was not possible due to the
unavailability of sufficient training data and relevant codes.
Another limitation of this study is that the performance
evaluation was primarily conducted in a relatively flat
region (Varamin). As topographic complexity can influence
both the accuracy of interpolation techniques and the
behaviour of spectral indices used in LST modelling, further
validation is necessary in mountainous and topographically
diverse regions. Future work should include case studies
from such environments to assess the generalizability and
robustness of the proposed hybrid approach under varying
terrain conditions.

The next limitation lies in the method’s reliance on
ground station data for calibration and evaluation. In
regions where such data are sparse or unavailable, the
effectiveness of the model may be reduced. In addition, when
cloud cover is very dense or widespread, some remote
sensing indices may not be available for a significant
portion of the image, leading to decreased reconstruction
accuracy.

To address these issues, future studies should explore
strategies that reduce dependence on in-situ observations,
such as integrating multi-source satellite data (e.g.,
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combining MODIS with Landsat or Sentinel imagery), or
developing generalized models that can be applied across
various land cover and climatic zones. These enhancements
would help improve the flexibility and applicability of the
method in more challenging environmental conditions.
Furthermore, to enhance the proposed approach, future
work could investigate refined strategies for selecting
neighborhood window sizes based on local spatial
characteristics. The inclusion of additional predictive
features, such as surface albedo or land surface emissivity,
may also improve model performance. Applying this method
in regions with a denser network of ground meteorological
stations could facilitate more detailed validation and
potentially increase the accuracy of under-cloud LST
reconstruction.

Competing Interests: The authors declare no competing
interests.
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