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Urban sprawl, characterized by low-density, uncoordinated, and outward urban expansion,
presents critical challenges to sustainable development, particularly in rapidly growing
metropolitan regions such as Tehran. This study aims to employ an integrated framework
combining remote sensing, spatial urban sprawl indices, and advanced machine learning
techniques to analyse and project land cover changes between 2011 and 2026.

Initial land cover maps for the years 2011, 2016, and 2021 were generated using the Random
Forest (RF) algorithm applied to Landsat 7 and 8 imagery, achieving overall classification
accuracies of 92.53%, 93.27%, and 93.88%, respectively. Subsequently, a comprehensive set
of urban sprawl indices—derived from census data, transportation networks, and land use
parcel information—was utilized alongside land cover transition maps to train Multi-Layer
Perceptron (MLP), Decision Forest (DF), and Support Vector Machine (SVM) models within
a Markov chain framework. Dimensionality reduction techniques, including Principal
Component Analysis (PCA) and Independent Component Analysis (ICA), were applied to
enhance model efficiency.

Among the evaluated models, the MLP trained with the complete feature set demonstrated
superior performance, attaining an F1-score of 83.95%. The projections suggest a 6%
increase in built-up areas by 2026, predominantly at the expense of barren lands and green
spaces.

The results underscore the potential of integrating geospatial technologies with machine
learning methodologies to support data-driven urban planning and the formulation of
sustainable land management policies in rapidly urbanizing contexts.
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1. Introduction

Urban sprawl emerged as a prominent phenomenon in the
mid-1960s, driven by rapid population growth and
industrialization.  Ewing’s  widely  cited  definition
characterizes urban sprawl as a pattern of spatial
development predominantly occurring in open spaces, rural
areas, and the peripheries of large cities (Ewing, 1997). This
form of growth is propelled by factors such as demographic
expansion, economic development, increased automobile
dependency, infrastructure investment, and socio-political
dynamics, culminating in the extensive outward expansion
of urban areas (Banai & DePriest, 2014; Yasin et al., 2021).

The unregulated nature of this growth, particularly in
developing nations, presents multifaceted environmental,
social, and economic challenges (Rana & Sarkar, 2021).
Low-density, dispersed urban development contributes to
the loss of agricultural land, ecosystem fragmentation,
elevated levels of air and water pollution, and heightened
susceptibility to climate change (Das et al., 2023). Such
expansion induces significant land use and land cover
(LULC) transformations, resulting in the conversion of
natural landscapes into impervious built environments.
These changes exacerbate surface temperature increases,
intensify urban heat island effects, and degrade overall
environmental quality (Moniruzzam et al., 2018).

These challenges become particularly pronounced in
regions where urbanization outpaces the development of
infrastructure and public services, especially in developing
countries (Barman et al., 2024). Empirical studies
conducted across a range of geographic contexts
underscore the adverse impacts of unchecked urban
expansion and reinforce the need for integrated planning
approaches (Rimal et al., 2018). Sustainable urban
management strategies are imperative and should
encompass principles of smart growth, including support for
infill development, diversification of transportation options,
and inclusive housing policies. Furthermore, regional
planning and community engagement are essential in
shaping balanced urban development and mitigating
environmental degradation (Blair & Wellman, 2017; Duany
et al., 2000).

Nowadays, advancements in remote sensing and
Geographic Information Systems (GIS) have facilitated
comprehensive monitoring of urban expansion processes,
offering high-resolution, spatiotemporal data to inform
decision-making (Barman et al., 2024; Duany et al., 2000;
Yin et al., 2011). Analytical techniques such as Shannon’s
entropy and the CA-Markov modelling framework have
proven effective in quantifying the intensity and spatial
pattern of urban sprawl (Baga et al., 2021; Barman et al.,
2024). The integration of satellite imagery, demographic
datasets, and machine learning algorithms has further
enhanced the precision and interpretability of sprawl
analyses, enabling the identification of at-risk areas and the
development of targeted policy interventions (Gomez et al.,
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2019; Kulkarni & Vijaya, 2022). Numerous studies have
utilized these tools and methodologies to examine urban
expansion dynamics across diverse geographical areas.

(Barman et al., 2024) conducted a study focusing on the
Jalpaiguri region in India, utilizing Landsat satellite
imagery, urban metrics, and Shannon's entropy analysis to
document the substantial expansion of built-up areas over a
span of two decades. In a separate study, (Shi et al., 2023)
examined land use, land use efficiency, and population
density to evaluate the urban sprawl trend in Shanghai,
China, from 1990 to 2020. Their findings indicated that
urban sprawl peaks at a distance of 20 to 30 kilometers from
the city center, with housing provision methods significantly
influencing its extent and intensity.

(Dhanaraj & Angadi, 2022) employed Landsat satellite
imagery to analyze the urban expansion of Mangaluru in
India, revealing a growth pattern aligned with
transportation networks, as indicated by calculated
Shannon entropy values. (Rana & Sarkar, 2021)
investigated urban growth in Pabna, Bangladesh, utilizing
Landsat images and the Maximum Likelihood algorithm.
Their study included future development projections using
the CA-Markov model and fuzzy set theory, emphasizing the
role of satellite imagery and predictive modeling in
comprehending urban expansion dynamics.

(Biney & Boakye, 2021) applied the Shannon entropy
method to study urban sprawl dynamics in the Sekondi-
Takoradi region of Ghana, highlighting accelerated
settlement growth post-oil discovery and the economic
drivers influencing urban development. (Dadashpoor &
Salarian, 2020) utilized the SLEUTH model and land
conversion models to analyze urban sprawl in the
Mazandaran province of Iran, predicting a surge in built-up
areas by 2040 and stressing the importance of effective
policy implementation to address urban expansion
consequences.

(Dinda et al., 2019) employed Shannon's entropy and
Markov chains to map and forecast urban growth in
Midnapore, India, emphasizing socio-economic factors' role
in unchecked city expansion. (Rimal et al., 2018) utilized the
Support Vector Machine (SVM) algorithm and the CA-
Markov model to investigate urban expansion in central
Nepal and predict future land use changes. (Moniruzzam et
al., 2018) analysed land use changes in Khulna,
Bangladesh, using Landsat 8, Landsat 7, and Landsat 5
satellite  images alongside supervised classification
algorithms, noting a significant increase in built-up areas
over two decades.

The reviewed literature highlights the essential role of
advanced geospatial technologies and modelling
approaches in analyzing and predicting urban land use
transformations. Despite the diversity in regional contexts,
a consistent finding across studies is the profound impact of
urban expansion on natural ecosystems and agricultural
lands. This convergence underscores the urgent need for
informed urban planning and policy measures to ensure
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sustainable development. Satellite imagery, GIS, and spatial
modelling techniques have proven indispensable in
generating actionable insights for managing the
complexities of urban sprawl. Given the accelerating pace
of urbanization in developing countries and its associated
economic, social, and environmental consequences, the
present study focuses on assessing urban sprawl in Tehran.
It aims to generate predictive land cover maps grounded in
established sprawl metrics, guided by a comprehensive
review of spatial indicators employed in prior research. The
study pursues the following objectives.

e Identifying effective spatial

measuring urban sprawl

indicators for

e Land Cover Change Modelling Based on Urban
Sprawl Measurement Indices

e Evaluating the efficiency and performance of

machine  learning  models  through the
implementation of dimensionality reduction
techniques

o Developing predictive land cover maps

In this context, the present study offers a novel
methodological contribution by integrating remote sensing
data with a diverse set of spatial and socioeconomic indices
of urban sprawl, employing dimensionality reduction
techniques, and implementing multiple machine learning
algorithms within a Markov chain modeling framework.
Through a comparative analysis of the predictive
performance of Multi-Layer Perceptron (MLP), Decision
Forest (DF), and SVM models using both original and
reduced feature sets, the study identifies the most effective
approach for land cover change prediction. Moreover, it
provides valuable insights into the spatial dynamics of
urban expansion in Tehran. The proposed framework aims
to support urban planning by offering a data-driven tool
capable of forecasting future land transformations and
informing more sustainable development strategies in
rapidly urbanizing regions.

The structure of this study is organized as follows. Section
2 introduces the methodological framework, detailing the
processes of land cover mapping, the selection of urban
sprawl indices, the implementation of machine learning
models, and the application of the Markov chain approach.
Section 3 provides a description of the study area and the
datasets employed. Section 4 presents the experimental
setup, results, and model evaluation. Section 5 offers a
discussion of the findings in the context of urban planning.
Finally, Section 6 concludes the study and outlines potential
directions for future research.

2. Methodology

To generate land cover prediction maps for the study
area, this research employed initial land cover maps in
conjunction with urban sprawl measurement criteria. The
methodology, outlined in Figure 1, integrated remote
sensing data, urban sprawl indices, machine learning
algorithms, and the Markov chain modelling approach to
analyse land cover changes over the specified period.

Landsat Image Acquisition (2011, 2016, :
R
\ X

]

Data Acquisition

Data Preparation and Feature
Engineering

Model Development

Prediction and Validation

B
—
&

Figure 1. Flowchart of the study process

2.1. Producing initial land cover maps

This research used Landsat 7 and Landsat 8 satellite
imagery to produce initial land cover maps of the study area.
To enhance the quality of the imagery, atmospheric
correction techniques were applied to reduce the effects of
aerosols, and cloud masking algorithms were used to
eliminate cloud-contaminated pixels. Subsequently, a series
of spectral indices were derived to support the classification
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process, including EVI/ (Tatsumi et al., 2015), NBR?
(Escuin et al., 2008), NDMI? (Herbei & Sala, 2016), NDWI*
(Kshetri, 2018), NDBI’ (Estoque & Murayama, 2015),
NDBal® (Trinh, 2020), NDVI” (Taufik et al., 2016), SAVIS
(Oon et al., 2019), GNDV/I® (Shaver et al., 2006), as well as
Wetness and Greenness components (Hislop et al., 2018).
These spectral indices were selected due to their
effectiveness in highlighting specific land surface
characteristics relevant to land cover classification. For
instance, NDVI, EVI, SAVI, and GNDVI are widely used to
assess vegetation health and density, while NDBI and
NDBal help in distinguishing built-up and barren areas.
NDMI and NDWI are sensitive to soil and vegetation
moisture, supporting the detection of water bodies and wet
soils, and NBR is particularly useful in identifying
disturbance areas such as burned land. By incorporating
this diverse set of indices, the classification process gained
robustness and improved discriminatory power across land
cover types. Combined with the spectral bands and
elevation data extracted from the Shuttle Radar Topography
Mission (SRTM), this suite of features formed the
comprehensive feature set for analysis.

Pixel-based samples representing each land cover class
were collected and partitioned into training and testing
subsets to facilitate supervised classification. The Random
Forest (RF) algorithm was then applied to classify the
imagery for each target year (Biau & Scornet, 2016;
Breiman, 2001). The RF algorithm was chosen for the initial
land cover classification owing to its demonstrated
robustness in processing noisy and high-dimensional
satellite data. Its capacity to capture complex, non-linear
relationships, combined with a low risk of overfitting, made
it particularly suitable for this task. Moreover, the ensemble
nature of RF contributed to enhanced classification
accuracy and stability across heterogeneous land cover
classes. The land cover classes examined in this study are
presented in Table 1.

Table 1. Classification of Land Cover Types in Landsat Imagery

Analysis.
Class Description Contains
Areas dominated
by ggm?ﬂ;g?de Houses, buildings,
commercial, énd infrastructure
industrial zones.
Barren Land with very Bare soil, rocks,

sparse to no sand, desert

! Enhanced Vegetation Index

2 Normalized Burn Ratio

3 Normalized Difference Moisture Index
4 Normalized Difference Water Index

3 Normalized Difference Building Index
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vegetation, often landscapes,
found in natural quarries, exposed
deserts or areas of ground with
extreme land use. minimal to no
vegetation
Bodies of water,
including both Lakes, rivers,
Water natural and reservoirs, ponds,
artificial swimming pools
waterbodies.
Areas with Forests, parks,
significant gardens,
Greenery vegetation cover, grasslands,
not cultivated for | natural vegetation
agriculture. areas
Areas used for the Fields of corn,
cultivation of wheat, rice
Cropland crops and paddies, vegetable
agricultural plots, orchards,
production. vineyards

2.2. Modelling and Predicting Land Cover Maps Based on
Machine Learning and Markov Chain

To model and predict land cover dynamics, this study
employed machine learning algorithms alongside a feature
set comprising urban sprawl metrics and quantified land
cover change maps to develop transition potential surfaces.
These surfaces served as inputs to a Markov chain model,
which estimated the probabilities of transitions between
land cover classes over time. This section presents the
methodological framework for generating predictive land
use and land cover maps using this integrated approach.

2.2.1. Feature Sets Employed for Machine Learning Model
Training

This study used two primary feature sets for training
machine learning models. The first set comprised
demographic, geographic, and geometric attributes,
selected as indices of urban sprawl to evaluate their
effectiveness in predicting land cover changes. The selection
of these indicators was informed by a comprehensive review
of existing literature and empirical findings from previous
studies. They collectively represent key dimensions of urban
sprawl, including density, spatial configuration,
accessibility, and socioeconomic conditions, and have been
shown to be effective in capturing patterns of urban growth
in various contexts.

6 Normalized Difference Bareness Index

7 Normalized Difference Vegetation Index

8 Soil Adjusted Vegetation Index

9 Green Normalized Difference Vegetation Index
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The second set included quantified transition maps of i
land cover classes, representing spatial dynamics and Net population
transformatior) patterns over time. The following sections Population Settl':mem
present a detailed analysis of each feature group. Density DN. = P, i

(Frenkel & ! RA, RA:
e urban sprawl measurement indices Asgggrg)ﬂl, residential
o o built-up

Urban sprawl indices were analysed by examining the area
underlying drivers, structural characteristics, and Fractal L::
associated consequences of this phenomenon. While initial Dimension 2xlogL, perimeter
studies primarily focused on variables such as population (Frenkel & F = loaA A area of
growth and land use changes, subsequent research adopted Ashkenazi, 9% built-up
a more comprehensive approach by incorporating a Urban 2008) region !
broader range of criteria. In 1998, Club identified four Geometry Li

- o . . Shape Index L. perimeter
principal indicators: migration to suburban areas, the ratio SH =— "1 X

. . . . (Frenkel & i A;: area
of population growth to land consumption, increased traffic Ashkenazi 2><./7zxAi of
congestion, and the reduction of open and undeveloped land 2008) settlement
(Club, 1998). i

Recent studies expanded upon these foundations, Linear
employing a variety of metrics—often supported by GIS and Development | Proximity of new
statistical techniques—to evaluate urban sprawl. These Index (LDI) | developments to -
metrics  encompassed  demographic  trends, land _ (Jiang et al., highways
development patterns, transportation accessibility, resource ~ Segmentation _ 200_7)
consumption, and urban spatial structure, including zoning |3D'500|n“nuouts Distance between
and service distribution. Commonly utilized indices include In(ie(;/;(?l?:;znet new and existing -
population growth rate, extent of spatial expansion, al., 2007) built-up areas
population and residential density, employment patterns, Immigrant ratio
and accessibility indicators. The specific indices adopted in Immigration i it

. ; > indicating urban
this study are summarized in Table 2. Rate (Zhang growth and -

et al., 2022) di :
iversity
Table 2. Summary of Features Used for Model Training ) Labour Force ]
— Index Calculation Parameter ~ Socialand | pppicination Proportion of
e Method Definition ~ Economic | ‘pove (7hang employed -
Ii:(evation Digite; IZEIevation etal., 2022) individuals
umar, Model (30 m - Housing ]
2017) resolution) Value (Hatab Mzrnk:: Fs)irslce i
Topography Slo_pg derived from etal., 2019) Y
Slope (Herold | Digital Elevation a- area of
et al., 2003) Model (30 m : land use
resolution) - Land Use Mix typejin
pi: Composition | (Frenkel & LU _ % settlement
population P Ashkenazi, it i A total
in 2008) ! area of
_ settlement settlement
Vertical i i
Density VD. = P, n: average
1 I
(J'azngo%a"' NxP, | household e Quantification of land cover changes
Pa: through the ELT Method
Density number of ] )
building This study employed the Evidence-Based Land
parcels Transformation (ELT) method, which is grounded in
pi: Bayesian statistical theory, to model and quantify changes
Gross population ijn land cover between two temporal land cover maps
Population DG = P, It (Royall, 2017). The procedure involves the following steps.
J_Den3|tty| T UA settlement 1. Categorical Change Detection: A comparative
( |a2ngoe;)a " ' UA- Ibuilt- analysis of the two land cover maps was
up;'area conducted to identify and map transitions

between different land cover classes.
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2. Boolean Reclassification: The resulting change
map was reclassified into binary form, where
each pixel is designated as either changed or
unchanged.

3. Application of ELT: These binary maps were
then used as evidence layers in the ELT
framework to estimate the probability of change,
thereby  converting  qualitative  spatial
observations into quantitative metrics.

2.2.2. Dimension reduction

Dimensionality reduction plays a vital role in facilitating
the analysis of high-dimensional data, particularly as
datasets increase in size and complexity. This process is
typically approached through two main strategies: feature
selection and feature extraction (Ma & Zhu, 2013).

Feature extraction is based on the assumption that the
response variable Y is associated with several linear
combinations of the predictor variables x. The objective is
to identify these combinations and project the original
feature space into a lower-dimensional subspace, as
represented by Equation (1).

pr(v <yiIx)=pr(Yy <ylg'x) 1)

In this equation, g denotes a p>d matrix that transforms
the original p-dimensional feature space into a d-
dimensional subspace (d<p), retaining the essential
information relevant to Y. The minimal such subspace,
known as the central subspace, is identified through the
estimation of the intrinsic dimension using Maximum
Likelihood Estimation (MLE) (Karbauskait'e & Dzemyda,
2013).

In this study, dimensionality reduction techniques are
employed to optimize the urban sprawl indicators, thereby
enhancing computational efficiency and enabling more
effective training of machine learning models.

e Principal Component Analysis

Principal Component Analysis (PCA) is a statistical
technique used to reduce the dimensionality of high-
dimensional data while preserving as much variance as
possible. It transforms the original correlated variables into
a new set of uncorrelated variables, known as principal
components, which are linear combinations of the original
features.

Given a dataset with p-dimensional vectors, PCA projects
the data into a d-dimensional subspace as defined in
Equation (2) (Nabi & Zhou, 2024).

X =W (y —u) @
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where x denotes the transformed data, y is the original
feature vector, u is the mean vector, and W is a pxd matrix
consisting of the eigenvectors corresponding to the largest
eigenvalues of the sample covariance matrix S, expressed as
Equation (3) (Nabi & Zhou, 2024).

S =

13 T
W (yi_,u)(Yi_,u) ®)

i=1

These eigenvectors satisfy Sv=iv, where 1 are the
eigenvalues. In the reduced space, the components are
uncorrelated, and the covariance matrix becomes diagonal,

with the eigenvalues indicating the variance explained by
each principal component (Nabi & Zhou, 2024).

e Independent Component Analysis

Independent  Component Analysis (ICA) is a
computational approach designed to decompose a
multivariate signal into a set of statistically independent
components. It is widely applied in areas such as signal
processing and feature extraction due to its effectiveness in
uncovering latent structures within complex datasets
(Pokorny et al., 2023). The transformation is represented by
Equation (4), where the observed signals X are mapped to
independent components Y through the de-mixing matrix W
(Zhang & Chan, 2005).

Y =wWX (4)

In contrast to techniques that only ensure uncorrelated
outputs, ICA emphasizes statistical independence. The
estimation of W is based on maximizing the non-Gaussianity
of the components, as informed by the central limit theorem,
which posits that the sum of independent non-Gaussian
variables tends to approximate a Gaussian distribution. ICA
therefore seeks to identify components that exhibit maximal
non-Gaussianity, typically using negentropy as a
quantitative measure of independence (Cao et al., 2003).

2.2.3. Modelling Potential Transitions between Land Cover
Classes

To assess the dynamics of urban expansion in the study
area, potential transitions between land cover classes were
modelled using three machine learning algorithms: MLP
(Chan et al., 2001; Mather & Tso, 2016), DF (Biau &
Scornet, 2016), and SVM (Awad & Khanna, 2015). These
algorithms were selected based on their proven effectiveness
in land cover classification and change modeling tasks. The
MLP is capable of capturing complex nonlinear
relationships within spatial data, the DF model provides
robustness and interpretability, and the SVM performs well
in high-dimensional spaces, particularly when training data
are limited. Their application enables a comparative
evaluation of model performance in capturing the spatial
and temporal patterns of urban expansion. The input feature
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set includes quantified land cover change maps and urban
sprawl measurement indices. Furthermore, to enhance
model efficiency and performance, additional features were
derived by applying PCA and ICA to the initial feature set.
These transformed features contributed to improved
classification accuracy by reducing dimensionality while
preserving essential information.

Specifically, the machine learning models were trained
using spatial indices of urban sprawl and quantified
transition maps as input variables. The output consisted of
pixel-wise probability surfaces that represent the likelihood
of transition to each land cover class. These probability
surfaces form the basis for generating predictive land cover
maps in the subsequent stages of the analysis.

2.2.4. Markov Chain Modelling of Land Cover Transitions

Markov chains offer a robust framework for modelling
stochastic processes in which the future state of a system
depends solely on its current state, a property known as the
Markov assumption (Tolver, 2016). This characteristic
makes them particularly suitable for analysing land cover
change, as it simplifies the estimation of transition
probabilities between land cover classes. The possible states
of the system are defined as Equation (5) (Tolver, 2016).

S ={S,,S,.,....8,} 6)

The transition probabilities between states are
represented in a matrix form as Equation (6) (Liping et al.,
2018).

Pu - P
Poi 0 Pm

Where pijdenotes the probability of transition from state
Si to Sj, and n is the number of land cover classes. The land
cover state at time t+1 is then computed by multiplying the
transition matrix with the state vector at time t as Equation
(7) (Liping et al., 2018).

S, =P, xS, @)

t+1

Transition matrices are derived from successive land
cover maps and are normalized to annual probabilities to
ensure temporal consistency and comparability across
different time intervals (Liping et al., 2018).

In this framework, the input to the Markov chain model
comprises two successive land cover maps, from which the
algorithm calculates a transition probability matrix. The
output is a projected distribution of land cover classes for a
future year, assuming that future changes depend solely on
the current state configuration.

2.2.5. Change allocation

The final predictive map was constructed by integrating
the potential transition maps with the land cover class
transition probability matrices, which are derived through
the application of the Markov chain model. The allocation
of land cover classes to each pixel was carried out using two
distinct approaches: Hard prediction and Soft prediction.

The hard prediction approach assigns each pixel to the
land cover class with the highest predicted probability,
generating a categorical map that represents the most likely
land cover outcome for each location. This method employs
the Multi-Objective Land Allocation (MOLA) algorithm,
wherein each land cover transition is conceptualized as a
spatial shift from a host class (experiencing area loss) to a
claimant class (gaining area), as defined by the transition
matrix. Land is subsequently reallocated to satisfy projected
demands in accordance with these transitions.

In contrast, the soft prediction method yields a continuous
probability surface, where each pixel is associated with a
full set of likelihood values corresponding to all possible
land cover classes. This probabilistic representation
captures the inherent uncertainty and complexity of urban
transformation by accommodating multiple potential
transition pathways. Pixels influenced by multiple driving
factors may demonstrate elevated cumulative probabilities
of change, rendering this method particularly valuable in
exploratory modeling and policy-sensitive planning
scenarios.

2.2.6. Validation

The validation of the methods utilized in this study was
conducted in two phases. The first phase involved assessing
the ability of the RF algorithm to generate accurate land
cover maps. This is achieved by employing various
performance metrics and evaluating the significance of each
feature used in the model. The second phase involved a
comparison of the maps generated for 2021 using the Hard
Prediction process and different machine learning methods
with the reference map for the same year. The comparison
was carried out using multiple metrics to evaluate the
effectiveness of the feature set and the performance of the
different algorithms. The validation metrics applied in this
study include Precision (Borenstein, 2001), Accuracy
(Sokolova et al., 2006), F1-score (Sokolova et al., 2006),
and Mean Squared Error (MSE) (Marmolin, 1986).

3. Study area and Dataset
3.1. Study area

Tehran, the capital of Iran and its primary political,
economic, and cultural center, is located in Tehran Province
and covers a geographic extent approximately between
35.5°N to 35.9°N latitude and 51.2°E to 51.6°E longitude.
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In recent decades, the city has experienced considerable
demographic changes, consistent with national trends in
urbanization and economic growth. According to data from
the Tehran Municipality, the population of Tehran increased
from 8,154,051 in 2011 to 8,693,706 in 2016, with the
annual growth rate rising from 0.9% to 1.3%. This upward
trend is attributed to both natural population growth and
significant in-migration, as 996,404 individuals moved to
the city during this five-year period. These dynamics render
Tehran particularly susceptible to the phenomenon of urban
sprawl. The spatial extent of the study area is presented in

Figure 2.

I
Z
b
=

@ (b)

Figure 2. Study area location: (a)Tehran within Iran
and (b)its administrative boundaries

3.2. Dataset

This study utilizes a comprehensive dataset to examine
rapid urbanization, demographic shifts, and urban sprawl
in Tehran, including satellite imagery, census data, land-use
parcels, and road maps. All spatial datasets and land cover
maps utilized in this study were projected using the
Universal Transverse Mercator (UTM) coordinate system,
Zone 39N, referenced to the WGS84 datum. This coordinate
reference system, which employs the Transverse Mercator
projection, was chosen to maintain spatial consistency and
to ensure accurate area calculations throughout the study
area.

3.2.1. Satellite Imagery

Landsat 8 imagery from 2016 and Landsat 7 imagery from
2011, both with a spatial resolution of 30 meters across
multispectral bands, are employed. This resolution enables
detailed analysis of urban structures, green cover,
croplands, barren lands, and water bodies. The satellites
provide images every 16 days, ensuring a consistent dataset
for monitoring temporal changes. Although Landsat 7 data
may exhibit gaps due to sensor malfunctions, the uniform
resolution between the two satellites permits effective
comparison of urban development and land-use changes in
Tehran over the five-year period.

3.2.2. Census Data

Data from the Population and Housing Censuses of
Tehran for 2011 and 2016 are utilized, structured in shape
file statistical blocks as defined by the Statistical Centre of
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Iran. These blocks, delineated by public access ways or
natural barriers, contain vital information on geographic,
household, economic, population, and housing statistics.

3.2.3. Land Use Data

The land use map of Tehran, provided by the municipality
in shape file format, delineates the boundaries and land-use
types for each registered plot across the city. These parcels
are fundamental for defining criteria to assess urban
sprawl. To ensure compatibility with other datasets, this
map is utilized at a spatial resolution of 30 meters.

3.2.4. Road Maps

Road maps of Tehran, extracted from Open Street Map
(OSM), are used to analyse traffic patterns, access to
infrastructure, and connectivity between urban areas.

4. Experiments
4.1. Land Cover Classification Using Random Forest

In this study, land cover changes were analysed using RF
classification applied to Landsat 7 and Landsat 8 imagery
for the years 2011 and 2016, with the 2021 map serving as
a reference. The RF model was configured with 300 decision
trees to optimize the trade-off between computational
efficiency and classification accuracy. At each node, the
number of features considered for splitting was set to the
square root of the total number of input features to reduce
bias. Furthermore, the Bootstrapping technique was
employed, whereby 50% of the training data was randomly
sampled for each tree to ensure diversity and improve
generalizability.

The model’s performance was evaluated based on overall
accuracy, the Kappa coefficient, and the out-of-bag (OOB)
error. To provide a clearer understanding of the
classification context, the number of training and test
samples utilized for each year is also reported. These results
are presented in Table 3.

Table 3. Performance metrics of the Random Forest classification
for each image.

Train Test
Imagery | Sample | Sample | OOB | Accuracy | kappa
Size Size
Landsat7
(2011) 32586 8424 0.027 | 92.53% 0.897
Landsat8 .
(2016) 35019 8957 0.033 | 93.27% 0.905
Landsat8
(2021) 32602 7690 0.028 | 93.88% 0.917

The F1-scores for each land cover class are presented in
Table 4, where the model shows excellent classification
accuracy for built-up areas and water bodies. However, the
F1-scores for barren lands, green spaces, and croplands
demonstrate some variability, which could be attributed to
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the challenges posed by mixed pixels or spectral similarities
between these classes.

Table 4. F1-scores for each land cover class in the Random Forest
classification.

F1-Score
Imagery _
Cropland | Greenery | Water | Barren lﬂpt -
Landsat
7 04.44% | 9103% | 9190 | o140 | B30
(2011) d "
Landsat
8 89.64% | 91.41% 9%)81 94.39% 91)22
(2016) 0) b
Landsat
8 9051% | 94079 | %320 | aarane | BT
(2021)

The feature importance values for the years 2011, 2016,
and 2021 provide valuable insights into the landscape
changes and sensor-specific differences. Elevation was
identified as a significant feature in 2011 and maintained its
importance in subsequent years. In the Landsat 8 images
from 2016 and 2021, indices such as the NDBal and
Greenness gained prominence, reflecting a greater focus on
urban expansion and vegetation health. Traditional spectral
bands, including Blue, Green, Red, Near-Infrared (NIR),
Short-Wave Infrared 1 (SWIR1), and Short-Wave Infrared 2
(SWIR2), consistently remained essential for land cover
analysis. Figure 3 illustrates the normalized importance
values of the features used in each of the satellite images.
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Figure 3. Feature Importance Scores across Years

Land cover maps for 2011 and 2016, depicted in Figure
4, highlight the Tehran area and its surrounding buffer zone
segmented into the five classes.
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Figure 4. Land Covers Map of Tehran for (a) 2011 and
(b) 2016

Over the five-year period, as presented in Table 5, built-
up areas exhibited a considerable expansion, and the
creation of an artificial lake in western Tehran contributed
to an increase in water bodies. In contrast, green spaces and
agricultural lands remained relatively unchanged, while
barren lands experienced a significant decline.

Table 5. Gains and losses between 2011 and 2016.

Class Losses(Hectares) | Gains(Hectares)
Built-up 3309 7170
Barren 5943 2034
Water 132 2
Green space 3936 3938
Farm land 243 323

4.2. Modelling and Predicting Land Cover Maps

4.2.1. Generation of Feature Sets for Machine Learning
Training

Urban sprawl measurement indices were employed as key
input features for training machine learning models and
generating potential land cover transition maps. These
indices were derived for 110 regions within the study area
using census data, land use parcel maps, road networks, and
baseline land cover maps. While some of the urban sprawl
indices were initially computed for 110 administrative units,
conducting the analysis strictly at this coarse resolution
would result in mixing heterogeneous land cover patterns
within each unit. To overcome this limitation, the indices
were rasterized and assigned uniformly to 30-meter pixels
within each unit, enabling pixel-wise modeling and
supporting land cover unmixing. This approach allows the
model to capture intra-unit spatial variations in land
transitions, while maintaining the original structure of the
input data. Figure 5 presents the spatial distribution of
urban sprawl indices in 2011.
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Figure 6. Urban sprawl measurement indices in 2016:
(a) Elevation, (b) Slope, (c) Net Population Density, (d)
Gross Population Density, (e) Vertical Density, (f)

' Fractal Dimension, (g) Shape Index, (h) Strip
e Al e AR et G Development, (i) Discontinuous Development, (j)
) k) 0) Migration Rate, (k) Employment Rate, (I) Built Land
S T 5 g 0 s e\ e (5 O Cover, (m) Barren Land Cover, (n) Greenery Land
Cover, (0) Farms Land Cover

120

The probabilistic maps depicting potential land cover
class transitions, in conjunction with the computed urban
: sprawl indices, constitute the principal feature set employed
©) for training the machine learning models. These maps are
illustrated in Figure 7.

(m)

Figure 5. Urban sprawl measurement indices in 2011:
(a) Elevation, (b) Slope, (c) Net Population Density, (d)
Gross Population Density, (e) Vertical Density, (f)
Fractal Dimension, (g) Shape Index, (h) Strip
Development, (i) Discontinuous Development, (j)
Migration Rate, (k) Employment Rate, (I) Built Land
Cover, (m) Barren Land Cover, (n) Greenery Land
Cover, (0) Farms Land Cover

Also, Figure 6 shows the set of urban sprawl measurement
indices of the study area in 2016.

Figure 7. Probability map for the quantization of land
cover class transitions into the categories (a) Built, (b)
Barren, (c) Green space, (d) Farms using the ELT
approach.
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To construct a concise yet representative feature set, PCA
and ICA were applied. The intrinsic dimensionality of the
original feature space was estimated using the MLE method,
which indicated that the underlying data structure could be
effectively captured by three components, as illustrated in
Figure 8. This estimation reflects the complexity and
interdependence of the initial features while preserving the
most informative variance. To ensure adequate local
representation and reduce potential bias from selecting
overly high or low values for the number of nearest
neighbours, the neighbourhood size in the MLE procedure
was restricted to a range of 6 to 10. This range was chosen
to balance local sensitivity with the stability of the
dimensionality estimation.
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Figure 8. Intrinsic dimensionality estimation using the
MLE method

Accordingly, two distinct feature sets were constructed for
training the machine learning models based on the
components extracted through dimensionality reduction
techniques. The resulting components derived from PCA
and ICA are presented in Figure 9.
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Figure 9. The feature set generated from PCA and ICA

4.2.2. Land Cover Transition Prediction via Markov Chain
Analysis

The Markov chain model is utilized to quantify the extent
of land cover transitions within the study area. By
incorporating land cover maps from 2011 and 2016, the
expected land cover changes for the year 2021 are
computed, as presented in Table 6. This table outlines the
transition probabilities of land cover classes over a five-
year period, based on the Markov chain analysis.

Table 6. Probability of Land Cover Class Transitions by 2021.

From/To Bﬂ:)"’ Barren | Water | Greenery 'I::r?c?
Built-up | 0.9453 | 0.0137 | 0 0.0409 0
Barren | 0.1357 | 0.8134 | 0.0032 | 0.0434 | 0.0043
Water 0 | 0.0059 | 0.9563 | 0.0378 0

Greenery | 0.1169 | 0.0443 | 0.0012 | 0.8332 | 0.0043

'T:;g“ 0.0160 | 0.0694 | 0 0.0385 | 0.8761

The potential transition maps, derived from these
transition probabilities, highlight the expected land cover
changes over the five-year period. These maps are created
by utilizing the Markov chain projections. In addition,
various feature sets are generated for training machine
learning models. Subsequently, the study investigates the
creation of both hard and soft prediction maps using
different machine learning methodologies.

e Land Cover mapping using the MLP model

The MLP algorithm was employed to generate potential
land cover transition maps based on different feature sets.
The model was trained over 10000 iterations, with the
learning rate dynamically adjusted to enhance convergence
and model performance. Table 7 summarizes the training
and testing results, including the root mean square (RMS)
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errors and classification accuracy for each feature
configuration.

Table 7. Training the MLP Model with Various Feature Sets.

Feature Learning Training Testing
set rate RMS RMs | Aceuracy
Initial 0.0001 0.2692 0.2772 60.92%
PCA-
Derived 0.0005 0.3578 0.3583 31.09%
ICA- 0.0003 0.3513 0.3520 39.60%
Derived ' ' ' Rl

Among the tested configurations, the initial feature set
yielded the highest accuracy and was therefore selected for
generating the final potential transition maps. The soft and
hard land cover maps for the year 2021 for the study area
are generated based on the superior model MLP, as
illustrated in Figure 10.

S1°20F 51°30'E S1°10'E S1°20'E S1°30'E

51°10T

0N

35507

0N
35°50'N

35°40N

35°40'N
35°40'N

fLand cover change likelihond

70.9353

i .
nnnnnnn

51°10E SI920E SI°30E 51°20E 51°30E

@ (b)

Figure 10. Land cover map (a) hard (b) soft for the year
2021 based on the superior MLP model.

e Land Cover mapping using the DF model

The DF algorithm was applied to various feature sets to
model land cover transitions. The best performance was
obtained using the initial dataset, with an OOB accuracy of
82.88% achieved using 150 decision trees and five variables
per node. In comparison, the PCA- and ICA-derived feature
sets yielded lower OOB accuracies of 62.71% and 63.32%,
respectively, when configured with 250 trees and two
variables per node. The soft and hard land cover maps for
the study area in 2021 were generated using the advanced
RF model, as shown in Figure 11.
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Figure 11. Land cover map (a) hard (b) soft for the year
2021 based on the superior DF model

e Land Cover mapping using the SVM model

The SVM model, employing a radial basis function (RBF)
kernel, was initially trained on the complete feature set,
resulting in an accuracy of 67.89%. Subsequently, the model
was trained on reduced feature sets derived via ICA and
PCA, each comprising three components. These reduced
datasets yielded improved accuracies of 68.89% and
70.02%, respectively. Consequently, the SVM model trained
on the ICA- Derived features is deemed superior. Soft and
hard land cover maps for the study area were generated for
the year 2021 using the optimized SVM model, as illustrated
in Figure 12.
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Figure 12. Land cover map (a) hard (b) soft for the year
2021 based on the superior SVM model

4.2.3. Validation of Results

To assess the model performance, the 2021 land cover
maps produced by the best-performing models were
compared with the reference map for the same year.
Validation was conducted using metrics including MSE,
Accuracy, Precision, F1-Score, and the Kappa coefficient.
A summary of these validation results is provided in Table
8. Among the models, the MLP model trained with the initial
feature set demonstrated the highest concordance with the
reference map. Nonetheless, the outputs from the other
models also yielded comparable results, reflecting the
general reliability of the applied approaches.

Table 8. Validation of results.

35550N

350N

.. F1- Spatial-

Model | MSE | Accuracy | Precision Score Kk
mep | 092 1 gaago | saoaw | 539 | 76.00%
DF | O%2 | ga43% | 8a01% | 23% | 76.05%
svm | 09901 gagon | s3gew | 2359 | 76.00%

4.2.4. Future Land Cover Projection
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The MLP model trained on the initial feature set
demonstrated the highest predictive accuracy against the
2021 reference map. Accordingly, this model was employed
to project the land cover map for the study area in 2026. The
resulting map is presented in Figure 13.
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Figure 13. The hard prediction map for the year 2026

5. Discussion

The comparative analysis of the predicted and reference
land cover maps for 2021 highlights the promising potential
of machine learning-based models in forecasting urban
expansion trends in Tehran. Among the various approaches
tested, the MLP model, trained with the initial feature set,
demonstrated superior performance in both accuracy and
F1-score, thereby showcasing its effectiveness in capturing
the intricate spatial dynamics of land transformation.
Although the DF and SVM models also vyielded
commendable results, the slight performance advantage of
the MLP model emphasizes the importance of leveraging
comprehensive, unreduced feature sets in specific urban
contexts.

The spatial patterns observed in the prediction maps
indicate a continuing trend of urban expansion towards the
western, north-western, and southern peripheries of Tehran.
Notably, barren lands in these peripheral areas appear to
be particularly vulnerable to conversion into built-up zones,
which may be influenced by both market-driven
development pressures and potential infrastructure-led
planning initiatives. This pattern aligns with global trends,
where urban growth often encroaches upon ecologically or
agriculturally marginal lands, driven by lower economic
costs and fewer regulatory constraints.

Projected land cover changes from 2016 to 2026
emphasize the critical need for sustainable land
management practices. The anticipated 6% increase in
built-up areas, coupled with a 10% reduction in barren land
and notable declines in green spaces (8%) and farmlands
(1%), reflects a shift towards a higher proportion of
impervious surfaces. These transformations are expected to
exacerbate several environmental challenges, including
increased urban heat island intensity, loss of biodiversity,

decreased agricultural productivity, and elevated flood risks
due to the reduced infiltration capacity of the soil.

From a methodological perspective, this study
underscores the strategic importance of dimensionality
reduction techniques, such as PCA and ICA, in enhancing
both model performance and computational efficiency.
While the highest predictive accuracy was achieved using
the full feature set, the components derived through ICA
exhibited superior performance in SVM modelling. This
finding suggests that the effectiveness of dimensionality
reduction methods may vary depending on the classification
algorithm employed and the inherent complexity of the
dataset. In large-scale applications, such techniques can
significantly reduce computational time all while
maintaining robust predictive capabilities.

The integration of satellite remote sensing, spatial indices
of urban sprawl, and advanced machine learning techniques
offers significant potential for the development of replicable,
data-driven tools for urban planning. By combining sprawl
indicators—such as density, shape metrics, accessibility
indices, and socioeconomic factors—with land cover
transition probabilities, this research enhances the
understanding of urban dynamics at a more granular level.
These tools are not only valuable for predictive purposes but
also for the formulation of proactive policies. For example,
transition probability maps can support zoning regulations,
infrastructure planning, and environmental mitigation
strategies by identifying high-risk areas prone to unplanned
development.

Nevertheless, the study is subject to certain limitations,
primarily stemming from data availability. The lack of
detailed traffic and transportation data, which play a
crucial role in shaping urban expansion, constrained the
inclusion of mobility-related indicators in the analysis.
Future research should aim to incorporate more
comprehensive datasets, such as real-time traffic flows,
public transport accessibility, land value trends, and climate
variables, in order to enhance the accuracy of predictions
and expand the policy relevance of the model's outputs.

In conclusion, this study emphasizes the pivotal role of
integrating spatial intelligence and machine learning
techniques in the monitoring and management of urban
growth. The findings underscore both the risks associated
with unregulated urban sprawl in Tehran and the potential
for implementing informed and sustainable planning
practices. As urbanization accelerates, particularly in
developing countries, the adoption of such analytical
frameworks will be crucial for achieving a balance between
development, ecological preservation, and urban resilience.

6. Conclusion

This study adopted a comprehensive methodological
framework that integrates remote sensing data, spatial
indicators of urban sprawl, dimensionality reduction
techniques, and machine learning algorithms to model and
predict land cover changes in Tehran. By leveraging
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Landsat satellite imagery, demographic datasets, and
sprawl-related metrics, the research effectively captured the
spatial-temporal dynamics of urban expansion over a ten-
year period and projected potential land cover
transformations through the year 2026.

The findings indicate that the Multi-Layer Perceptron
(MLP) model trained with the initial, unreduced feature set
yielded the highest predictive accuracy, underscoring the
importance of incorporating a comprehensive range of
demographic, topographic, and geometric variables in land
cover modelling. Although dimensionality reduction
techniques such as PCA and ICA enhanced computational
efficiency, their impact on model performance varied
depending on the algorithm, with notable improvements
observed in the SVM model.

Spatial analysis indicates that urban expansion in Tehran
is primarily concentrated in the western, north-western, and
southern peripheral zones, frequently encroaching upon
green spaces and barren lands. These patterns highlight
escalating environmental pressures associated with urban
sprawl, including landscape fragmentation, vegetation loss,
and the contraction of agricultural areas.

The predictive capability of the proposed framework
presents substantial value for urban planners, policymakers,
and environmental managers by enabling evidence-based
decision-making. It supports the identification of areas with
a high likelihood of future development and contributes to
the formulation of sustainable urban growth strategies.
However, the study recognizes limitations related to data
availability, particularly regarding transportation and
infrastructure datasets. Addressing these gaps in future
research may improve model accuracy and expand the
framework’s applicability across broader planning
contexts.

Ultimately, the integration of geospatial technologies with
machine learning offers a robust and scalable approach for
analysing and directing urban development. As urban
expansion accelerates, particularly in rapidly growing
regions, the application of such advanced analytical tools
will be essential for promoting a sustainable balance
between developmental needs and environmental
preservation.
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