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Urban sprawl, characterized by low-density, uncoordinated, and outward urban expansion, 

presents critical challenges to sustainable development, particularly in rapidly growing 

metropolitan regions such as Tehran. This study aims to employ an integrated framework 

combining remote sensing, spatial urban sprawl indices, and advanced machine learning 

techniques to analyse and project land cover changes between 2011 and 2026. 

Initial land cover maps for the years 2011, 2016, and 2021 were generated using the Random 

Forest (RF) algorithm applied to Landsat 7 and 8 imagery, achieving overall classification 

accuracies of 92.53%, 93.27%, and 93.88%, respectively. Subsequently, a comprehensive set 

of urban sprawl indices—derived from census data, transportation networks, and land use 

parcel information—was utilized alongside land cover transition maps to train Multi-Layer 

Perceptron (MLP), Decision Forest (DF), and Support Vector Machine (SVM) models within 

a Markov chain framework. Dimensionality reduction techniques, including Principal 

Component Analysis (PCA) and Independent Component Analysis (ICA), were applied to 

enhance model efficiency. 

Among the evaluated models, the MLP trained with the complete feature set demonstrated 

superior performance, attaining an F1-score of 83.95%. The projections suggest a 6% 

increase in built-up areas by 2026, predominantly at the expense of barren lands and green 

spaces. 

The results underscore the potential of integrating geospatial technologies with machine 

learning methodologies to support data-driven urban planning and the formulation of 

sustainable land management policies in rapidly urbanizing contexts. 
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1. Introduction 

    Urban sprawl emerged as a prominent phenomenon in the 

mid-1960s, driven by rapid population growth and 

industrialization. Ewing’s widely cited definition 

characterizes urban sprawl as a pattern of spatial 

development predominantly occurring in open spaces, rural 

areas, and the peripheries of large cities (Ewing, 1997). This 

form of growth is propelled by factors such as demographic 

expansion, economic development, increased automobile 

dependency, infrastructure investment, and socio-political 

dynamics, culminating in the extensive outward expansion 

of urban areas (Banai & DePriest, 2014; Yasin et al., 2021).  

The unregulated nature of this growth, particularly in 

developing nations, presents multifaceted environmental, 

social, and economic challenges (Rana & Sarkar, 2021). 

Low-density, dispersed urban development contributes to 

the loss of agricultural land, ecosystem fragmentation, 

elevated levels of air and water pollution, and heightened 

susceptibility to climate change (Das et al., 2023). Such 

expansion induces significant land use and land cover 

(LULC) transformations, resulting in the conversion of 

natural landscapes into impervious built environments. 

These changes exacerbate surface temperature increases, 

intensify urban heat island effects, and degrade overall 

environmental quality (Moniruzzam et al., 2018).  

These challenges become particularly pronounced in 

regions where urbanization outpaces the development of 

infrastructure and public services, especially in developing 

countries (Barman et al., 2024). Empirical studies 

conducted across a range of geographic contexts 

underscore the adverse impacts of unchecked urban 

expansion and reinforce the need for integrated planning 

approaches (Rimal et al., 2018). Sustainable urban 

management strategies are imperative and should 

encompass principles of smart growth, including support for 

infill development, diversification of transportation options, 

and inclusive housing policies. Furthermore, regional 

planning and community engagement are essential in 

shaping balanced urban development and mitigating 

environmental degradation (Blair & Wellman, 2017; Duany 

et al., 2000).  
Nowadays, advancements in remote sensing and 

Geographic Information Systems (GIS) have facilitated 

comprehensive monitoring of urban expansion processes, 

offering high-resolution, spatiotemporal data to inform 

decision-making (Barman et al., 2024; Duany et al., 2000; 

Yin et al., 2011). Analytical techniques such as Shannon’s 

entropy and the CA-Markov modelling framework have 

proven effective in quantifying the intensity and spatial 

pattern of urban sprawl (Baqa et al., 2021; Barman et al., 

2024). The integration of satellite imagery, demographic 

datasets, and machine learning algorithms has further 

enhanced the precision and interpretability of sprawl 

analyses, enabling the identification of at-risk areas and the 

development of targeted policy interventions (Gómez et al., 

2019; Kulkarni & Vijaya, 2022). Numerous studies have 

utilized these tools and methodologies to examine urban 

expansion dynamics across diverse geographical areas. 

(Barman et al., 2024) conducted a study focusing on the 

Jalpaiguri region in India, utilizing Landsat satellite 

imagery, urban metrics, and Shannon's entropy analysis to 

document the substantial expansion of built-up areas over a 

span of two decades. In a separate study, (Shi et al., 2023) 

examined land use, land use efficiency, and population 

density to evaluate the urban sprawl trend in Shanghai, 

China, from 1990 to 2020. Their findings indicated that 

urban sprawl peaks at a distance of 20 to 30 kilometers from 

the city center, with housing provision methods significantly 

influencing its extent and intensity. 

(Dhanaraj & Angadi, 2022) employed Landsat satellite 

imagery to analyze the urban expansion of Mangaluru in 

India, revealing a growth pattern aligned with 

transportation networks, as indicated by calculated 

Shannon entropy values. (Rana & Sarkar, 2021) 

investigated urban growth in Pabna, Bangladesh, utilizing 

Landsat images and the Maximum Likelihood algorithm. 

Their study included future development projections using 

the CA-Markov model and fuzzy set theory, emphasizing the 

role of satellite imagery and predictive modeling in 

comprehending urban expansion dynamics.  
(Biney & Boakye, 2021) applied the Shannon entropy 

method to study urban sprawl dynamics in the Sekondi-

Takoradi region of Ghana, highlighting accelerated 

settlement growth post-oil discovery and the economic 

drivers influencing urban development. (Dadashpoor & 

Salarian, 2020) utilized the SLEUTH model and land 

conversion models to analyze urban sprawl in the 

Mazandaran province of Iran, predicting a surge in built-up 

areas by 2040 and stressing the importance of effective 

policy implementation to address urban expansion 

consequences. 

(Dinda et al., 2019) employed Shannon's entropy and 

Markov chains to map and forecast urban growth in 

Midnapore, India, emphasizing socio-economic factors' role 

in unchecked city expansion. (Rimal et al., 2018) utilized the 

Support Vector Machine (SVM) algorithm and the CA-

Markov model to investigate urban expansion in central 

Nepal and predict future land use changes. (Moniruzzam et 

al., 2018) analysed land use changes in Khulna, 

Bangladesh, using Landsat 8, Landsat 7, and Landsat 5 

satellite images alongside supervised classification 

algorithms, noting a significant increase in built-up areas 

over two decades.  

The reviewed literature highlights the essential role of 

advanced geospatial technologies and modelling 

approaches in analyzing and predicting urban land use 

transformations. Despite the diversity in regional contexts, 

a consistent finding across studies is the profound impact of 

urban expansion on natural ecosystems and agricultural 

lands. This convergence underscores the urgent need for 

informed urban planning and policy measures to ensure 
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sustainable development. Satellite imagery, GIS, and spatial 

modelling techniques have proven indispensable in 

generating actionable insights for managing the 

complexities of urban sprawl. Given the accelerating pace 

of urbanization in developing countries and its associated 

economic, social, and environmental consequences, the 

present study focuses on assessing urban sprawl in Tehran. 

It aims to generate predictive land cover maps grounded in 

established sprawl metrics, guided by a comprehensive 

review of spatial indicators employed in prior research. The 

study pursues the following objectives. 

 Identifying effective spatial indicators for 

measuring urban sprawl 

 Land Cover Change Modelling Based on Urban 

Sprawl Measurement Indices 

 Evaluating the efficiency and performance of 

machine learning models through the 

implementation of dimensionality reduction 

techniques 

 Developing predictive land cover maps 

In this context, the present study offers a novel 

methodological contribution by integrating remote sensing 

data with a diverse set of spatial and socioeconomic indices 

of urban sprawl, employing dimensionality reduction 

techniques, and implementing multiple machine learning 

algorithms within a Markov chain modeling framework. 

Through a comparative analysis of the predictive 

performance of Multi-Layer Perceptron (MLP), Decision 

Forest (DF), and SVM models using both original and 

reduced feature sets, the study identifies the most effective 

approach for land cover change prediction. Moreover, it 

provides valuable insights into the spatial dynamics of 

urban expansion in Tehran. The proposed framework aims 

to support urban planning by offering a data-driven tool 

capable of forecasting future land transformations and 

informing more sustainable development strategies in 

rapidly urbanizing regions. 

The structure of this study is organized as follows. Section 

2 introduces the methodological framework, detailing the 

processes of land cover mapping, the selection of urban 

sprawl indices, the implementation of machine learning 

models, and the application of the Markov chain approach. 

Section 3 provides a description of the study area and the 

datasets employed. Section 4 presents the experimental 

setup, results, and model evaluation. Section 5 offers a 

discussion of the findings in the context of urban planning. 

Finally, Section 6 concludes the study and outlines potential 

directions for future research. 

 

2. Methodology 

To generate land cover prediction maps for the study 

area, this research employed initial land cover maps in 

conjunction with urban sprawl measurement criteria. The 

methodology, outlined in Figure 1, integrated remote 

sensing data, urban sprawl indices, machine learning 

algorithms, and the Markov chain modelling approach to 

analyse land cover changes over the specified period. 

 

 

2.1. Producing initial land cover maps 

This research used Landsat 7 and Landsat 8 satellite 

imagery to produce initial land cover maps of the study area. 

To enhance the quality of the imagery, atmospheric 

correction techniques were applied to reduce the effects of 

aerosols, and cloud masking algorithms were used to 

eliminate cloud-contaminated pixels. Subsequently, a series 

of spectral indices were derived to support the classification 

 

 
 

Figure 1. Flowchart of the study process 
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process, including EVI 1  (Tatsumi et al., 2015), NBR 2 

(Escuin et al., 2008), NDMI3 (Herbei & Sala, 2016), NDWI4 

(Kshetri, 2018), NDBI 5  (Estoque & Murayama, 2015), 

NDBaI6 (Trinh, 2020), NDVI7 (Taufik et al., 2016), SAVI8 

(Oon et al., 2019), GNDVI9 (Shaver et al., 2006), as well as 

Wetness and Greenness components (Hislop et al., 2018). 

These spectral indices were selected due to their 

effectiveness in highlighting specific land surface 

characteristics relevant to land cover classification. For 

instance, NDVI, EVI, SAVI, and GNDVI are widely used to 

assess vegetation health and density, while NDBI and 

NDBaI help in distinguishing built-up and barren areas. 

NDMI and NDWI are sensitive to soil and vegetation 

moisture, supporting the detection of water bodies and wet 

soils, and NBR is particularly useful in identifying 

disturbance areas such as burned land. By incorporating 

this diverse set of indices, the classification process gained 

robustness and improved discriminatory power across land 

cover types. Combined with the spectral bands and 

elevation data extracted from the Shuttle Radar Topography 

Mission (SRTM), this suite of features formed the 

comprehensive feature set for analysis. 

Pixel-based samples representing each land cover class 

were collected and partitioned into training and testing 

subsets to facilitate supervised classification. The Random 

Forest (RF) algorithm was then applied to classify the 

imagery for each target year (Biau & Scornet, 2016; 

Breiman, 2001). The RF algorithm was chosen for the initial 

land cover classification owing to its demonstrated 

robustness in processing noisy and high-dimensional 

satellite data. Its capacity to capture complex, non-linear 

relationships, combined with a low risk of overfitting, made 

it particularly suitable for this task. Moreover, the ensemble 

nature of RF contributed to enhanced classification 

accuracy and stability across heterogeneous land cover 

classes. The land cover classes examined in this study are 

presented in Table 1. 
Table 1. Classification of Land Cover Types in Landsat Imagery 

Analysis. 

Class Description Contains 

Built-up 

Areas dominated 
by human-made 

structures, 
including 

residential, 
commercial, and 
industrial zones. 

Houses, buildings, 
roads, pavements, 

urban 
infrastructure 

Barren Land with very 
sparse to no 

Bare soil, rocks, 
sand, desert 

 

 

 
1 Enhanced Vegetation Index 
2 Normalized Burn Ratio 
3 Normalized Difference Moisture Index 
4 Normalized Difference Water Index 
5 Normalized Difference Building Index 

vegetation, often 
found in natural 

deserts or areas of 
extreme land use. 

landscapes, 
quarries, exposed 

ground with 
minimal to no 

vegetation 

Water 

Bodies of water, 
including both 

natural and 
artificial 

waterbodies. 

Lakes, rivers, 
reservoirs, ponds, 
swimming pools 

Greenery 

Areas with 
significant 

vegetation cover, 
not cultivated for 

agriculture. 

Forests, parks, 
gardens, 

grasslands, 
natural vegetation 

areas 

Cropland 

Areas used for the 
cultivation of 

crops and 
agricultural 
production. 

Fields of corn, 
wheat, rice 

paddies, vegetable 
plots, orchards, 

vineyards 

 

2.2. Modelling and Predicting Land Cover Maps Based on 

Machine Learning and Markov Chain 

To model and predict land cover dynamics, this study 

employed machine learning algorithms alongside a feature 

set comprising urban sprawl metrics and quantified land 

cover change maps to develop transition potential surfaces. 

These surfaces served as inputs to a Markov chain model, 

which estimated the probabilities of transitions between 

land cover classes over time. This section presents the 

methodological framework for generating predictive land 

use and land cover maps using this integrated approach. 

2.2.1. Feature Sets Employed for Machine Learning Model 

Training 

This study used two primary feature sets for training 

machine learning models. The first set comprised 

demographic, geographic, and geometric attributes, 

selected as indices of urban sprawl to evaluate their 

effectiveness in predicting land cover changes. The selection 

of these indicators was informed by a comprehensive review 

of existing literature and empirical findings from previous 

studies. They collectively represent key dimensions of urban 

sprawl, including density, spatial configuration, 

accessibility, and socioeconomic conditions, and have been 

shown to be effective in capturing patterns of urban growth 

in various contexts. 

6 Normalized Difference Bareness Index 
7 Normalized Difference Vegetation Index 
8 Soil Adjusted Vegetation Index 
9 Green Normalized Difference Vegetation Index 
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 The second set included quantified transition maps of 

land cover classes, representing spatial dynamics and 

transformation patterns over time. The following sections 

present a detailed analysis of each feature group. 

 

 urban sprawl measurement indices 

 

Urban sprawl indices were analysed by examining the 

underlying drivers, structural characteristics, and 

associated consequences of this phenomenon. While initial 

studies primarily focused on variables such as population 

growth and land use changes, subsequent research adopted 

a more comprehensive approach by incorporating a 

broader range of criteria. In 1998, Club identified four 

principal indicators: migration to suburban areas, the ratio 

of population growth to land consumption, increased traffic 

congestion, and the reduction of open and undeveloped land 

(Club, 1998). 

Recent studies expanded upon these foundations, 

employing a variety of metrics—often supported by GIS and 

statistical techniques—to evaluate urban sprawl. These 

metrics encompassed demographic trends, land 

development patterns, transportation accessibility, resource 

consumption, and urban spatial structure, including zoning 

and service distribution. Commonly utilized indices include 

population growth rate, extent of spatial expansion, 

population and residential density, employment patterns, 

and accessibility indicators. The specific indices adopted in 

this study are summarized in Table 2. 

 
Table 2. Summary of Features Used for Model Training 

Category Index 
Calculation 

Method 

Parameter 

Definition 

Topography 

Elevation 

(Kumar, 

2017) 

Digital Elevation 

Model (30 m 

resolution) 

- 

Slope (Herold 

et al., 2003) 

Slope derived from 

Digital Elevation 

Model (30 m 

resolution) 

- 

Density 

Vertical 

Density 

(Jiang et al., 

2007) 

i

i

a

P
VD

n P



 

pi: 

population 

in 

settlement 

i 

n: average 

household 

size 

Pa: 

number of 

building 

parcels 

Gross 

Population 

Density 

(Jiang et al., 

2007) 

i

i

i

P
DG

UA
  

pᵢ: 

population 

in 

settlement 

i 

UAᵢ: built-

up area 

Net 

Population 

Density 

(Frenkel & 

Ashkenazi, 

2008) 

i

i

i

P
DN

RA
  

pᵢ: 

population 

in 

settlement 

i 

RAᵢ: 

residential 

built-up 

area 

Urban 

Geometry 

Fractal 

Dimension 

(Frenkel & 

Ashkenazi, 

2008) 

2 log

log

i

i

i

L
F

A


  

Lᵢ: 

perimeter 

Aᵢ: area of 

built-up 

region i 

Shape Index 

(Frenkel & 

Ashkenazi, 

2008) 

2

i
i

i

L
SH

A


 

 

Lᵢ: 

perimeter 

 Aᵢ: area 

of 

settlement 

i 

Segmentation 

Linear 

Development 

Index (LDI) 

(Jiang et al., 

2007) 

Proximity of new 

developments to 

highways 

- 

Discontinuous 

Development 

Index (Jiang et 
al., 2007) 

Distance between 

new and existing 

built-up areas 

- 

Social and 

Economic 

Immigration 

Rate (Zhang 

et al., 2022) 

Immigrant ratio 

indicating urban 

growth and 

diversity 

- 

Labour Force 

Participation 

Rate (Zhang 

et al., 2022) 

Proportion of 

employed 

individuals 

- 

Housing 

Value (Hatab 

et al., 2019) 

Market price 

analysis 
- 

Composition 

Land Use Mix 

(Frenkel & 

Ashkenazi, 

2008) 

ij

ij

i

a
LU

A
  

aᵢⱼ: area of 

land use 

type j in 

settlement 

i Aᵢ: total 

area of 

settlement 

i 

 

 Quantification of land cover changes 

through the ELT Method 

 

This study employed the Evidence-Based Land 

Transformation (ELT) method, which is grounded in 

Bayesian statistical theory, to model and quantify changes 

in land cover between two temporal land cover maps 

(Royall, 2017). The procedure involves the following steps. 

1. Categorical Change Detection: A comparative 

analysis of the two land cover maps was 

conducted to identify and map transitions 

between different land cover classes. 
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2. Boolean Reclassification: The resulting change 

map was reclassified into binary form, where 

each pixel is designated as either changed or 

unchanged. 

3. Application of ELT: These binary maps were 

then used as evidence layers in the ELT 

framework to estimate the probability of change, 

thereby converting qualitative spatial 

observations into quantitative metrics. 

 

2.2.2. Dimension reduction 

Dimensionality reduction plays a vital role in facilitating 

the analysis of high-dimensional data, particularly as 

datasets increase in size and complexity. This process is 

typically approached through two main strategies: feature 

selection and feature extraction (Ma & Zhu, 2013). 

Feature extraction is based on the assumption that the 

response variable Y is associated with several linear 

combinations of the predictor variables x. The objective is 

to identify these combinations and project the original 

feature space into a lower-dimensional subspace, as 

represented by Equation (1). 

 

   βTpr Y y x pr Y y x  ∣ ∣                       (1) 

In this equation, β denotes a p×d matrix that transforms 

the original p-dimensional feature space into a d-

dimensional subspace (d≪p), retaining the essential 

information relevant to Y. The minimal such subspace, 

known as the central subspace, is identified through the 

estimation of the intrinsic dimension using Maximum 

Likelihood Estimation (MLE) (Karbauskait'e & Dzemyda, 

2013). 

In this study, dimensionality reduction techniques are 

employed to optimize the urban sprawl indicators, thereby 

enhancing computational efficiency and enabling more 

effective training of machine learning models. 

 

 Principal Component Analysis 

Principal Component Analysis (PCA) is a statistical 

technique used to reduce the dimensionality of high-

dimensional data while preserving as much variance as 

possible. It transforms the original correlated variables into 

a new set of uncorrelated variables, known as principal 

components, which are linear combinations of the original 

features. 

Given a dataset with p-dimensional vectors, PCA projects 

the data into a d-dimensional subspace as defined in 

Equation (2) (Nabi & Zhou, 2024). 

 x W y                         (2) 

where x denotes the transformed data, y is the original 

feature vector, μ is the mean vector, and W is a p×d matrix 

consisting of the eigenvectors corresponding to the largest 

eigenvalues of the sample covariance matrix S, expressed as 

Equation (3) (Nabi & Zhou, 2024). 

  
1

1 N
T

i i

i

S y y
N

 


                         (3) 

These eigenvectors satisfy Sν=λν, where λ are the 

eigenvalues. In the reduced space, the components are 

uncorrelated, and the covariance matrix becomes diagonal, 

with the eigenvalues indicating the variance explained by 

each principal component (Nabi & Zhou, 2024). 

 

 Independent Component Analysis 

 

Independent Component Analysis (ICA) is a 

computational approach designed to decompose a 

multivariate signal into a set of statistically independent 

components. It is widely applied in areas such as signal 

processing and feature extraction due to its effectiveness in 

uncovering latent structures within complex datasets 

(Pokorny et al., 2023). The transformation is represented by 

Equation (4), where the observed signals X are mapped to 

independent components Y through the de-mixing matrix W 

(Zhang & Chan, 2005). 

Y WX                       (4) 

In contrast to techniques that only ensure uncorrelated 

outputs, ICA emphasizes statistical independence. The 

estimation of W is based on maximizing the non-Gaussianity 

of the components, as informed by the central limit theorem, 

which posits that the sum of independent non-Gaussian 

variables tends to approximate a Gaussian distribution. ICA 

therefore seeks to identify components that exhibit maximal 

non-Gaussianity, typically using negentropy as a 

quantitative measure of independence (Cao et al., 2003). 

2.2.3. Modelling Potential Transitions between Land Cover 

Classes 

To assess the dynamics of urban expansion in the study 

area, potential transitions between land cover classes were 

modelled using three machine learning algorithms: MLP 

(Chan et al., 2001; Mather & Tso, 2016), DF (Biau & 

Scornet, 2016), and SVM (Awad & Khanna, 2015). These 

algorithms were selected based on their proven effectiveness 

in land cover classification and change modeling tasks. The 

MLP is capable of capturing complex nonlinear 

relationships within spatial data, the DF model provides 

robustness and interpretability, and the SVM performs well 

in high-dimensional spaces, particularly when training data 

are limited. Their application enables a comparative 

evaluation of model performance in capturing the spatial 

and temporal patterns of urban expansion. The input feature 
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set includes quantified land cover change maps and urban 

sprawl measurement indices. Furthermore, to enhance 

model efficiency and performance, additional features were 

derived by applying PCA and ICA to the initial feature set. 

These transformed features contributed to improved 

classification accuracy by reducing dimensionality while 

preserving essential information. 

Specifically, the machine learning models were trained 

using spatial indices of urban sprawl and quantified 

transition maps as input variables. The output consisted of 

pixel-wise probability surfaces that represent the likelihood 

of transition to each land cover class. These probability 

surfaces form the basis for generating predictive land cover 

maps in the subsequent stages of the analysis. 

 

2.2.4. Markov Chain Modelling of Land Cover Transitions 

Markov chains offer a robust framework for modelling 

stochastic processes in which the future state of a system 

depends solely on its current state, a property known as the 

Markov assumption (Tolver, 2016). This characteristic 

makes them particularly suitable for analysing land cover 

change, as it simplifies the estimation of transition 

probabilities between land cover classes. The possible states 

of the system are defined as Equation (5) (Tolver, 2016). 

 1 2, , , nS S S S                        (5) 

The transition probabilities between states are 

represented in a matrix form as Equation (6) (Liping et al., 

2018). 

11 1

1

n

ij

n nn

p p

P

p p

 
 


 
  

                      (6) 

Where pijdenotes the probability of transition from state 

Si  to Sj, and n is the number of land cover classes. The land 

cover state at time t+1 is then computed by multiplying the 

transition matrix with the state vector at time t as Equation 

(7) (Liping et al., 2018). 

1t ij tS P S                         (7) 

Transition matrices are derived from successive land 

cover maps and are normalized to annual probabilities to 

ensure temporal consistency and comparability across 

different time intervals (Liping et al., 2018). 

In this framework, the input to the Markov chain model 

comprises two successive land cover maps, from which the 

algorithm calculates a transition probability matrix. The 

output is a projected distribution of land cover classes for a 

future year, assuming that future changes depend solely on 

the current state configuration. 

 

2.2.5. Change allocation 

 

The final predictive map was constructed by integrating 

the potential transition maps with the land cover class 

transition probability matrices, which are derived through 

the application of the Markov chain model. The allocation 

of land cover classes to each pixel was carried out using two 

distinct approaches: Hard prediction and Soft prediction. 

The hard prediction approach assigns each pixel to the 

land cover class with the highest predicted probability, 

generating a categorical map that represents the most likely 

land cover outcome for each location. This method employs 

the Multi-Objective Land Allocation (MOLA) algorithm, 

wherein each land cover transition is conceptualized as a 

spatial shift from a host class (experiencing area loss) to a 

claimant class (gaining area), as defined by the transition 

matrix. Land is subsequently reallocated to satisfy projected 

demands in accordance with these transitions. 

In contrast, the soft prediction method yields a continuous 

probability surface, where each pixel is associated with a 

full set of likelihood values corresponding to all possible 

land cover classes. This probabilistic representation 

captures the inherent uncertainty and complexity of urban 

transformation by accommodating multiple potential 

transition pathways. Pixels influenced by multiple driving 

factors may demonstrate elevated cumulative probabilities 

of change, rendering this method particularly valuable in 

exploratory modeling and policy-sensitive planning 

scenarios. 

 

2.2.6. Validation 

 

The validation of the methods utilized in this study was 

conducted in two phases. The first phase involved assessing 

the ability of the RF algorithm to generate accurate land 

cover maps. This is achieved by employing various 

performance metrics and evaluating the significance of each 

feature used in the model. The second phase involved a 

comparison of the maps generated for 2021 using the Hard 

Prediction process and different machine learning methods 

with the reference map for the same year. The comparison 

was carried out using multiple metrics to evaluate the 

effectiveness of the feature set and the performance of the 

different algorithms. The validation metrics applied in this 

study include Precision (Borenstein, 2001), Accuracy 

(Sokolova et al., 2006), F1-score (Sokolova et al., 2006), 

and Mean Squared Error (MSE) (Marmolin, 1986). 

 

3. Study area and Dataset 

3.1. Study area 

    Tehran, the capital of Iran and its primary political, 

economic, and cultural center, is located in Tehran Province 

and covers a geographic extent approximately between 

35.5°N to 35.9°N latitude and 51.2°E to 51.6°E longitude. 
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In recent decades, the city has experienced considerable 

demographic changes, consistent with national trends in 

urbanization and economic growth. According to data from 

the Tehran Municipality, the population of Tehran increased 

from 8,154,051 in 2011 to 8,693,706 in 2016, with the 

annual growth rate rising from 0.9% to 1.3%. This upward 

trend is attributed to both natural population growth and 

significant in-migration, as 996,404 individuals moved to 

the city during this five-year period. These dynamics render 

Tehran particularly susceptible to the phenomenon of urban 

sprawl. The spatial extent of the study area is presented in 

Figure 2. 

 

                     (a)                                             (b) 

 Figure 2. Study area location: (a)Tehran within Iran 
and (b)its administrative boundaries  

3.2. Dataset 

This study utilizes a comprehensive dataset to examine 

rapid urbanization, demographic shifts, and urban sprawl 

in Tehran, including satellite imagery, census data, land-use 

parcels, and road maps. All spatial datasets and land cover 

maps utilized in this study were projected using the 

Universal Transverse Mercator (UTM) coordinate system, 

Zone 39N, referenced to the WGS84 datum. This coordinate 

reference system, which employs the Transverse Mercator 

projection, was chosen to maintain spatial consistency and 

to ensure accurate area calculations throughout the study 

area. 

3.2.1. Satellite Imagery 

Landsat 8 imagery from 2016 and Landsat 7 imagery from 

2011, both with a spatial resolution of 30 meters across 

multispectral bands, are employed. This resolution enables 

detailed analysis of urban structures, green cover, 

croplands, barren lands, and water bodies. The satellites 

provide images every 16 days, ensuring a consistent dataset 

for monitoring temporal changes. Although Landsat 7 data 

may exhibit gaps due to sensor malfunctions, the uniform 

resolution between the two satellites permits effective 

comparison of urban development and land-use changes in 

Tehran over the five-year period. 

3.2.2. Census Data 

Data from the Population and Housing Censuses of 

Tehran for 2011 and 2016 are utilized, structured in shape 

file statistical blocks as defined by the Statistical Centre of 

Iran. These blocks, delineated by public access ways or 

natural barriers, contain vital information on geographic, 

household, economic, population, and housing statistics. 

3.2.3. Land Use Data 

The land use map of Tehran, provided by the municipality 

in shape file format, delineates the boundaries and land-use 

types for each registered plot across the city. These parcels 

are fundamental for defining criteria to assess urban 

sprawl. To ensure compatibility with other datasets, this 

map is utilized at a spatial resolution of 30 meters. 

3.2.4. Road Maps 

Road maps of Tehran, extracted from Open Street Map 

(OSM), are used to analyse traffic patterns, access to 

infrastructure, and connectivity between urban areas. 

4. Experiments 

4.1. Land Cover Classification Using Random Forest 

In this study, land cover changes were analysed using RF 

classification applied to Landsat 7 and Landsat 8 imagery 

for the years 2011 and 2016, with the 2021 map serving as 

a reference. The RF model was configured with 300 decision 

trees to optimize the trade-off between computational 

efficiency and classification accuracy. At each node, the 

number of features considered for splitting was set to the 

square root of the total number of input features to reduce 

bias. Furthermore, the Bootstrapping technique was 

employed, whereby 50% of the training data was randomly 

sampled for each tree to ensure diversity and improve 

generalizability. 

The model’s performance was evaluated based on overall 

accuracy, the Kappa coefficient, and the out-of-bag (OOB) 

error. To provide a clearer understanding of the 

classification context, the number of training and test 

samples utilized for each year is also reported. These results 

are presented in Table 3. 

 
Table 3. Performance metrics of the Random Forest classification 

for each image. 

Imagery 
Train 

Sample 
Size 

Test 
Sample 

Size 
OOB Accuracy kappa 

Landsat7 
(2011) 

32586 8424 0.027 92.53% 0.897 

Landsat8 

(2016) 
35019 8957 0.033 93.27% 0.905 

Landsat8 
(2021) 

32602 7690 0.028 93.88% 0.917 

 

The F1-scores for each land cover class are presented in 

Table 4, where the model shows excellent classification 

accuracy for built-up areas and water bodies. However, the 

F1-scores for barren lands, green spaces, and croplands 

demonstrate some variability, which could be attributed to 
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the challenges posed by mixed pixels or spectral similarities 

between these classes. 

 
Table 4. F1-scores for each land cover class in the Random Forest 

classification. 

Imagery 

F1-Score  

Cropland Greenery Water  Barren 
Built -

up 

Landsat
7 

(2011) 
94.44% 91.03% 

97.55
% 

91.84% 
93.61

% 

Landsat
8 

(2016) 
89.64% 91.41% 

98.81
% 

94.39% 
94.22

% 

Landsat
8 

(2021) 
90.51% 94.07% 

98.56
% 

94.72% 
93.71

% 

 

The feature importance values for the years 2011, 2016, 

and 2021 provide valuable insights into the landscape 

changes and sensor-specific differences. Elevation was 

identified as a significant feature in 2011 and maintained its 

importance in subsequent years. In the Landsat 8 images 

from 2016 and 2021, indices such as the NDBaI and 

Greenness gained prominence, reflecting a greater focus on 

urban expansion and vegetation health. Traditional spectral 

bands, including Blue, Green, Red, Near-Infrared (NIR), 

Short-Wave Infrared 1 (SWIR1), and Short-Wave Infrared 2 

(SWIR2), consistently remained essential for land cover 

analysis. Figure 3 illustrates the normalized importance 

values of the features used in each of the satellite images. 

 

 

Figure 3. Feature Importance Scores across Years 

Land cover maps for 2011 and 2016, depicted in Figure 

4, highlight the Tehran area and its surrounding buffer zone 

segmented into the five classes. 

 

 

(a) 

 

(b) 

Figure 4. Land Covers Map of Tehran for (a) 2011 and 
(b) 2016 

Over the five-year period, as presented in Table 5, built-

up areas exhibited a considerable expansion, and the 

creation of an artificial lake in western Tehran contributed 

to an increase in water bodies. In contrast, green spaces and 

agricultural lands remained relatively unchanged, while 

barren lands experienced a significant decline. 

 
Table 5. Gains and losses between 2011 and 2016. 

Class Losses(Hectares) Gains(Hectares) 

Built-up 3309 7170 

Barren 5943 2034 

Water 132 2 

Green space 3936 3938 

Farm land 243 323 

4.2. Modelling and Predicting Land Cover Maps 

4.2.1. Generation of Feature Sets for Machine Learning 

Training 

 

Urban sprawl measurement indices were employed as key 

input features for training machine learning models and 

generating potential land cover transition maps. These 

indices were derived for 110 regions within the study area 

using census data, land use parcel maps, road networks, and 

baseline land cover maps. While some of the urban sprawl 

indices were initially computed for 110 administrative units, 

conducting the analysis strictly at this coarse resolution 

would result in mixing heterogeneous land cover patterns 

within each unit. To overcome this limitation, the indices 

were rasterized and assigned uniformly to 30-meter pixels 

within each unit, enabling pixel-wise modeling and 

supporting land cover unmixing. This approach allows the 

model to capture intra-unit spatial variations in land 

transitions, while maintaining the original structure of the 

input data. Figure 5 presents the spatial distribution of 

urban sprawl indices in 2011. 
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(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
(m) (n) (o) 

Figure 5. Urban sprawl measurement indices in 2011: 
(a) Elevation, (b) Slope, (c) Net Population Density, (d) 

Gross Population Density, (e) Vertical Density, (f) 
Fractal Dimension, (g) Shape Index, (h) Strip 

Development, (i) Discontinuous Development, (j) 
Migration Rate, (k) Employment Rate, (l) Built Land 
Cover, (m) Barren Land Cover, (n) Greenery Land 

Cover, (o) Farms Land Cover 

Also, Figure 6 shows the set of urban sprawl measurement 

indices of the study area in 2016. 

 

 
(a) (b) (c) 

 
(d) (e) (f) 

 
(g) (h) (i) 

 
(j) (k) (l) 

 
(m) (n) (o) 

Figure 6. Urban sprawl measurement indices in 2016: 
(a) Elevation, (b) Slope, (c) Net Population Density, (d) 

Gross Population Density, (e) Vertical Density, (f) 
Fractal Dimension, (g) Shape Index, (h) Strip 

Development, (i) Discontinuous Development, (j) 
Migration Rate, (k) Employment Rate, (l) Built Land 
Cover, (m) Barren Land Cover, (n) Greenery Land 

Cover, (o) Farms Land Cover 

The probabilistic maps depicting potential land cover 

class transitions, in conjunction with the computed urban 

sprawl indices, constitute the principal feature set employed 

for training the machine learning models. These maps are 

illustrated in Figure 7. 

 

 
(a) (b) 

 
(c) (d) 

Figure 7. Probability map for the quantization of land 
cover class transitions into the categories (a) Built, (b) 

Barren, (c) Green space, (d) Farms using the ELT 
approach. 
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To construct a concise yet representative feature set, PCA 

and ICA were applied. The intrinsic dimensionality of the 

original feature space was estimated using the MLE method, 

which indicated that the underlying data structure could be 

effectively captured by three components, as illustrated in 

Figure 8. This estimation reflects the complexity and 

interdependence of the initial features while preserving the 

most informative variance. To ensure adequate local 

representation and reduce potential bias from selecting 

overly high or low values for the number of nearest 

neighbours, the neighbourhood size in the MLE procedure 

was restricted to a range of 6 to 10. This range was chosen 

to balance local sensitivity with the stability of the 

dimensionality estimation. 

 

 

Figure 8. Intrinsic dimensionality estimation using the 
MLE method 

Accordingly, two distinct feature sets were constructed for 

training the machine learning models based on the 

components extracted through dimensionality reduction 

techniques. The resulting components derived from PCA 

and ICA are presented in Figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
PCA 

 

ICA 

Figure 9. The feature set generated from PCA and ICA 

4.2.2. Land Cover Transition Prediction via Markov Chain 

Analysis 

 

The Markov chain model is utilized to quantify the extent 

of land cover transitions within the study area. By 

incorporating land cover maps from 2011 and 2016, the 

expected land cover changes for the year 2021 are 

computed, as presented in Table 6. This table outlines the 

transition probabilities of land cover classes over a five-

year period, based on the Markov chain analysis. 

 
Table 6. Probability of Land Cover Class Transitions by 2021. 

From/To 
Built-

up 
Barren Water Greenery 

Farm 
land 

Built-up 0.9453 0.0137 0 0.0409 0 

Barren 0.1357 0.8134 0.0032 0.0434 0.0043 

Water 0 0.0059 0.9563 0.0378 0 

Greenery 0.1169 0.0443 0.0012 0.8332 0.0043 

Farm 
land 

0.0160 0.0694 0 0.0385 0.8761 

 

The potential transition maps, derived from these 

transition probabilities, highlight the expected land cover 

changes over the five-year period. These maps are created 

by utilizing the Markov chain projections. In addition, 

various feature sets are generated for training machine 

learning models. Subsequently, the study investigates the 

creation of both hard and soft prediction maps using 

different machine learning methodologies. 

 

 Land Cover mapping using the MLP model 

 

The MLP algorithm was employed to generate potential 

land cover transition maps based on different feature sets. 

The model was trained over 10000 iterations, with the 

learning rate dynamically adjusted to enhance convergence 

and model performance. Table 7 summarizes the training 

and testing results, including the root mean square (RMS) 
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errors and classification accuracy for each feature 

configuration. 

 
Table 7. Training the MLP Model with Various Feature Sets. 

Feature 
set 

Learning 
rate 

Training 
RMS 

Testing 
RMS 

Accuracy 

Initial 0.0001 0.2692 0.2772 60.92% 

PCA-
Derived 

0.0005 0.3578 0.3583 31.09% 

ICA-
Derived 

0.0003 0.3513 0.3520 39.60% 

 

Among the tested configurations, the initial feature set 

yielded the highest accuracy and was therefore selected for 

generating the final potential transition maps. The soft and 

hard land cover maps for the year 2021 for the study area 

are generated based on the superior model MLP, as 

illustrated in Figure 10. 

 

 
(a) (b) 

Figure 10. Land cover map (a) hard (b) soft for the year 
2021 based on the superior MLP model. 

 Land Cover mapping using the DF model 

 

The DF algorithm was applied to various feature sets to 

model land cover transitions. The best performance was 

obtained using the initial dataset, with an OOB accuracy of 

82.88% achieved using 150 decision trees and five variables 

per node. In comparison, the PCA- and ICA-derived feature 

sets yielded lower OOB accuracies of 62.71% and 63.32%, 

respectively, when configured with 250 trees and two 

variables per node. The soft and hard land cover maps for 

the study area in 2021 were generated using the advanced 

RF model, as shown in Figure 11. 

 

 
(a) (b) 

Figure 11. Land cover map (a) hard (b) soft for the year 
2021 based on the superior DF model 

 Land Cover mapping using the SVM model 

 

The SVM model, employing a radial basis function (RBF) 

kernel, was initially trained on the complete feature set, 

resulting in an accuracy of 67.89%. Subsequently, the model 

was trained on reduced feature sets derived via ICA and 

PCA, each comprising three components. These reduced 

datasets yielded improved accuracies of 68.89% and 

70.02%, respectively. Consequently, the SVM model trained 

on the ICA- Derived features is deemed superior. Soft and 

hard land cover maps for the study area were generated for 

the year 2021 using the optimized SVM model, as illustrated 

in Figure 12. 

 

 
(a) (b) 

Figure 12. Land cover map (a) hard (b) soft for the year 
2021 based on the superior SVM model 

4.2.3. Validation of Results 

 

To assess the model performance, the 2021 land cover 

maps produced by the best-performing models were 

compared with the reference map for the same year. 

Validation was conducted using metrics including MSE, 

Accuracy, Precision, F1-Score, and the Kappa coefficient. 

A summary of these validation results is provided in Table 

8. Among the models, the MLP model trained with the initial 

feature set demonstrated the highest concordance with the 

reference map. Nonetheless, the outputs from the other 

models also yielded comparable results, reflecting the 

general reliability of the applied approaches. 

 
Table 8. Validation of results. 

Model MSE Accuracy Precision 
F1-

Score 
Spatial-

k 

MLP 
0.982

5 
84.46% 84.04% 

83.95
% 

76.09% 

DF 
0.982

3 
84.43% 84.01% 

83.92
% 

76.05% 

SVM 
0.990

0 
84.40% 83.99% 

83.89
% 

76.00% 

 

4.2.4. Future Land Cover Projection 
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The MLP model trained on the initial feature set 

demonstrated the highest predictive accuracy against the 

2021 reference map. Accordingly, this model was employed 

to project the land cover map for the study area in 2026. The 

resulting map is presented in Figure 13. 

 

 

Figure 13. The hard prediction map for the year 2026 

5. Discussion 

The comparative analysis of the predicted and reference 

land cover maps for 2021 highlights the promising potential 

of machine learning-based models in forecasting urban 

expansion trends in Tehran. Among the various approaches 

tested, the MLP model, trained with the initial feature set, 

demonstrated superior performance in both accuracy and 

F1-score, thereby showcasing its effectiveness in capturing 

the intricate spatial dynamics of land transformation. 

Although the DF and SVM models also yielded 

commendable results, the slight performance advantage of 

the MLP model emphasizes the importance of leveraging 

comprehensive, unreduced feature sets in specific urban 

contexts. 

The spatial patterns observed in the prediction maps 

indicate a continuing trend of urban expansion towards the 

western, north-western, and southern peripheries of Tehran. 

Notably, barren lands in these peripheral areas appear to 

be particularly vulnerable to conversion into built-up zones, 

which may be influenced by both market-driven 

development pressures and potential infrastructure-led 

planning initiatives. This pattern aligns with global trends, 

where urban growth often encroaches upon ecologically or 

agriculturally marginal lands, driven by lower economic 

costs and fewer regulatory constraints. 

Projected land cover changes from 2016 to 2026 

emphasize the critical need for sustainable land 

management practices. The anticipated 6% increase in 

built-up areas, coupled with a 10% reduction in barren land 

and notable declines in green spaces (8%) and farmlands 

(1%), reflects a shift towards a higher proportion of 

impervious surfaces. These transformations are expected to 

exacerbate several environmental challenges, including 

increased urban heat island intensity, loss of biodiversity, 

decreased agricultural productivity, and elevated flood risks 

due to the reduced infiltration capacity of the soil. 

From a methodological perspective, this study 

underscores the strategic importance of dimensionality 

reduction techniques, such as PCA and ICA, in enhancing 

both model performance and computational efficiency. 

While the highest predictive accuracy was achieved using 

the full feature set, the components derived through ICA 

exhibited superior performance in SVM modelling. This 

finding suggests that the effectiveness of dimensionality 

reduction methods may vary depending on the classification 

algorithm employed and the inherent complexity of the 

dataset. In large-scale applications, such techniques can 

significantly reduce computational time all while 

maintaining robust predictive capabilities. 

The integration of satellite remote sensing, spatial indices 

of urban sprawl, and advanced machine learning techniques 

offers significant potential for the development of replicable, 

data-driven tools for urban planning. By combining sprawl 

indicators—such as density, shape metrics, accessibility 

indices, and socioeconomic factors—with land cover 

transition probabilities, this research enhances the 

understanding of urban dynamics at a more granular level. 

These tools are not only valuable for predictive purposes but 

also for the formulation of proactive policies. For example, 

transition probability maps can support zoning regulations, 

infrastructure planning, and environmental mitigation 

strategies by identifying high-risk areas prone to unplanned 

development. 

Nevertheless, the study is subject to certain limitations, 

primarily stemming from data availability. The lack of 

detailed traffic and transportation data, which play a 

crucial role in shaping urban expansion, constrained the 

inclusion of mobility-related indicators in the analysis. 

Future research should aim to incorporate more 

comprehensive datasets, such as real-time traffic flows, 

public transport accessibility, land value trends, and climate 

variables, in order to enhance the accuracy of predictions 

and expand the policy relevance of the model's outputs. 

In conclusion, this study emphasizes the pivotal role of 

integrating spatial intelligence and machine learning 

techniques in the monitoring and management of urban 

growth. The findings underscore both the risks associated 

with unregulated urban sprawl in Tehran and the potential 

for implementing informed and sustainable planning 

practices. As urbanization accelerates, particularly in 

developing countries, the adoption of such analytical 

frameworks will be crucial for achieving a balance between 

development, ecological preservation, and urban resilience. 

 

6. Conclusion 

This study adopted a comprehensive methodological 

framework that integrates remote sensing data, spatial 

indicators of urban sprawl, dimensionality reduction 

techniques, and machine learning algorithms to model and 

predict land cover changes in Tehran. By leveraging 
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Landsat satellite imagery, demographic datasets, and 

sprawl-related metrics, the research effectively captured the 

spatial-temporal dynamics of urban expansion over a ten-

year period and projected potential land cover 

transformations through the year 2026. 

The findings indicate that the Multi-Layer Perceptron 

(MLP) model trained with the initial, unreduced feature set 

yielded the highest predictive accuracy, underscoring the 

importance of incorporating a comprehensive range of 

demographic, topographic, and geometric variables in land 

cover modelling. Although dimensionality reduction 

techniques such as PCA and ICA enhanced computational 

efficiency, their impact on model performance varied 

depending on the algorithm, with notable improvements 

observed in the SVM model. 

Spatial analysis indicates that urban expansion in Tehran 

is primarily concentrated in the western, north-western, and 

southern peripheral zones, frequently encroaching upon 

green spaces and barren lands. These patterns highlight 

escalating environmental pressures associated with urban 

sprawl, including landscape fragmentation, vegetation loss, 

and the contraction of agricultural areas. 

The predictive capability of the proposed framework 

presents substantial value for urban planners, policymakers, 

and environmental managers by enabling evidence-based 

decision-making. It supports the identification of areas with 

a high likelihood of future development and contributes to 

the formulation of sustainable urban growth strategies. 

However, the study recognizes limitations related to data 

availability, particularly regarding transportation and 

infrastructure datasets. Addressing these gaps in future 

research may improve model accuracy and expand the 

framework’s applicability across broader planning 

contexts. 

Ultimately, the integration of geospatial technologies with 

machine learning offers a robust and scalable approach for 

analysing and directing urban development. As urban 

expansion accelerates, particularly in rapidly growing 

regions, the application of such advanced analytical tools 

will be essential for promoting a sustainable balance 

between developmental needs and environmental 

preservation. 

   
References 
 
 

Awad, M., & Khanna, R. (2015). Efficient learning 

machines: theories, concepts, and applications for 

engineers and system designers. Springer nature.  

Banai, R., & DePriest, T. (2014). Urban sprawl: 

Definitions, data, methods of measurement, and 

environmental consequences. Journal of 

Sustainability Education, 7(2), 1-15.  

Baqa, M. F., Chen, F., Lu, L., Qureshi, S., Tariq, A., Wang, 

S., Jing, L., Hamza, S., & Li, Q. (2021). Monitoring 

and modeling the patterns and trends of urban 

growth using urban sprawl matrix and CA-Markov 

model: A case study of Karachi, Pakistan. Land, 

10(7), 700. https://doi.org/10.3390/land10070700 

Barman, S., Roy, D., Chandra Sarkar, B., Almohamad, H., 

& Abdo, H. G. (2024). Assessment of urban growth 

in relation to urban sprawl using landscape 

metrics and Shannon’s entropy model in Jalpaiguri 

urban agglomeration, West Bengal, India. 

Geocarto International, 39(1), 2306258. 

https://doi.org/10.1080/10106049.2024.2306258 

Biau, G., & Scornet, E. (2016). A random forest guided tour. 

Test, 25, 197-227. https://doi.org/10.1007/s11749-

016-0481-7 

Biney, E., & Boakye, E. (2021). Urban sprawl and its impact 

on land use land cover dynamics of Sekondi-

Takoradi metropolitan assembly, Ghana. 

Environmental Challenges, 4, 100168. 

https://doi.org/10.1016/j.envc.2021.100168 

Blair, R., & Wellman, G. (2017). Smart growth principles 

and the management of urban sprawl. In Regional 

Equity (pp. 73-89). Routledge.  

Borenstein, M. (2001). Power and precision (Vol. 1). Taylor 

& Francis.  

Breiman, L. (2001). Statistical modeling: The two cultures 

(with comments and a rejoinder by the author). 

Statistical science, 16(3), 199-231. 

https://doi.org/10.1214/ss/1009213726 

Cao, L., Chua, K. S., Chong, W. K., Lee, H. P., & Gu, Q. 

(2003). A comparison of PCA, KPCA and ICA for 

dimensionality reduction in support vector 

machine. Neurocomputing, 55(1-2), 321-336. 

https://doi.org/10.1016/S0925-2312(03)00433-8 

Chan, J. C.-W., Chan, K.-P., & Yeh, A. G.-O. (2001). 

Detecting the nature of change in an urban 

environment: A comparison of machine learning 

algorithms. Photogrammetric Engineering and 

Remote Sensing, 67(2), 213-226.  

Club, S. (1998). The dark side of the American dream. 

retrieved March, 5, 2003.  

Dadashpoor, H., & Salarian, F. (2020). Urban sprawl on 

natural lands: Analyzing and predicting the trend 

of land use changes and sprawl in Mazandaran city 

region, Iran. Environment, Development and 

Sustainability, 22(2), 593-614. https:// 
doi:10.1007/s10668-018-0211-2 

Das, B., Khan, F., & Mohammad, P. (2023). Impact of urban 

sprawl on change of environment and 

consequences. Environmental Science and 

Pollution Research, 30(49), 106894-106897. 

https://doi.org/10.1007/s11356-023-29192-3 

Dhanaraj, K., & Angadi, D. P. (2022). Land use land cover 

mapping and monitoring urban growth using 

remote sensing and GIS techniques in Mangaluru, 

India. GeoJournal, 87(2), 1133-1159. 

https://doi.org/10.1007/s10708-020-10302-4 

Dinda, S., Das, K., Chatterjee, N. D., & Ghosh, S. (2019). 



 

Predictive Analytics for Urban Sprawl Using Machine Learning in Land Cover Mapping 

 

65 

 

Integration of GIS and statistical approach in 

mapping of urban sprawl and predicting future 

growth in Midnapore town, India. Modeling Earth 

Systems and Environment, 5(1), 331-352. 

https://doi.org/10.1007/s40808-018-0536-8 

Duany, A., Plater-Zyberk, E., & Speck, J. (2000). Suburban 

nation: The rise of sprawl and the decline of the 

American dream. Macmillan.  

Escuin, S., Navarro, R., & Fernández, P. (2008). Fire 

severity assessment by using NBR (Normalized 

Burn Ratio) and NDVI (Normalized Difference 

Vegetation Index) derived from LANDSAT 

TM/ETM images. International Journal of Remote 

Sensing, 29(4), 1053-1073. 

https://doi.org/10.1080/01431160701281072 

Estoque, R. C., & Murayama, Y. (2015). Classification and 

change detection of built-up lands from Landsat-7 

ETM+ and Landsat-8 OLI/TIRS imageries: A 

comparative assessment of various spectral 

indices. Ecological indicators, 56, 205-217. 

https://doi.org/10.1016/j.ecolind.2015.03.037 

Ewing, R. (1997). Is Los Angeles-style sprawl desirable? 

Journal of the American planning association, 

63(1), 107-126. 

https://doi.org/10.1080/01944369708975728 

Frenkel, A., & Ashkenazi, M. (2008). Measuring urban 

sprawl: how can we deal with it? Environment and 

Planning B: Planning and design, 35(1), 56-79. 

https://doi.org/10.1068/b32155 

Gómez, J. A., Patiño, J. E., Duque, J. C., & Passos, S. 

(2019). Spatiotemporal modeling of urban growth 

using machine learning. Remote Sensing, 12(1), 

109. https://doi.org/10.3390/rs12010109 

Hatab, A. A., Cavinato, M. E. R., Lindemer, A., & 

Lagerkvist, C.-J. (2019). Urban sprawl, food 

security and agricultural systems in developing 

countries: A systematic review of the literature. 

Cities, 94, 129-142. 

https://doi.org/10.1016/j.cities.2019.06.001 

Herbei, M., & Sala, F. (2016). Classification of land and 

crops based on satellite images Landsat 8: case 

study SD Timisoara.  

Herold, M., Goldstein, N. C., & Clarke, K. C. (2003). The 

spatiotemporal form of urban growth: 

measurement, analysis and modeling. Remote 

Sensing of Environment, 86(3), 286-302. 

https://doi.org/10.1016/S0034-4257(03)00075-0 

Hislop, S., Jones, S., Soto-Berelov, M., Skidmore, A., 

Haywood, A., & Nguyen, T. H. (2018). Using 

landsat spectral indices in time-series to assess 

wildfire disturbance and recovery. Remote 

Sensing, 10(3), 460. 

https://doi.org/10.3390/rs10030460 

Jiang, F., Liu, S., Yuan, H., & Zhang, Q. (2007). Measuring 

urban sprawl in Beijing with geo-spatial indices. 

Journal of Geographical Sciences, 17(4), 469-478. 

https://doi.org/10.1007/s11442-007-0469-z 

Karbauskait'e, R., & Dzemyda, G. (2013). Investigation of 

the maximum likelihood estimator of intrinsic 

dimensionality.  

Kshetri, T. (2018). Ndvi, ndbi & ndwi calculation using 

landsat 7, 8. GeoWorld, 2, 32-34.  

Kulkarni, K., & Vijaya, P. (2022). Measuring urban sprawl 

using machine learning. Fundamentals and 

methods of machine and deep learning: 

algorithms, tools and applications, 327-340. 

https://doi.org/10.1002/9781119821908.ch14 

Kumar, A. (2017). Analysing urban sprawl and land 

consumption patterns in major capital cities in the 

Himalayan region using geoinformatics. Applied 

geography, 89, 112-123. 

https://doi.org/10.1016/j.apgeog.2017.10.010 

Liping, C., Yujun, S., & Saeed, S. (2018). Monitoring and 

predicting land use and land cover changes using 

remote sensing and GIS techniques—A case study 

of a hilly area, Jiangle, China. PloS one, 13(7), 

e0200493. 

https://doi.org/10.1371/journal.pone.0200493 

Ma, Y., & Zhu, L. (2013). A review on dimension reduction. 

International Statistical Review, 81(1), 134-150. 

https://doi.org/10.1111/j.1751-5823.2012.00182.x 

Marmolin, H. (1986). Subjective MSE measures. IEEE 

transactions on systems, man, and cybernetics, 

16(3), 486-489. 

https://doi.org/10.1109/TSMC.1986.4308985 

Mather, P., & Tso, B. (2016). Classification methods for 

remotely sensed data. CRC press. 

https://doi.org/10.1201/9781420090741 

Moniruzzam, M., Roy, A., Bhatt, C., Gupta, A., An, N., & 

Hassan, M. (2018). Impact analysis of 

urbanization on land use land cover change for 

Khulna City, Bangladesh using temporal landsat 

imagery. The International Archives of the 

Photogrammetry, Remote Sensing and Spatial 

Information Sciences, 42, 757-760. 

https://doi.org/10.5194/isprs-archives-XLII-5-

757-2018 

Nabi, F., & Zhou, X. (2024). Enhancing Intrusion Detection 

Systems Through Dimensionality Reduction: A 

Comparative Study of Machine Learning 

Techniques for Cyber Security. Cyber Security and 

Applications, 100033. 

https://doi.org/10.1016/j.csa.2023.100033 

Oon, A., Mohd Shafri, H. Z., Lechner, A. M., & Azhar, B. 

(2019). Discriminating between large-scale oil 

palm plantations and smallholdings on tropical 

peatlands using vegetation indices and supervised 

classification of LANDSAT-8. International 

Journal of Remote Sensing, 40(19), 7312-7328. 

https://doi.org/10.1080/01431161.2019.1579944 



 

 Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024 

 

66 

 

Pokorny, V. J., Sponheim, S. R., & Rawls, E. (2023). Impact 

of reduced‐ dimensionality independent 

components analysis on event‐ related potential 

measurements. Psychophysiology, 60(5), e14223. 

https://doi.org/10.1111/psyp.14223 

Rana, M. S., & Sarkar, S. (2021). Prediction of urban 

expansion by using land cover change detection 

approach. Heliyon, 7(11). 

https://doi.org/10.1016/j.heliyon.2021.e08437 

Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., 

& Zhang, P. (2018). Land use/land cover dynamics 

and modeling of urban land expansion by the 

integration of cellular automata and markov chain. 

ISPRS International Journal of Geo-Information, 

7(4), 154. https://doi.org/10.3390/ijgi7040154 

Royall, R. (2017). Statistical evidence: a likelihood 

paradigm. Routledge. 

https://doi.org/10.1201/9780203738665 

Shaver, T., Khosla, R., & Westfall, D. (2006). Utilizing 

green normalized difference vegetation indices 

(GNDVI) for production level management zone 

delineation in irrigated corn. The 18th World 

Congress of Soil Science,  

Shi, Y., Zhou, L., Guo, X., & Li, J. (2023). The 

multidimensional measurement method of urban 

sprawl and its empirical analysis in Shanghai 

metropolitan area. Sustainability, 15(2), 1020. 

https://doi.org/10.3390/su15021020 

Sokolova, M., Japkowicz, N., & Szpakowicz, S. (2006). 

Beyond accuracy, F-score and ROC: a family of 

discriminant measures for performance 

evaluation. Australasian joint conference on 

artificial intelligence, 

https://doi.org/10.1007/11941439_114 

Tatsumi, K., Yamashiki, Y., Torres, M. A. C., & Taipe, C. L. 

R. (2015). Crop classification of upland fields 

using Random forest of time-series Landsat 7 

ETM+ data. Computers and Electronics in 

Agriculture, 115, 171-179. 

https://doi.org/10.1016/j.compag.2015.05.001 

Taufik, A., Ahmad, S. S. S., & Ahmad, A. (2016). 

Classification of landsat 8 satellite data using 

NDVI tresholds. Journal of Telecommunication, 

Electronic and Computer Engineering (JTEC), 

8(4), 37-40.  

Tolver, A. (2016). An introduction to Markov chains. 

Department of Mathematical Sciences, University 

of Copenhagen.  

Trinh, L. H. (2020). Urban Bare Land Classification Using 

NDBaI Index Based on Combination of Sentinel 2 

MSI and Landsat 8 Multiresolution Images. VNU 

Journal of Science: Earth and Environmental 

Sciences, 36(2). https://doi.org/10.25073/2588-

1094/vnuees.4537 

Yasin, M. Y., Yusoff, M. M., Abdullah, J., Noor, N. M., & 

Noor, N. M. (2021). Urban sprawl literature 

review: Definition and driving force. Geografia, 

17(2). https://doi.org/10.17576/geo-2021-1702-10 

Yin, J., Yin, Z., Zhong, H., Xu, S., Hu, X., Wang, J., & Wu, J. 

(2011). Monitoring urban expansion and land 

use/land cover changes of Shanghai metropolitan 

area during the transitional economy (1979–2009) 

in China. Environmental monitoring and 

assessment, 177, 609-621. 

https://doi.org/10.1007/s10661-010-1660-8 

Zhang, K., & Chan, L.-W. (2005). Dimension reduction as a 

deflation method in ICA. IEEE Signal Processing 

Letters, 13(1), 45-48. 

https://doi.org/10.1109/LSP.2005.860541 

Zhang, M., Li, Y., Guo, R., & Yan, Y. (2022). Heterogeneous 

effects of urban sprawl on economic development: 

empirical evidence from China. Sustainability, 

14(3), 1582. https://doi.org/10.3390/su14031582 

 

 

 

 


