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The objective of this research is to examine and model the influence of ground control point 

(GCP) configurations, quantity, spacing, and spatial distribution on the accuracy of 3D 

reconstruction in UAV-based photogrammetry. Four GCP patterns were evaluated: Mode A 

(minimal corner placement), Mode B (perimeter distribution), Mode C (combined perimeter 

and central), and Mode D (central-only), across three scenarios with increasing GCP spacing 

in urban and non-urban areas. The total GCPs ranged from 4 to 42, with distances tested at 

100m (1D), 200m (2D), and 300m (3D), corresponding to multiples of 30, 60, and 90 times 

the GSD.  Local accuracy was assessed using 30 random checkpoints, while global accuracy 

was analyzed via the M3C2 algorithm. Scenario 1 (1D spacing) revealed Mode B achieved 

the highest local accuracy, with RMSE values of 0.10 m (urban) and 1.06 m (non-urban). 

Scenario 2 (2D spacing) showed slight accuracy reductions but maintained comparable 

performance. In Scenario 3 (3D spacing), Mode C outperformed others, yielding an RMSE of 

0.17 m (urban) and 0.80 m (non-urban), with errors concentrated at block edges. Global 

M3C2 analysis confirmed Mode C’s superiority in Scenario 3, demonstrating that central GCP 

placement becomes critical when spacing exceeds 90×GSD. Results indicate that perimeter-

based configurations (Mode B) suffice for smaller intervals (≤30×GSD), but larger spacings 

(>90×GSD) necessitate combined perimeter and central GCPs (Mode C) to mitigate accuracy 

degradation. Mode C is recommended for large-scale projects with sparse GCP networks, 

balancing efficiency and reliability. 
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1. Introduction  

Various photogrammetry and computer vision algorithms 

based on dense corresponding point matching approaches 

have been developed to analyze images and perform 

automated 3D reconstruction. Unmanned Aerial Vehicles 

(UAVs) have emerged as a pivotal tool for data acquisition, 

driving innovations across geosciences, remote sensing, and 

precision mapping (Nex et al., 2022). The integration of low-

cost sensors with UAV platforms (Koeva, Muneza, Gevaert, 

Gerke, & Nex, 2018) has further expanded 3D mapping 

applications in agriculture, urban planning, environmental 

monitoring, and disaster management (Jenal et al., 2020; 

Yin et al., 2023). UAVs are broadly categorized into 

military, reconnaissance, civilian, and logistics drones, with 

their photogrammetric capabilities increasingly leveraged 

for high-resolution spatial analysis (Fernandez Galarreta, 

Kerle, & Gerke, 2015). Studies highlight the efficacy of 

UAV-based photogrammetry in diverse scenarios. For 

instance, Peppa, Mills, Moore, Miller, and Chambers 

(2019) demonstrated centimeter-level accuracy in landslide 

monitoring using UAV-derived data and ground control 

points (GCPs). Similarly, Clapuyt, Vanacker, and Van Oost 

(2016) emphasized the critical role of GCP distribution in 

enhancing 3D topographic reconstruction precision via 

Structure-from-Motion (SfM) algorithms. Erenoglu, 

Erenoglu, and Arslan (2018) underscored the potential of 

UAV-generated 3D models for urban planning, noting that 

accuracy depends on factors like camera specifications, 

image resolution, and area coverage. Collectively, these 

advancements underscore UAV photogrammetry as a 

versatile, cost-effective solution for high-precision 3D 

modeling, though challenges related to sensor limitations 

and environmental variability persist. 

    

The number, spatial distribution, and network structure of 

Ground Control Points (GCPs) significantly influence the 

accuracy of UAV-based photogrammetric outputs. Varbla, 

Puust, and Ellmann (2021) demonstrated that UAVs 

equipped with RTK-GNSS require only a few GCPs to 

achieve geometric accuracy exceeding 5 cm. Elkhrachy 

(2021) reported horizontal and vertical RMSEs of 4–6 cm 

and 5–6 cm, respectively, using 21 GCPs, with errors 

correlating to ground sampling distance (GSD). Liu et al. 

(2022) emphasized that increasing GCP numbers reduces 

RMSE until a threshold density is reached, stressing the 

need for uniform distribution, including central placement. 

James, Robson, d'Oleire-Oltmanns, and Niethammer (2017) 

identified GCP measurement errors as critical factors 

affecting DEM accuracy through Monte Carlo simulations.  

Agüera-Vega, Carvajal-Ramírez, and Martínez-Carricondo 

(2017) found optimal horizontal and vertical accuracy with 

15–20 GCPs, while Nagendran, Tung, and Ismail (2018) 

confirmed centimeter-level accuracy necessitates GCPs 

across varying UAV altitudes. Martínez-Carricondo et al. 

(2018) recommended perimeter and interior GCP 

placement at 0.5–1 GCP/ha. Villanueva, Blanco, and 

Sciences (2019) linked DEM accuracy to uniform GCP 

distribution, and Awasthi et al. (2019) highlighted 

distribution patterns’ impact on corridor mapping. Stöcker, 

Nex, Koeva, and Gerke (2020) underscored the combined 

influence of flight configuration, land cover, and GCP setup 

on data quality. Lalak, Wierzbicki, and Kędzierski (2020) 

proposed optimized GCP usage for single-strip adjustments. 

Oniga, Breaban, Pfeifer, and Chirila (2020) observed 

diminishing returns beyond 20 GCPs, achieving a 50% 

RMSE reduction. Long et al. (2021) determined five GCPs 

suffice for <10 cm accuracy in 36-ha mines. Zhang et al. 

(2022) advocated two-dimensional GCP distributions over 

linear arrangements. Carvajal-Ramírez, Agüera-Vega, and 

Martínez-Carricondo (2016) achieved sub-0.1 m accuracy 

with edge-distributed. Reshetyuk and Mårtensson (2016) 

recommended 1.8 GCPs/ha for precision. Gindraux (2019) 

generalized optimal GCP distribution principles, while 

Sanz-Ablanedo, Chandler, Rodríguez-Pérez, and Ordóñez 

(2018) suggested ≥3 GCPs/100 images for large-scale 

projects, translating to ~2590 ha (3581 images) for their 

study. Collectively, these studies highlight the necessity of 

balancing GCP quantity, density (often 0.5–2 GCPs/ha), 

and spatial uniformity to maximize photogrammetric 

accuracy across diverse applications. 

 
Previous studies have explored the influence of control 

points and their distribution to some extent, each with a 

distinct aim and application. However, no unique model has 

been developed, nor has a full evaluation of the 

geographical distribution, quantity, and configuration of 

GCPs in different UAV geomatics projects been conducted. 

A previous study demonstrated that a variety of factors 

affect the accuracy of UAV photogrammetry outputs. While 

thoroughly investigating the spatial distribution pattern of 

GCPs, as well as their quantity and suitable distance, the 

following two key aims are pursued: The primary objective 

of this study is to assess the impact of GCP's network 

configuration pattern, number, and spatial distribution on 

UAV-based photogrammetry and 3D reconstruction 

accuracy. The second objective is to determine the optimal 

distances between the GCPs in order to improve the 

accuracy of the orthomosaic acquired by UAV 

photogrammetry.  

2. Material and method  

2.1 Study area and dataset  

    This investigation was conducted at Tafarsh University in 

a region related to Iran, with latitude (50° 47' 02 to 50° 30' 
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03) and longitude (50° 22' 40 to 57° 40" 50°). A drone was 

utilized to image the university's main and surrounding 

campuses, which cover an area of 120 meters above the 

surface and 0.297 square kilometers. This area has 

distinctive aspects of many landscapes, such as roads and 

buildings, and is barren yet distinct in terms of topographic 

variation. The data was collected on July 27, 2019. Figure 

1 shows the study area.  

 

Figure 1. The area studied in this research 

Before beginning the imaging of the research region, an 

appropriate flight plan with several factors such as flying 

height, GSD, and total number of images was established. 

Using equation 1, a suitable value of GSD, which impacts 

the quality of the final findings and the details of the 

orthomosaic, was found for a certain flight height H (Tu et 

al., 2020). To that end, the DJI Phantom 4 Pro (a DJI Pro 

Platinum drone equipped with an RGB camera (FC6310s)) 

was used to capture images on July 27, 2019. Lens length 

was 8.8 mm, ISO was 100, shutter speed was 800 1/second, 

sensor width was 13.2 mm, sensor length was 8 mm, and the 

image size was 5472 x 3648 pixels. 

𝐺𝑆𝐷 =
𝑆𝑤 × 𝐻 × 100

𝐹𝑟 × 𝐼𝑚𝑤
                   (1)   

Where Sw represents the real sensor width (mm), Fr 

corresponds to the real focal length (mm), and Imw 

represents the image width in pixels. A GSD of 3.29 

cm/pixel, for example, can be reached with a DJI Pro drone 

at a flying height of 120 meters. GCPs were utilized to 

georeference the images acquired by the photogrammetry 

UAV. The GCP was obtained using the RTK GNSS method 

with centimetr horizontal and vertical accuracy. Figure 2 

illustrates the GCPs utilized in this study. 

This study demonstrates the structural influence of GCPs 

design, number, optimum distance, and spatial distribution 

pattern in determining the accuracy of the reconstruction of 

3D models based on UAV photogrammetry. To end that, 194 

UAV images were collected during the data collection stage, 

and then a geodetic network of 42 GCPs was designed using 

the GNSS positioning system. 

 

Figure 2.   The GCP and random point’s distribution. 

 

2.2. Proposed method 

According to the reviewed studies outlined in the 

Introduction, the optimal number of ground control points 

(GCPs) in UAV-based photogrammetry projects depends on 

multiple factors. Technical standards generally recommend 

a density of 1 to 5 GCPs per hectare, with higher densities 

(e.g., ~1 point per 0.5 ha) required for centimeter-level 

accuracy (±3 cm). In this 30-hectare project, 42 GCPs (1.4 

points per hectare) reflect high precision demands or 

complex terrain conditions. These points may serve dual 

roles: a subset (e.g., 30 points) for the results were assessed 

locally processing and the remainder (e.g., 12 points) as 

checkpoints to validate final accuracy. Uniform spatial 

distribution is critical to minimize DEM and orthomosaic 

errors; in the 550 x 550 m study area, 42 points achieve a 

~80–100 m spacing, ensuring balanced coverage. Four 

distribution patterns (A, B, C, and D) were evaluated to 

identify the optimal configuration. Additionally, 

topographic complexity—such as steep slopes, vertical 

structures, or dense vegetation—necessitates more GCPs to 

address image distortions and enhance alignment. 

Ultimately, the selection of 42 points balances high 

accuracy requirements, complex terrain, and adherence to 

technical standards, ensuring sufficient spatial precision for 

mapping, environmental analysis, or land management 

applications. 

It is a fact that the number of ground control points in 

drone-based photogrammetry projects increases 

proportionally to the area of the study area. Then, the 

mathematical model (2) can be written as 
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𝑁𝐺𝐶𝑃 ∝ √𝐴  →  𝑁𝐺𝐶𝑃 = 𝐾1√𝐴 ≅ 𝐾1
√𝐴

𝐺𝑆𝐷
         (2) 

Where 𝑁𝐺𝐶𝑃 is the number of control points required and 

Where √𝐴  (length) divided by GSD (length) yields a 

dimensionless count, and 𝐾1  (e.g., 2–3) is an empirical 

coefficient. In addition, the distance between ground control 

points depends on the GSD value and the expected final 

accuracy in the project under study. Therefore, the 

mathematical model (3) can be written as follows: 

𝐷𝑖𝑠𝑡𝐺𝐶𝑃 ∝ 𝐺𝑆𝐷 →  𝐷𝑖𝑠𝑡𝐺𝐶𝑃 = 𝐾2 × 𝐺𝑆𝐷                (3) 

 

Where 𝐷𝑖𝑠𝑡𝐺𝐶𝑃  is the optimal distance between the 

required control points in meters, 𝐺𝑆𝐷  is the ground 

sampling distance in meters, and 𝐾2 is a constant coefficient 

that depends on the required accuracy of the research. 

Furthermore, the relationship between the accuracy of the 

project can be calculated by considering the 𝐺𝑆𝐷 from the 

mathematical model (4): 

 

𝛿𝑃𝑟𝑜𝑗 ∝ 𝐺𝑆𝐷 →  𝛿𝑃𝑟𝑜𝑗 =
𝐺𝑆𝐷

𝑆𝑐𝑎𝑙𝑒 𝐹𝑎𝑐𝑡𝑜𝑟
                (4) 

 

Where, 𝛿𝑃𝑟𝑜𝑗  is the average desired accuracy of the 

project (average vertical and planimetric accuracy), 𝐺𝑆𝐷 is 

the ground sampling distance in meters, and the scale factor 

depends on the data coverage and the data abundance, 

considering the normal distribution and establishing a 

balance between accuracy and cost, between 2 and 3 can be 

considered. 

Considering mathematical relations (1) to (4), in order 

to determine a more accurate mathematical model, the 

above relations should be combined with each other, and the 

project accuracy should be considered as a coefficient (𝛿) 

of 𝐺𝑆𝐷. The optimal number of desired control points can 

be obtained from the proposed mathematical model (5): 

 

 𝑁𝐺𝐶𝑃 = (
𝐾2

𝛿 × 𝐺𝑆𝐷 − 𝐾1 × 𝐺𝑆𝐷
)

2

                (5) 

 

This proposed model shows that if the GSD decreases, 

i.e., the imaging quality increases, the number of required 

control point’s decreases. In addition, for a fixed GSD, 

increasing the number of ground control points can reduce 

the absolute error of the project. Furthermore, as the GSD 

increases, that is, as the resolution of the images decreases, 

the number of ground control points required increases. 

This result is logical because the positioning accuracy 

decreases with increasing GSD, so to compensate for this 

decrease in accuracy, a larger number of ground control 

points are required. First, before beginning to capture the 

region under investigation, a suitable flight plan is created 

using Equation 1, taking into account elements such as flight 

altitude, ground sampling distance (GSD), image coverage, 

and imaging camera specifications. In reality, GSD depends 

on other metrics and variables in a UAV-based 

photogrammetry project (Eq. (1)). Second, the planimetry 

and vertical accuracy of UAV-based photogrammetry 

projects are chosen in relation to GSD using Equation 4. In 

UAV-based photogrammetry, horizontal and vertical 

accuracy are proportional to GSD (ground sampling 

distance). Accuracy standards for digital geospatial data 

are based on the ASPRS (American Society for 

Photogrammetry and Remote Sensing) Positional Accuracy 

Standards for Digital Geospatial Data (2014) 

(https://www.asprs.org/asprs-publications) and empirical 

methods (Remondino, F., et al. (2011) and Žabota, B., & 

Kobal, M. (2021)). Planar accuracy is typically considered 

to be 1 to 3 times the numerical value of GSD. In addition, 

elevation accuracy is usually 2 to 5 times the numerical 

value of GSD. In this proposed model, it is assumed that the 

control points are distributed uniformly over the study area 

so that their distances can be determined by calculating the 

number of points in the entire area. To optimize the 

proposed model, we optimize the model coefficients using a 

least squares algorithm. This optimization can be adjusted 

for specific conditions of UAV-based projects, for example, 

for a specific sensor, or for a specific flight altitude, or based 

on a specific project accuracy, all of which are usually 

dependent on the GSD. In the present study, based on the 

project specifications, the values of 𝐾1  and 𝐾2  were 

determined to be 28.84 and 4.59, respectively. This study's 

proposed method consists of four major steps: planning 

(field survey, pre-flight, and flight line adjustment); data 

collection; planning and survey; and data analysis GCPs. 

Data processing with various approaches in consideration: 

bundle adjustment and intense image matching; and 

horizontal and vertical quality evaluation (data and error 

analysis). Figure 3 shows the process of this investigation. 

 

 

https://www.asprs.org/asprs-publications
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Figure 3. Research flowchart 

 The workflow in this study is such that after inputting the 

images into the Metashape Agisoft, the initial step of SfM, 

which involves image alignment and camera parameter 

viewing angle computation, is done. After that, a 3D point 

cloud was built. Based on this sparse point cloud, a high-

density point cloud was generated. The output of SfM was a 

DSM and orthomosaic based on the high-density point 

cloud. As a result, position calibration using a well-

distributed collection of GCPs should be done immediately 

after the point cloud is produced to offer precise position 

information to these photogrammetry findings. Utilizing the 

obtained data, and after establishing and identifying the 

position of GCPs in each image, images were matched using 

the Agisoft software. The bundle adjustment method was 

employed, as was the simultaneous estimation of the interior 

and exterior orientation aspects of the images and the 

process of improving the camera orientation by optimizing 

the model based on the control points. After that, the initial 

parameters, as well as the most appropriate settings and 

variables, were then defined for all 42 GCP networks during 

the data processing stage. Table 1 shows how to determine 

the initial parameters. 

Table 1. Information about the UAV images and DEM processing. 

parameter Number attributes value 

No. images  194 tie points 111,534 

area  0.297 km² error 1.09 pix 

Accuracy Medium RMSEXY  0.78 m 

G.Preselection Enabled RMSEZ  0.96 m 

R. Preselection Yes RMSEXYZ  1.25 m 

Key.P. Limit 40, 000 points cloud  21,802,820 

Tie.P.Limit 4, 000 Resolution 0.1 m 

In this research, the output of this data set with 42 GCPs 

was employed as a processing reference, and the product of 

orthomosaic was regarded as a reference model. Figure 4 

illustrates the orthomosaic product with 42 GCPs. The 

number, spatial distribution, and distances of these GCPs 

were changed in the calculations and examined in each 

subsequent processing stage while maintaining these initial 

parameters, and a method was presented to evaluate the 

effect of the spatial distribution, quantity, and optimal 

distance of GCPs on the quality of the results. The findings 

of the three primary characteristics of the number, spatial 

distribution, and distances of control points were assessed 

in each procedure to evaluate the accuracy of the UAV-

based photogrammetric orthomosaic output. 

 

Figure 4. Orthomosaic result using all 42 GCPs as a 

reference model. 

2.2.1 Distribution testing  

Four alternatives—A, B, C, and D—with various control 
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point distribution patterns and configurations were 

evaluated to identify the optimum spatial distribution of 

GCPs.  Mode A was used to design the minimum GCPs in 

the corners of the UAV photogrammetry block.  Mode B was 

employed to design in all models around the 

photogrammetry block, and mode C was utilized to design 

GCPs around and in the middle of the photogrammetry 

block, and mode D was used to design only in the middle 

and center of the photogrammetry block.  

 

 

Figure 5. The various modes for testing the dispersion 

spatial distribution of GCPs to maximum distances of 1D = 

30 GSD. 

 

 

Figure 6. The various modes for testing the dispersion 

spatial distribution of GCPs to maximum distances of 2D 

 

 

 

Figure 7. The various modes for testing the dispersion 

spatial distribution of GCPs to maximum 3D distances. 

That is, depending on the distance between the GCPs, 

the total number of control points employed in all modes 

ranged from 4 to 42. In each of the four modes mentioned, a 

series of control points were used to construct an 

orthomosaic using the same initial parameters as the 

reference mode. The RMSE and the MAE were utilized as 

orthomosaic accuracy and quality metrics. Figures 5, 6, and 

7 demonstrate the four modes A, B, C, and D of different 

spatial disturbances and checkpoints used in the 

construction and assessment of the UAV's photogrammetric 

orthomosaic result, respectively. 

2.2.2 Distance testing 

Based on the review studies in the introduction, optimal 

accuracy of elevation maps is achieved when we have one 

control point on average per hectare, i.e., 100 square 

meters. Accordingly, in this research, the distances between 

control points were considered as 100 meters and 

coefficients of that. In this research, the designations 1D, 

2D, and 3D were used to denote the spacing between ground 

control points (GCPs) as multiples of the ground sampling 

distance (GSD: 30 cm). The first scenario (high-density 

GCPs) used the 1D configuration (equal to 100 meters (30× 

GSD) as the baseline for both urban and non-urban areas. 

The 2D (200 meters, 60× GSD) and 3D (300 meters, 90× 

GSD) configurations were used in the second and third 

scenarios, respectively, doubling and tripling the GCP 

spacing relative to the first scenario to assess the impact of 

reduced GCP density on the accuracy of photogrammetric 

outputs, such as point clouds and orthomosaics. To 

investigate the optimal GCP distances, they were considered 

in such a way that the control points chosen for processing 

the photogrammetric processes of the UAV and its products 

had approximately 30 GSD =100 m = 1D, 200m = 2D, and 

300m = 3D. The objective of this experiment was to 

determine the extent to which the distance between the GCPs 

influences the accuracy of the base UAV's photogrammetric 
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output. As orthomosaic accuracy and quality measurements, 

the RMSE and the MAE were used. 

2.2.3 Number of control point testing 

The number of control points in the photogrammetric 

findings of the base UAV is investigated for error 

propagation. The number of control points is examined in 

distinct scenarios to determine the influence the number of 

GCPs has on the UAV's photogrammetric results. As a 

result, increasing the distance and lowering the number of 

GCPs are used to process each of the four configuration 

alternatives.  That is, depending on the distance between the 

GCPs, the total number of control points employed in all 

modes ranged from 4 to 42. The findings were assessed 

locally using random points in the building and non-

building regions, as well as globally using the multiscale 

model-to-model cloud comparison (M3C2) algorithm. Table 

2 Show the summary of the different configurations and 

scenarios of this research. 
Table 2.  The summary of the different configurations and 

scenarios of this research 

 

                               

Mode 
Scenario 

GCP 

Distance 

GCP 

Placement 
Environment 

A 

1 
1D 

(100m) 
Corner of 

area 

focused 

Non-

urban/Urban 
2 

2D 

(200m) 

3 
3D 

(300m) 

B 

1 1D Perimeter 

of area 

focused 

Non-

urban/Urban 
2 2D 

3 3D 

C 

1 
1D 

(100m) 
Perimeter 

and center 

hybrid 

Non-

urban/Urban 
2 

2D 

(200m) 

3 
3D 

(300m) 

D 

1 1D Central of 

area 

focused 

Non-

urban/Urban 
2 2D 

3 3D 

 

3 Results and discussion 

3.1 Comparison random points on point cloud 

To evaluate the outcomes of four UAV photogrammetry 

modes (A, B, C, and D) based on the first, second, and third 

scenarios. The random point design was performed to first 

verify the errors locally and then analyze the local influence 

of the random points' proximity or distance to the GCPs on 

the point clouds produced by photogrammetry-based UAV 

outputs. We investigated 30 random points in two 

independent areas, one in construction areas and the other 

in non-construction areas, for this purpose. The building 

regions and randomly selected points were usually 

concentrated in the middle of the study area. The distance 

between the GCPs was considered to be around 1D in the 

first scenario in the non-urban region, and for four cases (A, 

B, C, and D), the examination results are outlined in Figures 

8a, b, c, d, i, j, g, and 8 h. 
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Figure 8. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 

non-building region: (a and b) in mode A, (c and d) in 

mode B, (i and j) in mode C, and (g and h) in mode D in 

the first scenario 

 

Figures 8a, b, c, d, i, j, g, and 8h demonstrate that when 

the distances between GCPs for the generation of UAV 

photogrammetry outputs are anticipated to be about 1D, 

modes B and D achieve the best and worst accuracy in terms 

of RMSE and MAE, respectively. In mode B, the GCPs were 

embedded in practically all of the block's side models, and 

there were no control points in the center of the block, but 

in mode D, the GCPs were only considered in the block's 

central models. As UAV imagery expands outside the 

network of GCPs, the accuracy of photogrammetry output 

outcomes deteriorates. Moreover, the findings demonstrate 

that in non-building environments, the minimal accuracy 

loss in photogrammetric outputs in mode B is up to 48 cm 

and up to 64 cm in terms of RMSE and MAE, respectively. 

As in the first investigation, the distance between the GCPs 

in the urban region was considered to be roughly 1D, and 

the orthomosaic product and assessment results are given in 

Figures 9i, j, k, l, m, n, o, and 9p. 

 

 

 

 

 

Figure 9. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 

building region: (i and j) in mode A, (k and l) in mode B, 

(m and n) in mode C, and (o and p) in mode D in the 

first scenario.  

 

 Figures 9i, j, k, l, m, n, o, and 9p reveal that when the 

distance between the GCPs for producing UAV 

photogrammetric outputs is set to around 1D in building 

areas, modes B and D still have the best and worst accuracy 

in terms of RMSE and MAE, respectively. In mode B, the 

GCPs were effectively incorporated into all edge models of 

the block, and there were no control points in the center of 

the block, but in scenario D, the control points were only 

considered in the block's central models. The accuracy of 

photogrammetric output data degrades when UAV imagery 

spreads outside the network of control points. 
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Figure 10. The UAV's photogrammetry outputs accuracy 

in the building and non-construction areas in the first 

scenario. 

Besides that, the findings demonstrate that the minimal 

accuracy reduction in photogrammetric outputs in mode B 

in construction areas is up to 0.623 m and up to 1.43 m in 

terms of RMSE and MAE, respectively. Furthermore, the 

findings reveal that in all modes of GCP configuration 

patterns (A, B, C, and D) in non-building regions, the 

accuracy of the results in photogrammetric outputs is higher 

than in urban areas in terms of RMSE and MAE measures. 

When the average accuracy of the findings of the UAV-based 

photogrammetry outputs in the building and non-building 

areas is assessed in the first scenario, mode B yields the 

highest results, and mode D produces the poorest. Figure 10 

illustrates the accuracy of the UAV's photogrammetry 

outputs in the building and non-construction areas in all 

four modes in the first scenario. 

In the second scenario, the distance between the GCPs 

was nearly doubled, and an investigation was conducted for 

four modes (A, B, C, and D), and the photogrammetric 

output was produced again. In this scenario, the same 30 

random points in both urban and non-urban regions were 

chosen and analyzed in the orthomosaic result for all cases. 

In this case, in the non-urban environment, the distance 

between the GCPs was deemed to be nearly twice that of the 

first scenario, and assessment results are shown in Figures 

11 a, b, c, d, e, f, g, and 11 h. 

Figures 11a, b, c, d, e, f, g, and 11h demonstrate what 

happens when the distance between the network's GCPs is 

roughly doubled to provide UAV photogrammetric outputs. 

In this scenario, modes B and D have the highest and 

poorest accuracy in terms of RMSE and MAE, respectively. 

But nevertheless, when GCP distances double, the accuracy 

of UAV photogrammetry production in all modes decreases 

in the non-building area.  

 

 

 

 

Figure 11. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 
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non-building region, (a and b) in mode A, (c and d) in 

mode B, (e and f) in mode C, and (g and h) in mode D. 

 

Furthermore, in the second scenario and fourth modes of 

investigation in the urban area, the distance between the 

GCPs was considered to be nearly twice that of the first 

scenario, and for the four modes A, B, C, and D, the 

evaluation results are shown in Figures 12i, j, k, l, m, n, o, 

and 12p. 

 

 

 

 

Figure 12. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 

building region: (i and j) in mode A, (k and l) in mode B, 

(m and n) in mode C, and (o and p) in mode D in the 

second scenario. 

 

As well, when GCP distances are doubled, the accuracy 

of UAV photogrammetry output drops in all modes in the 

construction area. This decrease in accuracy is obtained by 

increasing the distances between GCPs in the best-case B 

construction regions to 80 cm (1.415 m to 0.616 m) and to 

1.60 m (3.031 m to 1.427 m), respectively, in terms of RMSE 

and MAE. In the second scenario, when the average 

accuracy of UAV-based photogrammetric output findings is 

tested in building and non-building regions, mode B delivers 

the best results while mode D generates the worst. In the 

second scenario, Figures 13a and 13b demonstrate the 

accuracy of UAV photogrammetric outputs in construction 

and non-construction regions in all four modes. 

 

Figure 13. The accuracy of UAV photogrammetric 

outputs in construction and non-construction regions: 

(a) mean accuracy; (b) comparison of the first and 

second scenarios. 

 

 

In the third scenario, the distance between the GCPs was 

nearly tripled for modes A, B, C, and D, and the orthomosaic 
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output was generated again. In this scenario, the same 30 

random points in both urban and non-urban regions were 

selected and examined in the orthomosaic output for all 

cases. In this scenario, in non-urban terrain, the distance 

between the GCPs was considered to be almost three times 

that of the first scenario, and assessment findings are shown 

in Figures 14a, b, c, d, e, f, g, and 14h.  

 

 

 

 

Figure 14. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 

non-building region: (a and b) in mode A, (c and d) in 

mode B, (e and f) in mode D, and (g and h) in mode D in 

the third scenario. 

 

Figures 14a, b, c, d, e, f, g, and 14h demonstrate what 

happens when the distance between GCPs is almost tripled 

compared to the first scenario to obtain UAV 

photogrammetric outputs. In this scenario, modes B and D 

have the highest and lowest accuracy in terms of RMSE and 

MAE, respectively. When the distance between GCPs in the 

corner models of the photogrammetry block is tripled, better 

results are obtained in UAV photogrammetry finding in the 

non-building areas of mode C compared to mode D; that is, 

when the distance between control points in the corner 

models of the block increases, the design of GCPs in the 

central models of the block is required, and better results 

are obtained. Moreover, in the third scenario, the distance 

between the GCPs was considered to be almost three times 

greater than in the first scenario, and for the four modes A, 

B, C, and D, the performance evaluations are shown in 

Figures 15i, j, k, l, m, n, o, and 15p. 
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Figure 15. The regression, RMSE, and MAE values of 

elevation between random and reference points in the 

non-building region: (i and j) in mode A, (k and l) in 

mode B, (m and n) in mode D, and (o and p) in mode D 

in the third scenario. 

Figures 15i, j, k, l, m, n, o, and 15p demonstrate what 

happens when the distance between GCPs is almost tripled 

compared to the first scenario to obtain UAV 

photogrammetric outputs in the building area. In this 

scenario, modes C and D have the highest and lowest 

accuracy in terms of RMSE and MAE, respectively. Besides 

this, as GCP distances are doubled and tripled, the accuracy 

of UAV photogrammetric output in all modes in the 

construction area decreases. In this scenario, mode C offers 

the greatest results when the average accuracy of UAV-

based photogrammetric output findings is examined in built-

up and unbuilt-up areas, whereas mode D generates the 

weakest. Figures 16a, b, and 16c in the third scenario 

compare the accuracy of UAV photogrammetric outputs in 

construction and non-construction regions in all four modes 

to the first and second scenarios. 

 
Figure 16. The accuracy of UAV photogrammetric outputs 

in construction and non-construction regions: (a) mean 

accuracy, (b) comparison of the first, second, and third 

scenarios. 

So far, when the GCP distances are doubled and tripled, 

the accuracy of UAV photogrammetry output in all modes in 

both built-up and non-built-up areas is significantly 

reduced. 

3.2 Multiscale model to model cloud comparison (M3C2) 

In this study, the findings were evaluated both locally and 

globally. The results were evaluated locally using 30 

random points and globally using the multiscale model-to-

model cloud comparison (M3C2) approach in both building 

and non-building zones. The M3C2 (multiscale model-to-

model cloud comparison) approach, developed by Lague et 

al. (2013), allows for direct 3D point cloud comparison by 

measuring distances perpendicular to local surface 

normals, avoiding the requirement for meshing or gridding, 

and showing resilience for irregular datasets. This work 

uses M3C2 in conjunction with UAV photogrammetry and 

SfM-derived models to assess surface changes and 

alignment accuracy while also examining statistical metrics 

(mean and standard deviation) of M3C2 distances. The 

mean distance shows systemic biases or alignment errors 

caused by the amount and distribution of ground control 

points (GCPs), whereas the standard deviation represents 

local variability caused by surface roughness, vegetation, or 

GCP mispositioning. Positive/negative mean values 

represent vertical model displacement (new model 

above/below reference), whereas near-zero means indicate 

correct alignment. A low standard deviation (σ) denotes 

consistent accuracy, while a large σ indicates noise, surface 

complexity, or mistakes. These findings are consistent with 

The method's integration with CloudCompare and 

sensitivity to GCP setups demonstrate its usefulness in 

assessing 3D reconstruction reliability. In this section, we 

explore point cloud error in general rather than analyzing it 

locally in the modes studied in the previous section. 

Recently, 3D point cloud comparison has been utilized to 

quantify surface changes. Two techniques have been 
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pursued to this end: 3D tracking of homologous regions of 

the surface to calculate a displacement area and distance 

computation between two point clouds when homologous 

parts cannot be specified. Lague, Brodu, Leroux, and 

sensing (2013) provide a multiscale model-to-model cloud 

comparison (M3C2) method that does a direct comparison 

of point clouds in 3D. This technique has three 

distinguishing attributes: i) it acts directly on point clouds 

without meshing or gridding. It computes the local distance 

between two point clouds along the typical surface 

direction, tracking 3D fluctuations in surface orientation, 

and it determines a confidence range for each distance 

measurement based on point cloud roughness and 

registration error.  

Furthermore, when M3C2 was computed between the 

point clouds acquired for this research from different 

approaches and the reference point cloud, it proved 

accurate in all situations when the distance between the 

GCPs was doubled. Figures 18e, f, g, and 18h achieved the 

desired outcomes. The M3C2 method is used to calculate the 

orthogonal distance between two point clouds. The M3C2 

additionally employs a local measure of cloud roughness 

and a statistical significance test for recorded changes. The 

M3C2 method incorporates numerous new aspects that ease 

the comparison of point clouds of natural settings in 3D 

while also allowing for the detection of extremely small 

surface changes and determining their statistical 

significance (see Figure 17).  

 

 
Figure 17. M3C2 between the point clouds acquired in this 

study from different modes and the reference point cloud, 

(a) mode A, (b) mode B, (c) mode C, and (d) mode D, in the 

first scenario. 

Figures 17a, b, c, and 17d demonstrate M3C2 between the 

point clouds obtained in this research from various modes 

and the reference point cloud in (a) mode A, (b) mode B, (c) 

mode C, and (d) mode D, respectively, in the first scenario 

(1D). When all GCPs are designed around and in the central 

location of the photogrammetry block, Mode C has the best 

accuracy and the least error compared to the other three 

possible situations.  

 
Figure 18. M3C2 between the point clouds acquired in this 

study from different modes and the reference point cloud: 

(e) mode A, (f) mode B, (g) mode C, and (h) mode D in the 

second scenario. 

Figures 18e, f, g, and 18h demonstrate M3C2 between the 

point clouds (e) in mode A, (f) in mode B, (g) in mode C, and 

(h) in mode D, respectively, in the second scenario (2D) and 

the reference point cloud. When the distances between the 

GCPs in all modes are doubled in comparison to the first 

scenario, the M3C2 distance grows poorer, and the average 

and standard deviation come out with greater inaccuracy. 

Mode C, in which all GCPs are constructed around and in 

the center position of the photogrammetry block, likewise 

has higher accuracy than other modes in this scenario. 
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Figure 19. M3C2 between the point clouds acquired in this 

study from different modes and the reference point cloud, 

(i) mode A, (j) mode B, (k) mode C, and (l) mode D, in the 

third scenario. 

Figures 19i, j, k, and 19l additionally generated the 

required outcomes when the distance between the GCPs was 

tripled in contrast to the first scenario. Figures 19i, j, k, and 

19l show M3C2 between the point clouds (i) in mode A, (j) 

in mode B, (k) in mode C, and (l) in mode D in the third 

scenario (3D) and the reference point cloud, respectively. 

Again, mode C offers more accuracy than other modes in 

this case since all GCPs are created around and in the 

central location of the photogrammetry block. In addition, 

mode D has the lowest accuracy in all three scenarios in all 

modes of M3C2 investigation. Moreover, a total of three 

instances of comparison point clouds from the first, second, 

and third situations were chosen to represent the error 

distribution for distance M3C2 computed between reference 

point clouds and point clouds derived from photogrammetry 

products, as shown in Figures 20m, n, and 20o. 

 

Figure 20. Error distribution for distance M3C2 computed 

between different modes and the reference point clouds from the 

first, second, and third scenarios. 

The results of the error distribution for distance M3C2 in 

Figure 20 reveal that errors are more prevalent in the 

research area's border areas than in the center sections. The 

reason for this is that the longitudinal and side overlap of 

the images is frequently less extensive in border areas than 

in the center parts. As a result, they have greater inaccuracy 

in producing cloud points than the photogrammetric block's 

center sections. The necessity to decrease error in the 

photogrammetric block's border regions is to design more 

control points in the block's side models, which the design 

modes of mode B and mode C affirm. Furthermore, in 

building areas with insufficient texture and a homogeneous 

surface, such as those in our research region, the point 

clouds formed do not have an appropriate density in the 

compromise, leading the distance from the control points to 

expand in these positions. If they approve it, the error will 

be much greater. Furthermore, the accuracy of production 

point clouds will be reduced in areas where topographic 

features vary abruptly due to the presence of structures or 

vegetation, such as trees. 

4. Conclusions 

A number of factors impact the accuracy of UAV 

photogrammetry results.  While carefully examining the 

spatial distribution pattern of GCPs, as well as their 

quantity and optimal distance, the following two essential 

aims are pursued: The primary objective of this study is to 

assess the impact of GCP's network configuration pattern, 

number, and spatial distribution on UAV-based 

photogrammetry and 3D reconstruction accuracy. The 

second objective is to determine the optimal distances 

between the GCPs in order to improve the accuracy of the 

orthomosaic acquired by UAV photogrammetry. To that 

end, four alternative A, B, C, and D modes—in three 

scenarios with different GCP spatial distributions and 

configurations—were analyzed to determine the optimal 

GCP distance. Mode A was used for generating a minimum 

number of GCPs in the corners of the UAV photogrammetry 

block; mode B was used to establish GCPs in all models 

around the photogrammetry block; mode C was used to 

develop GCPs around and in the middle of the 

photogrammetry block; and mode D was used to set up 

GCPs only in the middle and center of the photogrammetry 

block.  Furthermore, in all modes A, B, C, and D in the first 

scenario, the appropriate GCP distances chosen for 

processing the UAV photogrammetric operations and their 

output were approximately 1D (= 30* GSD = 100 m). The 

1D distance was chosen because it is less than 30 times GSD 

or less than 3 times the airbase between two successive 

images with an average longitudinal coverage of 80%. 

Choosing a distance shorter than this is not cost-effective 

since it increases the number of GCPs necessary for UAV 

photogrammetry output and raises the project's cost. In 

addition, in the second and third scenarios, GCP distances 

were approximately chosen in 2D and 3D, respectively. That 

is, the total number of GCPs used in all modes varies from 

4 to 42, depending on the distance between the GCPs.  The 

findings were assessed locally using 30 random points in the 
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building and non-building regions, as well as globally using 

the M3C2 algorithm in the four alternative A, B, C, and D 

modes and three scenarios. The M3C2 method incorporates 

numerous new aspects that ease the comparison of point 

clouds of natural settings in 3D while also allowing for the 

detection of extremely small surface changes and 

determining their statistical significance. For results 

validation, the output of all 42 GCPs was employed as a 

processing reference, and the product of the orthomosaic 

was regarded as a reference model for all other outputs in 

the four A, B, C, and D mods and distinct scenarios.  The 

RMSE and MAE were utilized as accuracy metrics in this 

research. The outcomes of the three distinct scenarios 

investigated in this research, as well as the four different A, 

B, C, and D modes, are given in further detail below. 

In the first scenario, according to the 1D findings of the 

local accuracy of random points, modes B and D, achieve 

the best and worst accuracy in both urban and non-urban 

zones, respectively, in terms of RMSE and MAE measures. 

In mode B, the GCPs were embedded in practically all of the 

block's side models, and there were no control points in the 

center of the block, but in mode D, the GCPs were only 

considered in the block's central models. As UAV imagery 

expands outside the network of control points, the accuracy 

of photogrammetry output outcomes deteriorates. In this 

situation, the least accuracy loss in photogrammetric 

outputs in terms of RMSE is up to 10 cm in urban areas and 

up to 106 cm in non-urban areas. It should be noted that the 

building locations in the region under examination are 

almost in the center of the block, and their distances from 

the GCPs established in the block's side models have the 

greatest distance; thus, the inaccuracy in these areas is 

significantly larger. Furthermore, the findings reveal that in 

all modes of GCP spatial configuration (A, B, C, and D) in 

non-building regions, the accuracy of the results in 

photogrammetric outputs is higher than in urban areas in 

terms of RMSE and MAE measures. When the average 

accuracy of the findings of the UAV-based photogrammetry 

outputs in the building and non-building areas is assessed 

in the first 1D scenario, mode B yields the highest results, 

and mode D produces the poorest. In addition, in the first 

scenario (1D), the M3C2 method between the point clouds 

obtained in this research from various modes and the 

reference point cloud demonstrated that when all GCPs are 

designed around and in the central location of the 

photogrammetry block, Mode C has the best accuracy and 

the least error (0.17 m and 0.80 m, respectively) compared 

to the other three possible situations in terms of mean errors 

and RMSE. 

In the second scenario, the distance between the GCPs 

was roughly doubled, four modes (A, B, C, and D) were 

investigated, and the photometric result was generated once 

again. In this situation, the same 30 random points were 

chosen and evaluated in both urban and non-urban areas. 

In this scenario, mode B has the highest accuracy in terms 

of RMSE and MAE measures. Nonetheless, when GCP 

distances double in the non-building region, the accuracy of 

UAV photogrammetry output in all modes falls. 

Furthermore, the distance between the GCPs in the second 

and fourth modes of study in the metropolitan area was 

assessed to be approximately double that of the first 

scenario and for the four modes A, B, C, and D. As well, 

when GCP distances are doubled, the accuracy of UAV 

photogrammetry output drops in all modes in the 

construction area. This decrease in accuracy is obtained by 

increasing the distances between control points in the best-

mode B construction regions to 80 cm (1.415 m to 0.616 m) 

and to 1.60 m (3.031 m to 1.427 m), respectively, in terms of 

RMSE and MAE. In the second 2D scenario, when the 

average accuracy of UAV-based photogrammetric output 

findings is tested in building and non-building regions, 

mode B delivers the best results while mode D generates the 

worst. In addition, the findings of the M3C2 method in the 

second scenario demonstrate that when the distances 

between the GCPs in all modes are doubled in comparison 

to the first scenario, the M3C2 distance grows poorer, and 

the average and standard deviation come out with greater 

inaccuracy. Mode C, in which all control points are 

constructed around and in the center position of the 

photogrammetry block, likewise has higher accuracy than 

other modes in this scenario. 

In the third scenario, the distance between the GCPs was 

nearly tripled for modes A, B, C, and D, and the 

photogrammetric output was generated again. In this 

scenario, the same random points in both urban and non-

urban regions were selected and examined in the 

orthomosaic output for all cases. In this scenario, modes C 

and D have the highest and lowest accuracy in terms of 

RMSE and MAE, respectively. When the distance between 

GCPs in the corner models of the photogrammetry block is 

tripled, better results are obtained in UAV photogrammetry 

finding in the non-building areas of mode C compared to 

mode B; that is, when the distance between GCPs in the 

corner models of the block increases, the design of GCPs 

patterns in the central models of the block is required, and 

better results are obtained. Furthermore, when the GCP 

distances are doubled and tripled in the second and third 

scenarios, the accuracy of UAV photogrammetry output in 

all modes in both built-up and non-built-up areas is 

significantly reduced. As a consequence of the research, the 

GCP design in mode C has the lowest error of all options, 
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and expanding GCP intervals beyond 30 times the GSD is 

not recommended in the UAV geomatics projects, although 

when GCP distances are chosen greater than 90 GSD, the 

design of the GCP pattern in the central models of the block 

is required and better results are obtained. In addition, the 

findings of the globally accurate assessment utilizing the 

M3C2 approach revealed that mode C, when GCPs are 

designed around the corner and central location of the 

photogrammetry block, had the best outcomes and the least 

error in the three scenarios examined. The results of the 

error distribution for distance M3C2 reveal that errors are 

more prevalent in the research area's border areas than in 

the center sections.  
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