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1. Introduction

Drones are unmanned aerial vehicles that use
aerodynamic forces to fly and autonomously carry a
variety of payloads depending on the mission. These
aircraft are remotely piloted and controlled and can fly
autonomously day and night according to a predetermined
schedule (Wezeman, 2007). Drone technology consists of
three primary components: an aircraft, a ground control
station, and an operator. The control station can be
located on the ground, on a satellite, on a manned aircraft,
a ship, a submarine, or anywhere else (Khan, 2005).
Military applications of drones include reconnaissance and
espionage, precision strikes, support for ground forces,
border surveillance, and rescue and relief operations.
Civilian applications of drones include precision
agriculture, 3D mapping and modeling, infrastructure
monitoring, goods delivery, aerial filming and
photography, environmental monitoring, disaster relief,
public safety, and traffic control (Lai & Huang, 2020).

Thermal imaging by drones enables data capture in
darkness, fog, and cluttered environments (Caruana,
1997). However, challenges like thermal noise, low
resolution, and heat signature overlap limit accuracy. This
study evaluates YOLOv8 (mAP@0.5: 0.892), Faster R-
CNN (mAP@0.5: 0.709), and RetinaNet (MAP@0.5:
0.654) on a dataset of 2295 thermal images from Roboflow
and Kaggle, plus 500 custom images under nighttime, fog,
and forested conditions, to optimize performance for real-
time drone applications.

A literature review revealed that comprehensive studies
on drone thermal imaging for human detection are scarce.
While prior studies have explored human detection in
thermal images (e.g., Ghose et al., 2019; Ivasi¢ et al.,
2019), few have systematically compared state-of-the-art
deep learning algorithms such as YOLOv8, Faster R-CNN,
and RetinaNet for human detection in drone-acquired
thermal images under diverse conditions. This study
provides the first comprehensive evaluation of these
algorithms, focusing on both detection accuracy and real-
time processing speed.

Some of the conducted research is as follows:

In the study by Ghose et al. (2019), salient maps were
used to detect pedestrians in thermal images. In the study
by Ivasic et al. (2019), the YOLO detector was trained on a
thermal image dataset to detect people. In the study by
Gomez et al. (2018), thermal images were used to count
people in public spaces, such as classrooms. In the study
by Roberto Opromolla et al. (2019), the visual
identification and tracking of drones using the YOLO
algorithm were discussed, and it was noted that this
algorithm, due to its high frame rate, allows us to perform
the identification operation in real-time. In the study by Al-
Emadi et al (2022), drone detection and identification
using deep learning were investigated, and methods for
identifying drones were investigated using deep learning
techniques such as convolutional neural networks,

recurrent neural networks, and complex recurrent neural
networks. In the study by Diwan et al. (2023), the YOLO
algorithm was examined and compared with the RCNN
family algorithm, and it was also briefly stated that single-
stage algorithms, such as YOLO, have higher frame rates
but lower accuracy in adverse environmental conditions,
and two-stage algorithms, such as RCNN, have much
higher accuracy but lower frame rates. In the study by
Yilmaz & Kutbay (2024), the YOLO version 8 algorithm
and its integration with TensorFlow.js were used to better
identify drones and improve the performance of the
algorithm.

In the study by Pourkhoshkhoie (2023), deep learning
algorithms in computer vision for image classification and
object recognition can facilitate the agricultural industry,
especially in rice cultivation, to reduce human efforts in
laborious, heavy, and repetitive tasks. In the research of
Pashazanos (2020), the main goal is vehicle tracking in
drone images. Images from the 123 drone dataset, which
consists of 18 video files, are acquired frame by frame, and
a percentage of the images are considered for training the
network. Then, using a deep neural network, we detect the
vehicle in the initial frame. The default bounding for the
tracking algorithm in the new frame is the bounding in the
previous frame. Then, we can use KF algorithms to define
linear state variables or EKF for the variables. Nonlinear
or mean displacement is used to track the vehicle in
subsequent frames, and the accuracy and speed of tracking
in this way are investigated. In the research of Liu et al.
(2022), the main goal was to detect military objects from
drones. In this research, the detection of drones at low
altitudes was simulated, and the database of the T-3 drone
image recognition tank was built. Then, YOLO5v and its
improvement have been used for object recognition of
drone images. Another research by Tan et al. (2021)
focused on target recognition in drone images based on the
improved YOLOv4 algorithm. The study proposes an
improved YOLOv4 algorithm for the drone image target
recognition model (YOLOv4_Drone). The ability of the
YOLOv4 algorithm to detect small targets in drone images
with complex backgrounds was enhanced by adding a
receptive field module. In another study, Zhang et al.
(2020) addressed the issue of coarse-to-fine object
detection in drone images wusing a lightweight
convolutional neural network and deep motion salience.
Experimental results show that the proposed method can
achieve comparable detection speed but superior accuracy
to six state-of-the-art methods. In another study, Chen et
al. (2022) proposed a vehicle detection method based on
high-resolution images captured by drones, which shows
that traditional object detection algorithms are limited by
the images and object size. In another more recent study,
Jawaharlalnehruet al. (2022) proposed an improved YOLO
algorithm for object detection in drone images. The aerial
image drone can be positioned in the target area in real-
time, and the projection relation can convert the longitude
and latitude of the drone. The results showed that
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significantly, the average accuracy of the detection
network in the aerial image of the target area increased to
79.5%.

As the research background shows, object recognition is
a necessary step in many computer vision systems used in
drones. The development of target recognition algorithms
is a rapidly growing research area, with new algorithms
being proposed with a growing trend to increase the
accuracy and efficiency of recognition (Bomantara et al.,
2023). Nowadays, the use of deep neural network
algorithms has contributed significantly to improving
recognition accuracy (Roslidar et al., 2020). One of the
important drone-based image processing challenges is the
detection of humans at night. Thermal imaging is one of
the advanced and efficient technologies to solve this
challenge (Girshick et al., 2014). Thermal imaging as a
tool for measuring temperature and identifying anomalies
has many advantages, but it also faces challenges and
disadvantages. Some of these challenges in identification
include: Low accuracy in detecting anomalies, which is
one of the main challenges of thermal imaging. Factors
such as environmental conditions, surface coverage, and
camera viewing angle can negatively affect the accuracy of
measurements. To solve these challenges, the use of
artificial intelligence (Al) techniques has received
widespread attention from researchers today. The
YOLOvV8, Faster R-CNN, and RetinaNet algorithms are
among the new and popular algorithms in this field. The
main goal of this research is to evaluate the efficiency of
these algorithms for detecting humans in thermal images in
terms of two criteria: recognition accuracy and processing
speed.

Prior studies (e.g., Ghose et al., 2019; /vasi¢-Kos et al.,
2019) explored human detection in thermal images but
rarely optimized both accuracy and speed in complex
drone scenarios like fog, nighttime, or cluttered
backgrounds. This study is the first to systematically
compare YOLOv8, Faster R-CNN, and RetinaNet for
balanced performance in drone-acquired thermal images
under diverse conditions. It introduces: (1) a novel
evaluation metric integrating accuracy and speed, tailored
for drone applications; (2) a preprocessing technique to
mitigate thermal noise, enhancing detection in challenging
environments; and (3) evaluations of multi-spectral
integration and performance on resource-constrained
devices. These advancements address low accuracy due to
thermal noise, limited resolution, and heat signature
overlap, establishing a robust framework for real-time
human detection in drone-based thermal imaging, suitable
for applications like search and rescue.

The structure of the paper is given below. In the next
section, the research methodology is first introduced,
followed by the introduction of Al techniques along with
the experimental setup and datasets. In the third section,
the experimental results are analyzed. Finally, in the last
section, the research conclusions are presented.
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2. Materials and methods

This study evaluates YOLOv8, Faster R-CNN, and
RetinaNet for human detection in drone thermal images,
focusing on accuracy and speed. Selected for their frame
rates (YOLOv8: ~30 FPS; RetinaNet: ~10 FPS; Faster R-
CNN: ~0.3 FPS), these algorithms address thermal
imaging challenges like noise and low resolution. We
introduce a novel evaluation metric and preprocessing
technique to enhance performance in diverse conditions
(e.g., nighttime, fog).

/
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Data preparation
and labeling
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RetinaNet and
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Comparison of
models

—
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Figure 1. Block diagram of the study

The following provides more information about the applied
Al methods in this study.

2.1. YOLO Algorithm

The YOLO algorithm is a family of deep learning
algorithms for object recognition in images and videos
(Jiang, et al., 2022). This algorithm has gained great
popularity due to its high speed and acceptable accuracy
compared to other object recognition algorithms. The
YOLO algorithm stands for "you only look once"; meaning
that the location of the desired objects is determined by
looking at the image once. This operation is done with the
help of image gridding, which saves time (Redmon, et al.,
2015). Unlike two-stage object recognition algorithms with
separate steps for region suggestion and object
classification, YOLO performs the entire process in a
single step. The steps for object location detection and
classification in this method are as follows:

* Neural network: YOLO uses a deep convolutional neural
network as its foundation. This network consists of
different layers, each of which performs a specific task to
extract visual features from the image.

o Feature extraction: As the image passes through the
neural network, visual features are extracted at different
levels. These features include information such as edges,
corners, colors, and patterns.

* Bounding box prediction: The neural network makes
predictions for each cell in a predefined grid in the image.
These predictions include the probability of an object in
that cell, the type of object, and the position and scale of
the bounding box around the object.

* Combining and eliminating bounding boxes: Finally, a
deconvolution algorithm is used to combine the predictions
for each cell and detect the object in the image.

The structure of the CNN network of the YOLO algorithm
(Figure 2) is as follows: first, the image tensor is given as
input to the YOLO algorithm, which is the CNN network.
The task of the CNN network is to extract important image



&

Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024

features such as edges, curves, and the shape of the object
in general. This operation is initially performed by a
convolution with a 7x7 filter in 64 different types (Best et
al., 2020). In the next step, a real function is used to zero
out negative values. After removing negative values, we use
pooling to further reduce the image tensor.
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Figure 2. Structure of the CNN network in the YOLO
algorithm (Lee and Kim, 2020)

The steps for implementing and training the YOLO
algorithm are as follows:
* Choosing a deep learning framework: YOLO can be
implemented using different deep learning frameworks
such as TensorFlow, PyTorch, or Caffe.
* Downloading the YOLO model: There are various pre-
trained YOLO models available, such as YOLOv4,
YOLOv5, and YOLOvVS, from which we can download a
pre-trained model or build our model from scratch. For
example, if we want to recognize cars in images, we can
use a model that has already been trained on a dataset of
car images.
* Preparing the dataset: We prepare a dataset suitable for
human detection that includes the labeled image.
* Image preprocessing: We preprocess the images for input
to the YOLO model, which includes resizing the images,
normalizing the pixel values, and converting the images to
the format required by the model.
* Model parameter tuning: We tune some of the parameters
of the YOLO model for the task at hand. This may include
adjusting the number of classes, the size of the neural
network, and the activation functions.
* Model training: We train the YOLO model using the
dataset. This process involves optimizing the model
parameters to minimize the error function.
* Model evaluation: We evaluate the performance of our
model on the test dataset to ultimately determine how well
the model detects humans in images.

2.2. Faster R-CNN Algorithm

The R-CNN (Regional Convolutional Neural Networks)
family of algorithms is one of the advanced deep learning
methods that is widely used for object detection in images.
The R-CNN family of algorithms includes R-CNN, Fast R-
CNN, and Faster R-CNN. These algorithms use a

combination of convolutional neural networks and support
vector machines to extract features from images and
classify objects (Figure 3) (Wong et al., 2016). The
different versions of the R-CNN family of algorithms are
(Hmidani and Alaoui, 2022):

* R-CNN: The first algorithm in this family is R-CNN,
which was introduced in 2013. This algorithm uses a
sliding window search to suggest potential regions or the
probability of the presence of an object in the image. Then,
for each proposed region, a CNN is used to extract the
feature vector, and an SVM is used to classify the object.

» Fast R-CNN: To increase the speed of R-CNN, the Fast
R-CNN algorithm was introduced in 2015. This algorithm
uses a deep neural network called RPN (Region Proposal
Network) to suggest potential regions or the probability of
the object in the image. RPN is significantly faster than
sliding window search and also improves the accuracy of
the region suggestion.

* Faster R-CNN: In 2017, the Faster R-CNN algorithm was
introduced, which significantly improved the speed and
accuracy compared to Fast R-CNN. This algorithm uses an
optimized version of RPN as well as a region correction
step to improve the recognition accuracy.

B> person? yes.
Q _:
tvmonitor? no.

4. Classify
regions

1. Input
image

2. Extract reglon
proposals (~2k)

3. Compute
CNN features

Figure 3. General structure of the R-CNN algorithm
(Girshick et al., 2022)

The object recognition steps in the R-CNN family of
algorithms are as follows:
* Region suggestion: In this step, it uses various algorithms
such as SWS or CNN to find the possible regions of the
object in the image.
* SWS: In this method, the image is divided horizontally
and vertically into small windows of fixed size. Then, each
window is evaluated by a simple classifier, such as an
SVM, to determine whether it contains an object or not.
* CNN: In this method, deep neural networks such as RPN
are used to suggest possible regions of objects. RPNs use a
convolutional neural network to extract features from the
image and predict the probability of the object in each
region.
» Feature extraction: For each proposed region, a
convolutional neural network (CNN) is used to extract a
feature vector. This feature vector provides a summary of
the visual information in the region.
« Classification: In this step, a classifier such as a support
vector machine (SVM) is used to assign each region to one
of the predefined object classes. SVM is a machine
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learning algorithm that can differentiate between different
data classes.

* Region correction: Finally, the algorithm may adjust the
position and scale of the proposed region to improve the
recognition accuracy. This is done using a deep neural
network that can predict the optimal position and scale of
the region for each object.

Overall, the R-CNN family of algorithms is a powerful
method for object recognition in images. These algorithms
have high accuracy and speed and can be used for a wide
range of applications. However, these algorithms require a
large amount of data for training and are difficult to
implement. The implementation and training steps of the
Faster R-CNN algorithm are as follows:

* Base network selection: Select the network that performs
best given the complexity of the data and available
computational resources. Common architectures include
ResNet, VGG, and Inception.

+ Region proposal network (RPN) design: A small
convolutional network that operates on the features
extracted by the base network. For each location in the
feature map, the RPN predicts several bounding boxes of
different sizes and ratios, along with a score indicating the
probability of the object being in that box.

* ROI Pooling: Convert the features extracted from the
proposed regions to a fixed size for input into fully
connected layers. Divide each proposed region into a
square grid and select the maximum value of each cell as
the feature of that cell.

* Bounding box classification and regression: Determine
the class of the object in each proposed region and refine
the position of the bounding box. A fully connected network
that receives the features extracted by the rolling layer as
input and has two output branches (classification,
bounding box regression).

» Loss function: Measures the difference between the
network output and the actual labels (classification,
location, and RPN).

* Data preparation: Select a dataset with diverse and high-
quality objects, such as COCO and Pascal VOC, and then
label and classify the data. Of course, it can be increased if
necessary.

* Network training:

1. RPN training: Initial training of RPN to generate region
suggestions.

2. Joint training: Joint training of RPN and classification
and bounding box regression network.

3. Optimizer: Use a suitable optimizer such as SGD, Adam,
or RMSprop.

4. Learning rate tuning: Adjust the learning rate manually
or use automatic tuning techniques.

* Validation: Evaluate the network performance on the
validation dataset during training.

o Test dataset: Final evaluation
performance on the test dataset.

* Evaluation criteria: Calculate mAP to evaluate the
recognition accuracy.

of the network
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o Interpretation of results: Analyze the results to identify
the strengths and weaknesses of the model.

2.3. RetinaNet Algorithm

RetinaNet is an advanced deep-learning architecture
designed for object recognition. It was developed by
Facebook Artificial Intelligence Research (FAIR) and aims
to combine the speed of single-stage detectors with the
accuracy typically associated with two-stage detectors (Lin
et al, 2017). A key innovation in RetinaNet is the
introduction of focal loss, which effectively addresses the
challenge of class imbalance during training, making its
performance particularly robust in detecting small and
indistinguishable objects. RetinaNet consists of several
stages that contribute to its effectiveness in object
recognition (Figure 4):

* Backbone network: The goal of the backbone network is
to extract feature representations from input images that
serve as the foundation for the object recognition process.
Common choices for the backbone include powerful
architectures such as ResNet or ResNeXt, which are known
for their strong feature extraction capabilities. The output
of this stage includes feature maps of different resolutions,
which provide essential information for recognizing objects
of different sizes in the image.

» Feature Pyramid Network (FPN): The Feature Pyramid
Network (FPN) improves the feature maps generated by
the backbone to improve object recognition at different
scales. This network uses a top-down architecture with
lateral connections that allow the model to effectively use
high-resolution and low-resolution features. The output of
this stage is a multi-scale feature pyramid that enriches the
model’s ability to recognize objects of different sizes and
improves the overall recognition accuracy.

* Object Detection Head: The object detection head is
responsible for predicting class scores and bounding box
coordinates for each object in the image. This stage
includes components such as a SoftMax layer for class
prediction and a linear layer for bounding box regression
that refines the predicted box coordinates. This mechanism
relies on a network of anchor boxes at multiple scales and
ratios to ensure comprehensive coverage of potential
object locations. The output includes class probabilities
and the corrected bounding box coordinates for each
anchor.

* Focal loss calculation: The goal of focal loss calculation
is to address the challenge of class imbalance during
training, which is common in object recognition tasks. This
mechanism involves applying a moderation factor to the
standard cross-entropy loss, reducing the contribution of
easy-to-classify examples while focusing more on those
that are hard to classify. As a result, the output is a more
balanced loss that helps the model learn effectively from
challenging examples and ultimately improve recognition
performance.

* Non-Maximum Suppression (NMS): Non-Maximum
Suppression (NMS) is performed to refine the final
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predictions by removing redundant and overlapping
bounding boxes. This mechanism involves selecting the
highest-scoring bounding boxes and suppressing others
that significantly overlap with them to ensure that each
detected object is represented by a bounding box. The
output of this step is a final set of bounding boxes and class
predictions that provide a clear and distinct representation

Figure 4. General structure of the RetinaNet algorithm
(Tian et al., 2020)

To implement RetinaNet, you can use popular deep
learning frameworks such as TensorFlow, PyTorch, or
Keras. These frameworks provide predefined tools and
layers for implementing object recognition models. The
steps for implementing and training the RetinaNet
algorithm are as follows:

» Selecting a base network: Selecting a suitable base
network is the first step in implementing RetinaNet. Lighter
base networks are more suitable for real-time applications,
and deeper base networks are more accurate.

« Designing prediction layers: The number and size of
prediction layers depend on the size and complexity of the
objects you want to recognize.

» Loss function: Measures the difference between the
network output and the actual labels.

» Classification Loss: To calculate the difference between
the predicted probability distribution and the actual class
label

« Position Loss: To calculate the difference between the
predicted bounding boxes and the actual bounding boxes

» Dataset: To train the network, you need a large and
diverse dataset of images with accurate labels.

* Network Training: Use an optimization method such as
SGD or Adam to train the network.

» Network Testing: After training the network, evaluate it
on test images and evaluate its accuracy with metrics such
as mAP.

2.4. Experimental setup

The algorithms were implemented using the following
configurations: YOLOv8 was trained with a learning rate
of 0.001, batch size of 16, and 100 epochs using the Adam
optimizer on a pre-trained CSPNet (Darknet-53) backbone,
fine-tuned on our dataset. Faster R-CNN utilized ResNeXt-
101-32x8d_FPN_3x with a learning rate of 0.0003 and an
SGD optimizer, while RetinaNet employed ResNet-
101_FPN_3x with a learning rate of 0.0001 and an Adam

optimizer. Training was conducted on an NVIDIA RTX
3090 GPU with 24 GB VRAM, achieving the reported FPS
values (Table 3).

2.5. Datasets

The dataset comprises 2295 thermal images (640x640)
from Roboflow (‘Thermal Human Detection Dataset,” CC
BY 4.0) and Kaggle (‘Drone Thermal Imaging,’ Public
Domain), plus 500 custom-labeled images captured using a
FLIR Vue Pro R on a DJI Phantom 4 in urban, rural,
forested, and mountainous areas under fog, nighttime, and
low-visibility conditions. Labeling used Roboflow and
LabelBox for precise bounding boxes. Training splits of
70% (1606 images, 344 validations, 345 test), 80% (1836
images, 229 validations, 345 test), and 90% (2065 images,
115 validations, 345 test) were evaluated, with 90%
yielding optimal accuracy (mAP@0.5: 0.892 for YOLOVS).
Data augmentation (rotation, cropping, brightness
adjustment) ensured robustness. 60% of images were
nighttime, 40% low-visibility, ensuring diversity. In Table
1, comparisons of the datasets used, the platform, and the
backbone of each algorithm are made.

Table 1. Comparison of the number of training and testing images as
well as the platform used in Al algorithm.

Algorithm Training Validation Platform Backbone
images Images

YOLOV8 | 1606 (70%) 344 Ultralytics CSPNet
1836 (80%) 229 PyTorch
2065 (90%) 115

RetinaNet | 1606 (70%) 344 Detection2 | ResNet_1
1836 (80%) 229 01
2065 (90%) 115

Faster R- | 1606 (70%) 344 Detection2 | ResNeXt

CNN 1836 (80%) 229 101
2065 (90%) 115

Figure 5 shows some sample data. All data is labelled in
the Roboflow web platform and, in some cases, as
mentioned earlier, in the LabelBox software.
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Figure 5. Sample data

2.6. Proposed Enhancements for Thermal Imaging

To mitigate thermal noise, we propose a wavelet-based
preprocessing module using Discrete Wavelet Transform
(DWT), filtering fog-induced artifacts while preserving
human target edges, improving YOLOvVS's mAP@0.5 by
3.4% to 0.922 in foggy conditions. We introduce a
Balanced Performance Index (BPI):

BPI =0.5-mAP@0.5+0.5-FPS/FPS__ )

where FPSpax = 30. BPI yields 0.946 for YOLOvS, 0.709
for Faster R-CNN, and 0.654 for RetinaNet at 90% split.
YOLOvVS’s anchor boxes were optimized for small targets,
Faster R-CNN’s RPN used a 0.7 IoU threshold, and
RetinaNet’s focal loss was tuned (y=2, a=0.25) for sparse
thermal data.

3. Experimental Results
3.1. Evaluation criteria

Six evaluation criteria were selected to assess the
algorithms’ performance: Precision (positive predictive
value), Recall (sensitivity), mean Average Precision
(mAP), F1-score (harmonic mean of precision and recall),
Correct Detection Rate (true positives relative to all
detections), and False Alarm Rate (false positives relative
to all negatives). mAP was calculated at loU=0.5 for
single-threshold evaluation and across 1oU=[0.5:0.95] for
robustness, following COCO standards, to address varying
localization challenges in thermal imaging. These metrics
balance detection accuracy and operational reliability in
real-world drone scenarios.

3.2. Analysis of results

After training the Al model to detect humans with
labeled images, the performance of each model on the test
samples is shown in Tables 2 and 3. It should be noted that
the number and percentage of images used for all three
training, evaluation, and testing sections for three different
categories of datasets were mentioned earlier, and in Table
2, only the percentage of training data is mentioned, and
the rest has been omitted to avoid redundancy.
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Table 2. Accuracy Metrics Across Training Splits.

£ = | & |8 |&8
= = T 7} ® 5 o a4 =
= o S [a) < a
s & ¢ g z % o =& =
< o E =
70% 0.870 0.840 0.865 0.855 0.830 0.14 0.933
2
o 80% 0.885 0.855 0.880 0.870 0.845 0.13 0.940
-
o
>-
90% 0.900 0.870 0.892 0.885 0.860 0.12 0.946
70% 0.680 0.660 0.690 0.670 0.650 0.26 0.695
5
% 80% 0.695 0.675 0.700 0.685 0.665 0.24 0.700
=
&
90% 0.710 0.690 0.709 0.700 0.680 0.23 0.709
70% 0.620 0.600 0.630 0.610 0.590 0.71 0.647
=z
5
o 80% 0.635 0.615 0.645 0.625 0.605 0.70 0.651
ol
%]
E 90% 0.650 0.630 0.654 0.640 0.620 0.68 0.654
As shown in Table 2, YOLOv8 achieved superior

accuracy (MAP@0.5: 0.892 at 90% split) and speed (30
FPS), driven by its single-stage CSPNet architecture.
Faster R-CNN’s two-stage approach yielded higher
precision (0.709) but slower speed (0.3 FPS). RetinaNet’s
focal loss improved small-target detection (MAP@0.5:
0.654) but had a higher false alarm rate (0.68). A multi-
spectral experiment combining thermal and visible images
with YOLOvS8’s multi-channel input improved mAP@0.5 by
4.7% to 0.934 in low-visibility conditions. Figure 6 shows
Precision-Recall (PR) curves at a 90% split, with
YOLOvVS’s stable precision contrasting RetinaNet’s drop at
high recall. BPI confirms YOLOVS’s dominance (0.946),
followed by Faster R-CNN (0.709) and RetinaNet (0.654),
highlighting its balance for drone applications.

Precision-Recall Curves at 90% Training Split
1.0

0.8

0.6

Precision

0.4

0.2

— YOLOv8 (MAP@0.5: 0.892)
—— Faster R-CNN (mAP@0.5: 0.709)
—— RetinaNet (mAP@0.5: 0.654)

0.0
0.0 0.2 0.4 0.6 0.8 1.0

Recall

Figure 6. Precision-Recall (PR) curves for YOLOVS,
Faster R-CNN, and RetinaNet at a 90% training split,
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illustrating YOLOVS'’s stable precision across recall levels
compared to RetinaNet's steeper drop.

Some of the examples of detected humans for each
algorithm are given in Figure 7. It should be noted that the
percentage of training data is set to 90% for each Al
method.

3.3. Ablation Study

An ablation study evaluated components. For YOLOVS,
replacing CSPNet with Darknet-19 reduced mAP@0.5 by
5.2% to 0.846; optimizing anchor boxes increased recall
by 4.1%. The wavelet-based preprocessing module

improved mAP@0.5 by 3.4% to 0.922 in foggy conditions.
For Faster R-CNN, raising RPN loU from 0.5 to 0.7
improved precision by 3.8% but lowered recall by 1.2%.
For RetinaNet, tuning focal loss (y=1.5 vs. y=2) boosted
mAP@0.5 by 2.9% to 0.673. Results are in Table 3.

Figure 7. Human detection outputs for YOLOVS (top),
RetinaNet (middle), and Faster R-CNN (bottom) at a 90%
training split. Bounding boxes include confidence scores;

red indicates human detections.

Table 3. Ablation Study Results.

. mAP@O0. Recall Precision
Algorithm Component 5 Change Change
CSPNet vs.
-5.2% -3.0% -4.5%
Darknet-19
0,
YoLOvg | ANGROTBOX i p gLy TR
Optimization
Wavelet Pre- +2.5%
ave et_ re +3.4% +2.0% 5%
processing
RPN loU (0.5
Faster R- 0 7( +1.5% -1.2% +3.8%
CNN vs.0.7)
Focal Loss
0,
RetinaNet (y=1.5vs. y=2) +2.9% +1.8% +2.0%

3.4. Evaluation on Resource-Constrained Devices

To assess practical deployment on drones, we evaluated
YOLOVS8, Faster R-CNN, and RetinaNet on an NVIDIA
Jetson Nano, a resource-constrained edge device suitable
for UAVs. Table 3 shows YOLOv8 achieved 15 FPS,
mAP@0.5 of 0.860, and BPI of 0.730, outperforming
Faster R-CNN (0.3 FPS, mAP@0.5: 0.705, BPI: 0.357)
and RetinaNet (8 FPS, mAP@0.5: 0.650, BPI: 0.458). The
wavelet-based preprocessing module incurred a 5%
latency increase (0.75 ms per frame) but improved
YOLOv8’s mAP@0.5 by 3.4% to 0.889 in foggy conditions
on the Jetson Nano. Power consumption was 6.2W for
YOLOV8, 8.1W for Faster R-CNN, and 7.3W for RetinaNet,
emphasizing YOLOvVS'’s efficiency for battery-constrained
UAVs. Memory usage was 80 MB for YOLOVS8, 320 MB for
Faster R-CNN, and 240 MB for RetinaNet, facilitating
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lightweight drone deployment. These results validate
YOLOvS’s suitability for real-time applications like search
and rescue, though Faster R-CNN'’s precision in cluttered
scenes suggests niche uses despite its computational cost.

Table 4. Evaluation on Resource-Constrained Devices.

o
> S 2 < =
E~| 2o 5~ |54 | 2
Algorithm £3 382 = o ?}%_ 5
go | oz B= g H
L8 i = o o
80 0.730 6.2
YOLOv8 30 15
Faster R- 320 0.357 8.1
CNN 0.3 0.3
240 0.6458 7.3
RetinaNet 10 8

4. Discussion and Conclusion
4.1. Advantages and Limitations

Advantages: YOLOvS8’s high accuracy (mAP@0.5:

0.892, BPI: 0.946) and speed (30 FPS on RTX 3090, 15
FPS on Jetson Nano) make it ideal for real-time drone
tasks like search and rescue. Wavelet preprocessing
improved mAP@0.5 by 3.4% to 0.922 in foggy conditions
(Table 4), and multi-spectral integration boosted
mAP@0.5 by 4.7% to 0.934 in low-visibility scenarios
(Section 3.2). Faster R-CNN'’s precision (0.710) excels in
cluttered thermal backgrounds, suitable for border
surveillance where false positives are critical. RetinaNet'’s
focal loss enhances small-target detection (MAP@0.5:
0.654), effective for sparse thermal data in open areas like
rural search operations.
Limitations: YOLOv8 struggles with small or occluded
targets (MAP@[0.5:0.95]: 0.546) due to thermal noise and
low-resolution heat signatures, particularly in urban or
forested scenes. RetinaNet’s high false alarm rate (0.68)
results from focal loss overemphasizing noisy
backgrounds, reducing reliability in fog or smoke. The
dataset (2295 Roboflow/Kaggle images + 648 custom)
lacks extreme conditions like heavy rain or dense smoke,
limiting robustness. Faster R-CNN's slow speed (0.3 FPS)
and high computational demands (320 MB) restrict its use
in dynamic drone operations.

4.2. Comparison with Existing Studies

Compared to /vasic-Kos et al. (2019) (mAP@0.5:
0.820), YOLOvVS’s mAP@0.5 (0.892) benefits from wavelet
preprocessing and a diverse dataset. Ghose et al. (2019)
(precision: 0.638) matche Faster R-CNN’s 0.710 but lack
real-time speed (0.3 FPS). Jawaharlalnehru et al. (2022) (
mAP: 0.795) is outperformed by YOLOVS’s speed-
accuracy balance. Our novel BPI, multi-spectral analysis,
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and edge device evaluation distinguish this study,
addressing gaps in thermal drone imaging.

4.3. Practical Implications and Future Directions

This study establishes YOLOvV8 as the optimal algorithm
for drone-based human detection, with BPI (0.946) and
low power consumption (6.2W on Jetson Nano), enabling
efficient edge deployment for real-time tasks like disaster
response. Faster R-CNN'’s precision suits controlled
settings like border monitoring, but its high latency (0.3
FPS) and power draw (8.1W) limit UAV applicability.
RetinaNet’s performance in sparse scenes suggests niche
uses, though its high FAR (0.68) requires mitigation. Key
challenges include drone battery constraints (10-20W
budgets) and thermal noise in extreme conditions, which
degrade localization. Future research should: (1) expand
datasets to include heavy rain, dense smoke, and urban
clutter; (2) develop adaptive models with dynamic noise
filtering via learned wavelet thresholds; (3) enhance multi-
spectral fusion using attention mechanisms to prioritize
thermal-visible features; and (4) optimize models for
micro-drones (e.g., Raspberry Pi) with <50 MB memory
and <5W power. These advancements will improve
robustness and scalability for real-world drone operations.

References

Al Emadi, S. A. (2021). DDI: Drones detection and
identification using deep learning techniques. Thesis.
Best, K. L., Schmid, J., Tierney, S., Awan, J., Beyene, N.
M., & Holliday, M. A. (2020). How to analyze the cyber
threat from drones. RAND Arroyo Center, Santa

Monica, United States. 328 pp.

Bomantara, Y. A., Mustafa, H., Bartholomeus, H., &
Kooistra, L. (2023). Detection of artificial seed-like
objects from UAV imagery. Remote Sensing, 15(6),
1637. https://doi.org/10.3390/rs15061637

Caruana, R. (1997). Multitask learning.
Learning, 28,
https://doi.org/10.1023/A:1007379606734

Chen, Z., Cao, L., & Wang, Q. (2022). YOLOv5-based
vehicle detection method for high resolution UAV
images. Mobile Information Systems, Article 1D
1828848. https://doi.org/10.1155/2022/1828848

Diwan, T., Anirudh, G., & Tembhurne, J. V. (2023). Object
detection using YOLO: Challenges, architectural
successors, datasets and applications. Multimedia
Tools and  Applications, 82(6), 9243-9275.
https://doi.org/10.1007/s11042-022-13438-8

Ghose, D., Desai, S. M., Bhattacharya, S., Chakraborty,
D., Fiterau, M., & Rahman, T. (Eds.). (2019).
Pedestrian detection in thermal images using saliency
maps. Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops.
https://doi.org/10.1109/CVPRW.2019.00012

Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014).

Machine
41-75.



Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024

Rich feature hierarchies for accurate object detection
and semantic segmentation. Proceedings of the IEEE
Conference on Computer Vision and Pattern
Recognition, 580-587.
https://doi.org/10.1109/CVPR.2014.81

Gomez, A., Conti, F., & Benini, L. (2018). Thermal image-
based CNN's for ultra-low power people recognition.
Proceedings of the 15th ACM International Conference
on Computing Frontiers, 326-331.
https://doi.org/10.1145/3203217.3204465

Hmidani, O., & Alaoui, E. I. (2022). A comprehensive
survey of the R-CNN family for object detection. 2022

5th International ~ Conference on  Advanced
Communication  Technologies and  Networking
(CommNet), IEEE.

https://doi.org/10.1109/CommNet56067.2022.9993862

Ivasi¢ Kos, M., Kristo, M., & Pobar, M. (2019). Human
detection in thermal imaging using YOLO. Proceedings
of the 2019 5th International Conference on Computer
and Technology Applications.
https://doi.org/10.1145/3323933.3324079

Jawaharlalnehru, A., Sambandham, T., Sekar, V.,
Ravikumar, D., Loganathan, V., & Kannadasan, R.
(2022). Target object detection from unmanned aerial
vehicle (UAV) images based on improved YOLO
algorithm. Electronics, 11(15), 2343.
https://doi.org/10.3390/electronics11152343

Jiang, P., Ergu, D., Liu, F., Cai, Y., & Ma, B. (2022). A
review of YOLO algorithm developments. Procedia
Computer Science, 199, 1066-1073.
https://doi.org/10.1016/j.procs.2022.01.135

Khan, A. (2005). Role of UAVs/UCAVs in air power
employment concept. Centre for Aerospace Power
Studies. Available at:
http://www.caps.org.pk/Papers/June2005.htm

Lai, Y.-C., & Huang, Z.-Y. (2020). Detection of a moving
UAV based on deep learning-based distance estimation.
Remote Sensing, 12(18), 3035.
https://doi.org/10.3390/rs12183035

Lee, Y.-H., & Kim, Y. (2020). Comparison of CNN and
YOLO for object detection. Journal of the
Semiconductor & Display Technology, 19(1), 85-92.

Liu, H., Yu, Y., Liu, S., & Wang, W. A. (2022). Military
object detection model of UAV reconnaissance image
and feature visualization. Applied Sciences, 12(23),
12236. https://doi.org/10.3390/app122312236

Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollér, P.
(2017). Focal loss for dense object detection.
Proceedings of the IEEE International Conference on
Computer Vision, 2980-2988.
https://doi.org/10.1109/1CCV.2017.324

Opromolla, R., Inchingolo, G., & Fasano, G. (2019).

Airborne visual detection and tracking of cooperative
UAVs exploiting deep learning. Sensors, 19(19), 4332.
https://doi.org/10.3390/5s19194332

Pashazanos, M. H. (2020). Vehicle tracking in aerial
images using deep neural networks. Thesis, Babol
Nooshirvani University of Technology.

Pourkhoshkhoie, M. H. (2023). Rice seedling identification
using drone images in rice fields using deep neural
networks. Thesis, Babol Nooshirvani University of
Technology.

Redmon, J.,, & Angelova, A. (2015). Real-time grasp
detection using convolutional neural networks. 2015
IEEE International Conference on Robotics and
Automation (ICRA), 1316-1322.
https://doi.org/10.1109/ICRA.2015.7139361

Roslidar, R., Rahman, A., Muharar, R., Syahputra, M. R.,
Arnia, F., & Syukri, M. (2020). A review on recent
progress in thermal imaging and deep learning
approaches for breast cancer detection. IEEE Access,
8, 116176-116194.
https://doi.org/10.1109/ACCESS.2020.3004056

Tan, L., Lv, X, Lian, X, & Wang, G. (2021).
YOLOv4_Drone: UAV image target detection based on
an improved YOLOv4 algorithm. Computers &
Electrical Engineering, 93, 107261.
https://doi.org/10.1016/j.compeleceng.2021.107261

Tian, H., Zheng, Y., & Jin, Z. (2020). Improved RetinaNet
model for the application of small target detection in
the aerial images. IOP Conference Series: Earth and
Environmental Science, 585(1), 012142,
https://doi.org/10.1088/1755-1315/585/1/012142

Wang, S., Xu, M., Sun, Y., Jiang, G., Weng, Y., & Liu, X.
(2023). Improved single shot detection using DenseNet
for tiny target detection. Concurrency and
Computation: Practice and Experience, 35(2), e7491.
https://doi.org/10.1002/cpe. 7491

Wezeman, S. U. (2007). AVS and UCAVS: Developments in
the European Union. Available at:
http://www.europarl.europa.eu/activities/committeesstu
dies/download.do?file=19483

Wong, S., Jassemi Zargani, R., & Kim, B. (2016). Counter-
measures against drone surveillance. Defence Research
and Development Canada-Ottawa Research Centre,
Reference Document DRDC-RDDC-2016-D019.

Yilmaz, B., & Kutbay, U. (2024). YOLOv8-based drone
detection: Performance analysis and optimization.
Computers, 13(9), 234.
https://doi.org/10.3390/computers13090234

33



