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Digital surface model (DSM) generation of urban scenes encounters some challenges,
especially for man-made feature boundaries with high altitudes. It leads to the saw-tooth
effects at the features edges in the orthophoto images. To mitigate these artifacts, this study
proposes a novel methodology employing three-dimensional (3D) line segment extraction,
enabling precise reconstruction of building edges in three-dimensional space.

Firstly, the relevant 2D lines from multi-images are extracted then these segments reconstruct
the 3D line segments by intersecting multiple planes, estimating the optimum intersection
parameters of the line based on the least squares methodology, and applying restrictions at
the end point of the line. Finally, the 3D line segments are divided into discrete 3D points to
be included in the 3D point clouds. After the classification of points on both sides of the line
and masking points around the line between the inner and outer edges as the parapet wall of
the roof, the height of the nearest line point is assigned to all points within the mask.
Regarding the numerical results, 99% improvement in height point cloud consistency was
attained through advanced masking techniques. As a result, a more complete and accurate
TIN can be developed to provide important essential data for products such as DSM and
orthophoto.

Experimental results of this approach show that saw-tooth effects at the edges of the building
can be greatly improved; so, the quality of DSM and orthophoto increases significantly.
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1. Introduction

In recent years, UAV photogrammetry has become an
efficient tool in a wide range of applications such as urban
3D modelling and mapping due to its low cost and high
flexibility in 3D point cloud generation (Jiménez-Jiménez et
al., 2021). The general process of producing a 3D model is
to take overlapped images of the object/region, aerial
triangulation, produce epipolar images, dense matching,
and finally point cloud of the object/region generation (Nex
& Remondino, 2014). However, DSM obtained from aerial
images has low quality at the man-made boundaries, due to
the edge blurring, dislocation, altitude variation on both
sides, and saw-tooth (Wang et al., 2018).

Dense matching is the key step to generate 3D model and
several algorithms are proposed for this purpose, which are
generally divided into three categories: local, global and
semi-global matching algorithms (Dall'Asta & Roncella,
2014). Local methods use the neighborhood information of
each pixel to determine the corresponding point in another
image. These algorithms are sensitive to ambiguous local
areas in images (such as occlusions and poorly textured
areas). Global methods are based on minimizing the energy
function and are more robust for ambiguous local areas, but
require considerable computation. To overcome the
limitations of global and local methods, advances have been
made that aim to take advantage of both methods. The Semi-
Global Matching (SGM) algorithm is one of the most
advanced algorithms developed in this field, which is widely
used for commercial and applied software (Lu et al., 2021).

The SGM algorithm has been used in various
applications. This method provides an efficient relationship
between execution time and accuracy, especially at object
boundaries and delicate structures. It is also stable to
radiometric differences and has less sensitivity to the choice
of parameters; therefore, it is suitable for solving practical
problems (Ma et al., 2022). Despite advances of the SGM,
there are usually still some mismatches and outliers.
Moreover, it faces challenges in urban areas such as
complexity, variety, objects proximity (buildings and
vegetation), and occlusions. Consequently, in DSM, the
edges are still not modelled properly and are not accurate
enough (Wu, 2021). Accordingly, the orthophoto result is
not produced with acceptable accuracy, especially at
building boundaries (Chen et al., 2021).

Edges, as one of the most important features of man-
made objects often not created accurately with dense
matching. Due to the lack or absence of points on the edges
in the image, it appears the saw-tooth effect. Since edges are
key components in the reconstruction and mapping of
features (e.g. building), increasing the accuracy of edge
reconstruction in the DSM improves the accuracy of object
reconstruction; therefore, edge quality improvement
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algorithms in the DSM are of great importance (Wang et al.,
2018).

According to the availability and cost effectiveness of
UAV image, several researches have been performed to
evaluate the potential of these images in DSM generation
(Bhandari et al., 2015; Qin et al., 2021). To improve DSM,
two solutions can be mentioned: 1) select an appropriate
method to generate dense and accurate point cloud, 2) using
algorithms to improve the derived point cloud and also
eliminate outliers.

Liu et al. (2015) proposed an automatic large-scale 3D
reconstruction based on low-altitude UAV images. Dense
point clouds are generated by feature extraction, image
matching, structure from motion (SfM) and multi-view
stereo (MVS) algorithms. In this approach without the
requirement of previous camera calibration or any other
external prior knowledge, the running time of feature
matching for large scene reconstruction is reduced by taking
advantage of the flight-control data from UAV., to reduce
(Liu et al., 2015). A multi-view stereo algorithm for
generating a denser point cloud based on low-altitude
remote sensing images was proposed by Shao et al. (2016).
They employed a patch-based Multi-photo Geometrically
Constrained Matching (MPGC) on the expanded patch for
each point to optimize points based on constrained least
square adjustment with the space geometry relationship,
and epipolar line (Shao et al., 2016).

A powerful image matching algorithm must be able to
extract a dense 3D point cloud with sufficient resolution to
describe the surface of objects and their discontinuities.
Therefore, the point density must be adjusted to preserve the
edges. But 3D reconstruction in urban areas is difficult due
to the complexity of the scene, and the resulting boundaries
are often poorly contrasted. As a result, the detectors lose
the boundary lines, and only a complete 3D reconstruction
should be done. The researches that solve this problem are
based on extracting and matching edges.

Su et al. (2018) proposed an edge constraint and outline
compensation (ECAOC) dense matching method to preserve
the structural features of the building in the disparity map.
The improved edge lines are used to optimize the matching
search scope and matching template window. High-
precision building edges are used to compensate the
building shape features (Su et al., 2018). Chuang et al.
(2018) present a gradual SGM cost aggregation algorithm
that includes a penalty tuning process and edge feature
knowledge. They propose a penalty parameter and a
weighting process to consider edge pixels with depth
variations, to obtain satisfactory depth estimation by
preserving sharp edges and smoothness without noise
(Chuang et al., 2018). In this year, Yue et al. (2018)
proposed the combination of Canny detection algorithm and
CSCA (Cross-scale Cost Aggregation) algorithm to
calculate the disparity map and its error rate which could
eliminate a lot of inappropriate information and reduce the
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time of data processing also improve the accuracy of
disparity map (Yue et al., 2018). Liu et al. (2023) applied a
deep learning (DL) based framework for 3D reconstruction
of oblique images. For this purpose, aerial triangulation is
performed, and then DL model is implemented to generate
depth map from images. Finally, they are fused and a
textured point cloud is generated (Liu et al., 2023).

Although development in matching algorithms, increase
reliability of the point cloud generation, but there are still
some areas which cannot be matched and a small number of
outliers exist. Another approach to improve the DSM is to
extract and match additional information from images and
integrate with the final point cloud. Finally, the 3D surface
is reconstructed using interpolation methods.

In 2002, Mcintosh and Krupnik corrected the DSM-
derived laser scanner, using photogrammetric data. The
edges are extracted from stereo images, and they were
matched by feature-based matching techniques. Then, a 3D
reconstruction of the corresponding edges is performed.
These edges are used to obtain precise locations of surface
discontinuities in the urban scene (Mclintosh & Krupnik,
2002). Bignoli et al. (2018) proposed a framework to
reconstruct straight and curved edges to enhance the
recovered surface. For this purpose, a graph-based
representation of 2D edges in images is applied (Bignoli et
al., 2018). In 2018, Wang et al. (2018) proposed a method
aimed at removing the saw-tooth effects on the edges by
accurately 3D building edges reconstruction. First 2D line
segments are first extracted and matched by a pair of
images, then by joining two planes 3D line segments are
reconstructed of constrained to the line end-points. To
construct a more accurate triangulated irregular network
(TIN) model for true orthophoto production, the line
segments are integrated into the obtained discrete 3D point
cloud. The experimental results of this study show that the
saw-tooth effects can be removed, which leads to a
significant improvement in quality in real orthophoto (Wang
etal., 2018).

DL is another solution to reconstruct 3D building models
which attract some attentions during last years. Alidoost et
al. (2019) reconstructed 3D model from single 2D image
based on convolutional neural network (CNN). Building
detection and refinement is implemented in two-stage
network (Alidoost et al., 2019). Ebrahimikia and
Hosseininaveh (2022) applied DL to structural building
edges and improve 3d point cloud by adding 3D edge points.
The results are obtained on aerial image and prove the
accuracy of the proposed method (Ebrahimikia &
Hosseininaveh, 2022).

To solve the problems of saw-tooth effects and distortion
at the edges, so far solutions have been developed by
combining computer vision science techniques and
matching algorithms to produce DSM and orthophoto with
high resolution. In this regard, this paper intends to present
an algorithm for UAV multi-image of a scene. In previous

studies, just two images were considered, but each building
boundary has usually been captured in more images.
Therefore, the proposed method uses multi-image bundle
adjustment method to accurately reconstruct 3D building
edges. In the case of multi-images, the 3D line is extracted
from the intersection of multi-plane. Because the
intersection of all planes is not a single line, the optimum
line direction is estimated from the intersection of planes in
pairs using the least squares method. The 3D line segments
are integrated into the obtained point cloud. Following the
classification of point clouds into roof and ground points,
the roof point cloud is refined by first masking points along
the parapet wall boundary between inner and outer edges.
The mask width has been set approximately equal to the
parapet wall thickness. Second, the average height of the
points inside the mask is assigned to all masked point clouds.
DSM and orthophoto are produced based on the final point
cloud.

This paper consists of 4 sections. First, an introduction
and literature review on the importance and necessity of
DSM improvement and research objectives were presented.
Section 2 describes the proposed method to improve the
DSM obtained from UAV images by removing the saw-
effects on the edges, using the corresponding 3D line
segmentation. In section 3 the results obtained from the
proposed method on the UAV images are presented. Finally,
conclusions and suggestions are included in the last section.

2. Methodology

The proposed method to solve the problems of saw-tooth
effects and improve the DSM based on the generation of 3D
lines corresponding to edges using the multi-image bundle
adjustment method is algorithmically presented in the
flowchart (Figure 1).

The descriptions of this algorithm in details are
presented as follows:

1) Use existing photogrammetric algorithms and
software to generate point cloud and pre-
processing for outlier detection and denoising to
simplify the generated point cloud.

2) Extraction of 3D lines related to the building edges
using the multi-image bundle adjustment method,
generate end points and their discretization.

3) Edge point clouds Refinement

4) Refinement the final point cloud for surface
reconstruction using interpolation methods and
saw-tooth effects to achieve a more accurate DSM
and orthophoto.

2.1. Point cloud generation and pre-processing

In order to produce DSM, dense point cloud must be
created which usually contains blunders and noisy points
due to mismatching. consequently, preprocessing is
required to improve 3D point cloud quality.
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Figure 1. The flowchart of the proposed algorithm.

2.2.1. Generation of 3D dense point cloud

In digital photogrammetry, dense matching algorithms
are used to generate dense point clouds. These methods
automatically generate a dense point cloud by identifying
common points in a stereo image pair. Once the parameters
of exterior orientation and camera calibration are computed
by aerial triangulation, a scene is reconstructed using SGM
dense matching methods. At this step, millions of geo-
reference points are generated. The dense point clouds
generated in this way are then interpolated to produce a
DSM (Linder, 2009).

Recently, Agisoft Metashape commercial software has
been used to generate a dense point cloud in wide range of
applications (Barbasiewicz et al., 2018). This software is a
commercial package that can automatically orientate and
match large unordered images. Due to the 3D results, the
image matching algorithm implemented in this software is
based on SGM (Deuber et al., 2014). This method provides
a very good relationship between execution time and
accuracy, especially at object boundaries and delicate
structures. It is also resistant to radiometric differences and
has less sensitivity to the choice of parameters; therefore, it
is suitable for solving practical problems (Patil et al., 2019).

2.2.2. Preprocessing

The point cloud is infected by some erroneous points that
should be removed in advance to produce an accurate TIN
model. Furthermore, the point cloud must be simplified to

12

reduce the cost of computing and memory in producing the
TIN model.

This step includes outlier detection and denoising to
simplify the generated point cloud. Here, to detect the
outliers, in addition to local density analysis in a
neighbourhood radius, a local polynomial fitting method is
used to eliminate the disadvantages of the global fitting
method. In the local fitting method as a denoising step, the
points that its z-component is far from the fitted local
polynomial are eliminated (Deschaud & Goulette, 2010). To
determine the neighbourhood for each point cloud data with
X,y,z whose z component indicates on the point height data,
the sphere equation from other points x;, y;, z;is used as
follows:

NPs =/(x —x)2 + (y — y)* + (z — 2,)?
i=12,..,N

)]

<r

In such a way that if the number of points inside the sphere
with a certain radius (r) is less than a defined minimum
number, that point is removed as an outlier. Using this
algorithm, the point cloud that have a low density is
removed. For the remaining points, a neighborhood is
algorithmically defined to enable localized analysis.

After identifying the points that are in a neighborhood, an
appropriate polynomial surface is fitted to the data with a
proper degree depending on the type of data. Of course,
there are some points that are not on the surface that can be
removed using a certain threshold. For each x, y, a height
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(z, =f(x,y)) is obtained through polynomials. For
example, a polynomial of degree 2 is as follows:

f(x,¥) = coo + 10X + cory + Czox2 + C11XxYy @)
+ Co2y?

By setting a threshold (t) for the difference in point height
() from the height obtained from the polynomial (z,), points
that are not placed on the surface with a large difference
(z—2z,>1t) can be treated through two strategies, 1)
removing as a noisy point or 2) replacing its height with the
height from the polynomial. Here, because the high density
of points, the removing strategy is considered to simplify the
point cloud. The optimal neighbourhood radius (r) and
boundary thresholds (t) were empirically derived via
systematic trial-and-error evaluation, assessing
performance metrics surface smoothness.

2.2. Extraction of edge corners and 3D lines reconstruction

The production of 3D lines requires the accuracy of
extracting 2D line features and edge corner. For this
purpose, firstly the edge lines of the building are extracted
using the Canny edge detector algorithm (Error! Reference
source not found.-a). Then the corner points of the edges
are extracted using the Harris corner detector algorithm
(Error! Reference source not found.-b).

(@)

(b)

Figure 2. (a) Edges obtained by Canny (b)
Corners obtained by Harris on sample image.

The edges of the building can be reconstructed by 3D
lines. In this research, the 3D lines are generated using the
multi-image bundle adjustment method. Since the current
research is based on multi-images, the 3D line is extracted
from the intersection of multi-plane planes, and since the
intersection of the planes is not a single line, the optimum
line is estimated from the intersection of planes in pairs
based on the least squares method. These lines are divided
into equidistant points and are integrated with the initial
point cloud as additional points to model the edge of the
building; therefore, 3D line production is done according to
the following main processes:

e Reconstruction: 3D lines corresponding to the
building edges are reconstructed without
endpoints.

e Determination of the endpoints: Two ends of a 3D
line are calculated by a rule-based method.

e Discretization: The 3D line is divided into
equidistance 3D points.

Step 1: Reconstruction of 3D line

In Figure 3, L is a 3D line that is reconstructed and
estimated. 0; to O,, are the positions of the camera’s
perspective centres at the time of acquisition, and N; to
N,, are normal vectors on the planes P, to B,, respectively.

3D line equation corresponding to the edge of the building
must first be calculated. The line equation that passes
through the known point Q, (x,, ¥, Zo) and is parallel to the
non-zero vector U = (p,q,r) known by parametric
equation of line is as follows:

Q=0Qy+t.U (teR) 3)

Where U is the line direction vector and ¢ is a scaler. The
direction vector obtained from the intersection of two planes
is easily obtained by using the external multiplication of
normal vectors on the planes. The normal vector on a plane
is obtained by using the external multiplication between the
direction vectors of the OB line and the OE line passing
through each P plane (Error! Reference source not
found.). To calculate line direction vectors, two points on
the line must be known. To obtain these points, the ground
coordinates of the endpoints of line [ are calculated. The
inverse of the collinearity condition is used to calculate
these points as follows:

Xpg—Xo Yo=Yy Zp—Zy]" (4)
=AR[xp, y» —f1"

Where (X,,Yy,Z,) are the perspective centre of the
image, (Xg, Y, Zg) are the ground coordinates of point B
and (x,,y,) are the image coordinates of point B, and f is
the focal length of the camera. R is the rotation matrix
around the coordinate axes, which is obtained as follows:

R = R¢R,R, (5)
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o

Figure 3. Reconstruct the three-dimensional line L with the intersection of n planes of n images.

Ry, R, and Ry are rotation matrix around the X, Y and Z
axis respectively. The parameter A is a scale factor used to
determine the exact location of a point. More than one image
is needed to obtain the A parameter. This section does not
require the exact ground coordinates of point B, and to find
the direction vector of the line, it is sufficient to obtain the
direction of the line OB, therefore the parameter 1 in the
relations is omitted; the direction vector of the OB line is
calculated as follows:

Hop = (Xg — X0, Y — Y0, Zp — Zp) (®)

In the same way, the direction vector of the OE line is
obtained. Next, the normal vector of the P plane is
calculated as follows:

N = Hop X Hpp = (a b c) (7)

Note that the normal vector of the plane must be
normalized using Nn = N/\/(ZNizj) . Therefore, in this
study, N means N,,. In case of extraction of optimum line
from multi-images to get the 3D line direction vector, if
all the planes in a line intersect, U can be calculated
exactly for this line. But if they are not in a line
intersecting, but in pairs intersecting in a line, the least
squares method is used to find the optimum U. Since
U.N; = 0 applies to each plane number j, which U is
simply calculated by U = N; X N,, the system of least
squares prepared as follows:

ml;nllN.Ull ®)

If the planes do not intersect, the above relation is
equal to zero. A simple way is to calculate the mean of
N; X N, which is the direction vector of the intersection
line for both planes, and the mean of this set is chosen as
U. Another way is to try for minimization as follows:

. 2 9
min > [[U = Ny x Ny &
ij

14

So that the obtained U, is the closest parallel line to the
direction vector of the line from the intersection of both
planes means the least squares. In this minimization it is
necessary that all normal vectors on the planes are in the
same direction, i.e., (N; X N;).(Ny X N;) =0, because
N; X N; = —N; X N;. The final minimization is the mean of
the (N; X N)).

Then a fixed 3D point Q, through which line L passes is
computed. This point must minimize the orthogonal distance
to all planes. The system of equations for determining Q, is
formulated as follows:

dist(Qp, Pr) = |N. (Qo — Qi)| = min (10)
Where the P, represents the k" plane N, is the normal
vector to the k™ plane, and @, denotes an arbitrary point on

the k™ plane. In this study, the perspective centres of the
images are used as Q. This relation is expressed in matrix
Nmi1 Nmp

form as follows
XQo
¥
ZQ,
Nl' Ql

A= Nka — NZ-:QZ (12)

Nm.Qm

Where the matrix N is a m x 3 matrix which is a list of
normal vectors in rows. The least squares formulation for
eg. (12) is as follows:

min||[NQ, — Al 13)
Qo

N1,1 N1,2 N1,3
N2,1 N2,2 N2,3

11)
NQ, = :
Nm,3

Therefore, the point Q, is obtained as follows:
NQ,=A = NTNQ,=NTA =

QO — (NTN)—lNTA (14)
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Now, by specifying the direction vector of the 3D line L
and the fixed point Q, on that line, the line equation can be
formed according to eq. (3).

Step 2: Determination of the endpoints of the 3D line

The lines reconstructed by the intersection of several
plane in the last step are infinite lines whose endpoint
coordinates are not known. To integrate the segments of the
line L to the initial point cloud, the endpoints of the line need
to be determined; therefore, the edge lines of the building
must be finite and contain two endpoints. Next, the positions
of the endpoints of the 3D line are calculated based on the
“longest length rule”. The longest length rule refers to a
heuristic where the longest continuous edge or contour
within a segmented region is prioritized for further analysis.

As shown in Error! Reference source not found., the
coordinates of points B and E corresponding to the
endpoints of line L can be calculated using the coordinates
b and e corresponding to the endpoints of line [ in each
image. According to the longest length rule, the endpoints of
the 3D line L are B, E,,. In eq. (3), any point on a 3D line
can be represented by a different scale factor. For the end
points of each line in each image, two factors so, for n aerial
scenes, 2n scale factors are calculated. According to eq. (3)
it can be written:

Q-0=0Qy+tU—0 (15

WhereQ —0=[X—X, Y—Yy, Z—Z,]".50,¢eq.(4)is
placed in eq. (15):
AR[xp yp —fI"=Qo—0+t.U =

[=U R[xp ¥p _f]T][}tL] =Q—-0 (16)

IfA= [-U R[xp, y, —f]"land Qo — 0 = b, t and 4
are calculated using the least squares approach as follows:

[5] = (ATA)"(AD) (17)

Similarly, the scale factor of line endpoints in all images
is calculated using eq. (17). Finally, the endpoints of the 3D
line are calculated by substituting the values of t,,;, and
tmax fOr scale factor in the 3D line equation.

Step 3: Discretization of the 3D line

3D line segments cannot be integrated into the initial
point cloud due to the linear nature, so it is necessary to
divide the 3D line segments into equidistant 3D points. If the
number of discrete points from the 3D line is considered m,
the distance between the two discrete points is calculated
from the following equation:

At = (tmax — tmin)/m (18)

where m is obtained based on the density of the point
cloud through trial and error.

The coordinates of discrete 3D points are obtained from
the following equation:

Qi=Q0+(tmin+i*At)*U (19)
(i=12,..,m)

The obtained points are integrated to the initial 3D point
cloud as additional points to improve the DSM.

2.3. Refinement of edge point clouds to Improve DSM

Step 1: Classification of points on both sides of the
building edge

At this step, the edge line is considered as a border, and
points are classified based on which side of the edge they
are located on. In this way, two classes of points one on the
roof and the other on the ground, are formed.

For this process, first, regardless of the z component, a
2D line is fitted to the set of edge points and the vertical
distance of the points to the line is calculated, based on the
2D general line formula (ax+ by +c=0), that its
equation is as follows:

d= axg+byg+c
T Jazepz
(20)

Then, points with positive or negative distance are placed
in two different classes, which are referred to as on the roof
and on the ground class according to the position of the
points.

Step 2: Masking points around the line between the inner
and outer edges as the parapet wall of the roof, and the
average height of the points inside the mask is assigned to
all masked point clouds. In this step, according to the
vertical distances calculated by eq. (20) from the inner and
outer edge line, the points whose vertical distance from the
two lines (d; and dz) have opposite signs or in other words,
according to Figure 4. , (d1.d><0) are placed between the
two lines.

Linel
di (-]
o d1.d2<0
d2
Line2

Figure 4. Schematic representation of the distance from
two lines for points between them.

Therefore, a mask with a small width (the approximate
thickness of the parapet wall) is formed around the line, and
among the points of the roof class, those that are inside this
mask are separated and instead of the observed height, the
average height of the points inside the mask is assigned to
all masked point clouds. Also, the developed discrete points
of both lines according to section 2.2 are added to the point
clouds of the roof. In this way, the points on the roof edge
are placed more sharply among other points.

Step 3: Improved DSM and orthophoto generation
By integration of point clouds by refined edge points, an
accurate elevation model as well as an improved DSM are

15
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produced. Triangulated irregular network (TIN) is used as
an interpolation method to produce a DSM. Furthermore,
the improved point cloud according to the edge of the
building are introduced to generate orthophoto.

3. Experimental Results and Discussion

To evaluate the efficiency of the proposed method in
improving DSM and orthophoto and multiple UAV images
are used (Error! Reference source not found.).

Figure 5. Four UAV images in the study area.

Implementation of the proposed method is performed
in MATLAB 2019 and Agisoft commercial software. In order
to analyze the efficiency of the proposed method, a building
edge is chosen in four overlapping images, and further
results are shown on this edge. The proposed method
contains two parameters (r and t as presented in section
2.1.2), which should be set before implementation. The
optimum values for these parameters are defined by trial
and error. The radius and threshold are set to 0.2 and 0.02
meter, respectively.

Firstly, aerial triangulation is performed and
photogrammetric productions (point cloud, TIN model,
DSM, and ortho-mosaic) are generated in a common
photogrammetry process. Error! Reference source not
found. demonstrates TIN model building.

As shows Error! Reference source not found. that, TIN
model contains several heterogeneous elements in the
building wall and distortions in building edges.

Error! Reference source not found. illustrates the
initial building which is generated in the standard
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photogrammetric process. Two building edges are shown in
a closer look.

DSM analysis depicts that there are some planimetric and
altimetric variations in building edges. These challenges
lead to saw-tooth effect in orthophoto. The mono-plotting
process presents significant challenges in implementation.
Error! Reference source not found. displays the derived
orthophoto generated from the initial DSM, achieving a
spatial resolution of 3 cm.

In the next step, 3D lines corresponding to the edges
are generated and added to the initial point cloud. The
production of 3D lines requires the accuracy and precision
of extracting lines and 2D edge corners in image. After
obtaining the corner points of the building edge these points
are used to produce 3D lines. In the proposed method, these
lines are divided into discrete points with a certain density
(Error! Reference source not found.).
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(@) (b)
Figure 6. (a) TIN model (b) TIN around edges for the first building.

(b)
Figure 7. (@) DSM (b) DSM around edges for the first building.
™.

Figure 8. Orthophoto for the first building outlines based Figure 9. 3D points produced by the proposed method
on the initial DSM with a density of 17 cm.
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The obtained 3D point cloud is classified on both sides of
the line and the points around the line are masked; then the
average height of the points inside the mask is assigned to
all masked point clouds. By integration of points of 3D line
into the initial point cloud to create a modified TIN (Error!
Reference source not found.).

Figure 10. (a) TIN model of the first building in the
modified point cloud.

Comparing Error! Reference source not found. and
Error! Reference source not found. proves the ability of the
proposed method in TIN generation. The modified model
reaches better quality in the wall where discontinuity is
preserved. For better analysis, DSM is generated based on
new point cloud which is shown in Error! Reference source
not found..

Comparative analysis reveals a significant enhancement
in building edge delineation in both TIN and DSM models.
The sharp building boundaries observed in the DSM results
validate the superior performance of the proposed
approach. Finally, the improved orthophoto is derived
based on a modified DSM. Error! Reference source not
found. depicts the obtained orthophoto in building
boundaries.

Comparison of modified ortho (Error! Reference source
not found.) with initial orthophoto (Error! Reference
source not found.) proves that saw-tooth effects have
improved on the edges of the building in the generated
orthophoto based on the modified point cloud. In order to
prove the high potential of the proposed method, another
building is considered. Error! Reference source not found.
shows the effects of the proposed method on the generated
TIN.

Figure 11. (a) DSM (b) DSM for around outlines in the modified point cloud for the first building.
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Figure 13. TIN based on (a) initial point cloud (b) improved point cloud for the second building.

Comparing two DSMs depicts that the improved point
cloud and also the preprocessing steps made building edges
better. Finally, Orthophoto is generated based on the
improved DSM. Figure 15 illustrates the orthophoto around
the second building, which are generated based on the
initial DSM and improved one.

Analyzing the above figure shows that the proposed
method significantly improves the TIN quality. It contains
homogenous triangles and also discontinuities are
preserved. In order to evaluate the height information
around building edges, DSM is generated based on initial
and improved point cloud (Figure 14).
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(b)

Figure 14. DSM based on (a) initial point cloud (b) improved point cloud for the second building.

Figure 15. Orthophoto based on (a) initial DSM (b) improved DSM for the second building.

As Error! Reference source not found. shows, saw-tooth
effects and distortion near building edges have decreased
significantly, which proves the high potentiality of the
proposed method. For the statistical evaluation of the
modified point clouds by an edge line, a band with a certain
width is created around the line. The mask width is
empirically determined as a function of wall thickness,
typically ranging between 20-30 c¢cm for standard urban
building parapets. Then the height difference of the points
inside the band compared to the nearest points on the line
before and after implementation of that as the edge of the
building is calculated and then the statistical parameters of
this difference vector is calculated. For this purpose, three
lines are considered as shown in Error! Reference source
not found..

The statistical parameters of the height differences of the
points around the edge (the band widths of 20 cm) before
and after adding the line 1 are presented in Table 1, as well
as the histogram of the height of the points inside the band,
are presented in Error! Reference source not found..

The statistical parameters of the height differences of the
points around the edge (the band widths of 20 cm) before
and after adding the line 2 are presented in Table 2, as well
as the histogram of the height of the points inside the band,
are presented in Error! Reference source not found..
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Figure 16. Three considered lines.

The statistical parameters of the height differences of the
points around the edge (the band widths of 20 cm) before
and after adding the line 3 are presented in Table 3, as well
as the histogram of the height of the points inside the band,
are presented in Error! Reference source not found..

The statistical results in all three above cases show a
decrease in the height distribution of the points around the
edge line after implementation of the line in the point clouds.
The reduction of the height distribution of the points around
the edge and its proximity to the height of the line points had
a great impact on the results of the TIN and the DEM, and
its effect can be seen in the orthophoto results.
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Table 1. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 1 (in

meters).
Min Max Mean STD RMS
Before the line adding 0 8.0161 -0.4672 1.4395 1.5132
After the line adding 0 0.4366 -0.0972 0.1269 0.1599
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Figure 17. The height histogram of the points in a buffer with a width of 20 cm, before and after the addition of line 1.

Table 2. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 2 (in

meters).
Min Max Mean STD RMS
Before the line adding 0 8.4721 -1.4519 2.3936 2.7995
After the line adding 0 6.1832 -0.1486 0.5430 0.5630
15000 2.5¥104
51,
10000 -
1.5}
ik
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05+
%22 323 324 325 326 327 328 329 330 331 332 %25 326 32‘7 328 32‘9 31;0 331 332
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Figure 18. The height histogram of the points in a buffer with a width of 20 cm, before and after adding line 2.

Table 3. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 3 (in

meters).
Min Max Mean STD RMS
Before the line adding 0.0001 0.2982 -0.0787 0.0487 0.0925
After the line adding 0 0.1920 -0.0143 0.0413 0.04367
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Figure 19. The height histogram of the points in a buffer with a width of 20 cm, before and after adding line 3.

Since the average height of the points inside the mask is
assigned to all masked point clouds, the height variation
among masked points becomes significantly reduced.
Consequently, it is logically expected that the maximum and
minimum height differences within this region diminish
substantially. Regarding the STD and RMS, the height
dispersion of points within the mask has improved by up to
99% in maximum achievable performance. Furthermore,
the height histogram demonstrates a significant reduction in
dispersion. The 99% reduction in height variance (STD)
minimizes erratic height jumps. Precise parapet wall
thickness-based masking preserves true roof boundaries
while filtering outliers.

4, Conclusion

This research has presented a new approach for
reconstructing DSM by extracting parts of 2D building
edges from UAV multi-images. In the first step, after
generating the initial point cloud, 2D line segments are
extracted, then 3D lines are generated from the intersection
of two-dimensional lines using the bundle adjustment
method. For this purpose, multi-planes are intersected and
best 3D line is generated least square. The two endpoints of
the 3D line are estimated by calculating the longest length
using four image points. Finally, the 3D line segments
defined by the two endpoints are discretised and integrated
with the initial point cloud for reconstruction of the TIN and
DSM model besides the orthophoto production. Both visual
and numerical evaluations of the building image dataset
demonstrate that the proposed method effectively reduces
saw-tooth artifacts in the orthophoto while substantially
improving DSM quality. Although, the proposed method
reaches the high accuracy and good interpretation results,
it has some limitations, such as occlusion in oblique images
and proximity to other objects (e.g. trees) in complex urban
areas. For future work, we suggest evaluating the proposed
method on the diverse building types in different areas.
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Moreover, the sensitivity analysis of the proposed method to
its parameters is suggested.

Data Availability
Data is not available.
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