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Digital surface model (DSM) generation of urban scenes encounters some challenges, 

especially for man-made feature boundaries with high altitudes. It leads to the saw-tooth 

effects at the features edges in the orthophoto images. To mitigate these artifacts, this study 

proposes a novel methodology employing three-dimensional (3D) line segment extraction, 

enabling precise reconstruction of building edges in three-dimensional space. 

Firstly, the relevant 2D lines from multi-images are extracted then these segments reconstruct 

the 3D line segments by intersecting multiple planes, estimating the optimum intersection 

parameters of the line based on the least squares methodology, and applying restrictions at 

the end point of the line. Finally, the 3D line segments are divided into discrete 3D points to 

be included in the 3D point clouds. After the classification of points on both sides of the line 

and masking points around the line between the inner and outer edges as the parapet wall of 

the roof, the height of the nearest line point is assigned to all points within the mask. 

Regarding the numerical results, 99% improvement in height point cloud consistency was 

attained through advanced masking techniques. As a result, a more complete and accurate 

TIN can be developed to provide important essential data for products such as DSM and 

orthophoto. 

Experimental results of this approach show that saw-tooth effects at the edges of the building 

can be greatly improved; so, the quality of DSM and orthophoto increases significantly.  
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1. Introduction 

    In recent years, UAV photogrammetry has become an 

efficient tool in a wide range of applications such as urban 

3D modelling and mapping due to its low cost and high 

flexibility in 3D point cloud generation (Jiménez-Jiménez et 

al., 2021). The general process of producing a 3D model is 

to take overlapped images of the object/region, aerial 

triangulation, produce epipolar images, dense matching, 

and finally point cloud of the object/region generation (Nex 

& Remondino, 2014). However, DSM obtained from aerial 

images has low quality at the man-made boundaries, due to 

the edge blurring, dislocation, altitude variation on both 

sides, and saw-tooth (Wang et al., 2018).  

Dense matching is the key step to generate 3D model and 

several algorithms are proposed for this purpose, which are 

generally divided into three categories: local, global and 

semi-global matching algorithms (Dall'Asta & Roncella, 

2014). Local methods use the neighborhood information of 

each pixel to determine the corresponding point in another 

image. These algorithms are sensitive to ambiguous local 

areas in images (such as occlusions and poorly textured 

areas). Global methods are based on minimizing the energy 

function and are more robust for ambiguous local areas, but 

require considerable computation. To overcome the 

limitations of global and local methods, advances have been 

made that aim to take advantage of both methods. The Semi-

Global Matching (SGM) algorithm is one of the most 

advanced algorithms developed in this field, which is widely 

used for commercial and applied software (Lu et al., 2021). 

The SGM algorithm has been used in various 

applications. This method provides an efficient relationship 

between execution time and accuracy, especially at object 

boundaries and delicate structures. It is also stable to 

radiometric differences and has less sensitivity to the choice 

of parameters; therefore, it is suitable for solving practical 

problems (Ma et al., 2022). Despite advances of the SGM, 

there are usually still some mismatches and outliers. 

Moreover, it faces challenges in urban areas such as 

complexity, variety, objects proximity (buildings and 

vegetation), and occlusions. Consequently, in DSM, the 

edges are still not modelled properly and are not accurate 

enough (Wu, 2021). Accordingly, the orthophoto result is 

not produced with acceptable accuracy, especially at 

building boundaries (Chen et al., 2021). 

Edges, as one of the most important features of man-

made objects often not created accurately with dense 

matching. Due to the lack or absence of points on the edges 

in the image, it appears the saw-tooth effect. Since edges are 

key components in the reconstruction and mapping of 

features (e.g. building), increasing the accuracy of edge 

reconstruction in the DSM improves the accuracy of object 

reconstruction; therefore, edge quality improvement 

algorithms in the DSM are of great importance (Wang et al., 

2018). 

According to the availability and cost effectiveness of 

UAV image, several researches have been performed to 

evaluate the potential of these images in DSM generation 

(Bhandari et al., 2015; Qin et al., 2021). To improve DSM, 

two solutions can be mentioned: 1) select an appropriate 

method to generate dense and accurate point cloud, 2) using 

algorithms to improve the derived point cloud and also 

eliminate outliers. 

Liu et al. (2015) proposed an automatic large-scale 3D 

reconstruction based on low-altitude UAV images. Dense 

point clouds are generated by feature extraction, image 

matching, structure from motion (SfM) and multi-view 

stereo (MVS) algorithms. In this approach without the 

requirement of previous camera calibration or any other 

external prior knowledge, the running time of feature 

matching for large scene reconstruction is reduced by taking 

advantage of the flight-control data from UAV., to reduce 

(Liu et al., 2015). A multi-view stereo algorithm for 

generating a denser point cloud based on low-altitude 

remote sensing images was proposed by Shao et al. (2016). 

They employed a patch-based Multi-photo Geometrically 

Constrained Matching (MPGC) on the expanded patch for 

each point to optimize points based on constrained least 

square adjustment with the space geometry relationship, 

and epipolar line (Shao et al., 2016). 

A powerful image matching algorithm must be able to 

extract a dense 3D point cloud with sufficient resolution to 

describe the surface of objects and their discontinuities. 

Therefore, the point density must be adjusted to preserve the 

edges. But 3D reconstruction in urban areas is difficult due 

to the complexity of the scene, and the resulting boundaries 

are often poorly contrasted. As a result, the detectors lose 

the boundary lines, and only a complete 3D reconstruction 

should be done. The researches that solve this problem are 

based on extracting and matching edges. 

Su et al. (2018) proposed an edge constraint and outline 

compensation (ECAOC) dense matching method to preserve 

the structural features of the building in the disparity map. 

The improved edge lines are used to optimize the matching 

search scope and matching template window. High-

precision building edges are used to compensate the 

building shape features (Su et al., 2018). Chuang et al. 

(2018) present a gradual SGM cost aggregation algorithm 

that includes a penalty tuning process and edge feature 

knowledge. They propose a penalty parameter and a 

weighting process to consider edge pixels with depth 

variations, to obtain satisfactory depth estimation by 

preserving sharp edges and smoothness without noise 

(Chuang et al., 2018). In this year, Yue et al. (2018) 

proposed the combination of Canny detection algorithm and 

CSCA (Cross-scale Cost Aggregation) algorithm to 

calculate the disparity map and its error rate which could 

eliminate a lot of inappropriate information and reduce the 
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time of data processing also improve the accuracy of 

disparity map (Yue et al., 2018). Liu et al. (2023) applied a 

deep learning (DL) based framework for 3D reconstruction 

of oblique images. For this purpose, aerial triangulation is 

performed, and then DL model is implemented to generate 

depth map from images. Finally, they are fused and a 

textured point cloud is generated (Liu et al., 2023). 

Although development in matching algorithms, increase 

reliability of the point cloud generation, but there are still 

some areas which cannot be matched and a small number of 

outliers exist. Another approach to improve the DSM is to 

extract and match additional information from images and 

integrate with the final point cloud. Finally, the 3D surface 

is reconstructed using interpolation methods. 

In 2002, McIntosh and Krupnik corrected the DSM-

derived laser scanner, using photogrammetric data. The 

edges are extracted from stereo images, and they were 

matched by feature-based matching techniques. Then, a 3D 

reconstruction of the corresponding edges is performed. 

These edges are used to obtain precise locations of surface 

discontinuities in the urban scene (McIntosh & Krupnik, 

2002). Bignoli et al. (2018) proposed a framework to 

reconstruct straight and curved edges to enhance the 

recovered surface. For this purpose, a graph-based 

representation of 2D edges in images is applied (Bignoli et 

al., 2018). In 2018, Wang et al. (2018) proposed a method 

aimed at removing the saw-tooth effects on the edges by 

accurately 3D building edges reconstruction. First 2D line 

segments are first extracted and matched by a pair of 

images, then by joining two planes 3D line segments are 

reconstructed of constrained to the line end-points. To 

construct a more accurate triangulated irregular network 

(TIN) model for true orthophoto production, the line 

segments are integrated into the obtained discrete 3D point 

cloud. The experimental results of this study show that the 

saw-tooth effects can be removed, which leads to a 

significant improvement in quality in real orthophoto (Wang 

et al., 2018).  

DL is another solution to reconstruct 3D building models 

which attract some attentions during last years. Alidoost et 

al. (2019) reconstructed 3D model from single 2D image 

based on convolutional neural network (CNN). Building 

detection and refinement is implemented in two-stage 

network (Alidoost et al., 2019). Ebrahimikia and 

Hosseininaveh (2022) applied DL to structural building 

edges and improve 3d point cloud by adding 3D edge points. 

The results are obtained on aerial image and prove the 

accuracy of the proposed method (Ebrahimikia & 

Hosseininaveh, 2022).  

To solve the problems of saw-tooth effects and distortion 

at the edges, so far solutions have been developed by 

combining computer vision science techniques and 

matching algorithms to produce DSM and orthophoto with 

high resolution. In this regard, this paper intends to present 

an algorithm for UAV multi-image of a scene. In previous 

studies, just two images were considered, but each building 

boundary has usually been captured in more images.  

Therefore, the proposed method uses multi-image bundle 

adjustment method to accurately reconstruct 3D building 

edges. In the case of multi-images, the 3D line is extracted 

from the intersection of multi-plane. Because the 

intersection of all planes is not a single line, the optimum 

line direction is estimated from the intersection of planes in 

pairs using the least squares method. The 3D line segments 

are integrated into the obtained point cloud. Following the 

classification of point clouds into roof and ground points, 

the roof point cloud is refined by first masking points along 

the parapet wall boundary between inner and outer edges. 

The mask width has been set approximately equal to the 

parapet wall thickness. Second, the average height of the 

points inside the mask is assigned to all masked point clouds. 

DSM and orthophoto are produced based on the final point 

cloud. 

This paper consists of 4 sections. First, an introduction 

and literature review on the importance and necessity of 

DSM improvement and research objectives were presented. 

Section 2 describes the proposed method to improve the 

DSM obtained from UAV images by removing the saw-

effects on the edges, using the corresponding 3D line 

segmentation. In section 3 the results obtained from the 

proposed method on the UAV images are presented. Finally, 

conclusions and suggestions are included in the last section. 

2. Methodology 

The proposed method to solve the problems of saw-tooth 

effects and improve the DSM based on the generation of 3D 

lines corresponding to edges using the multi-image bundle 

adjustment method is algorithmically presented in the 

flowchart (Figure 1). 

The descriptions of this algorithm in details are 

presented as follows: 

1) Use existing photogrammetric algorithms and 

software to generate point cloud and pre-

processing for outlier detection and denoising to 

simplify the generated point cloud. 

2) Extraction of 3D lines related to the building edges 

using the multi-image bundle adjustment method, 

generate end points and their discretization. 

3) Edge point clouds Refinement  

4) Refinement the final point cloud for surface 

reconstruction using interpolation methods and 

saw-tooth effects to achieve a more accurate DSM 

and orthophoto. 

2.1. Point cloud generation and pre-processing 
 

In order to produce DSM, dense point cloud must be 

created which usually contains blunders and noisy points 

due to mismatching. consequently, preprocessing is 

required to improve 3D point cloud quality. 
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I n p u t :

Interior and exterior orientation param eters

U A V  im ages

G e n e r a t io n  o f  3 D  l in e s  a n d  e d g e s

G eneration of 3D  line

Extract line in each im age
G e n e r a t io n  o f  d e n s e  p o in t  c lo u d

Sem i-G lobal M atching

O utlier detection and point cloud 
de-noising

3D  line segm entation

Equidistant discrete 3D  points on the line

C lassification of points on both sides of the line  as roof edge

D SM  and O rthophoto generation w ith im proved edges

M asking points around the line and assigning the height of the 
nearest neighbor point of line to these points

 
 

 

2.2.1. Generation of 3D dense point cloud 

    In digital photogrammetry, dense matching algorithms 

are used to generate dense point clouds. These methods 

automatically generate a dense point cloud by identifying 

common points in a stereo image pair. Once the parameters 

of exterior orientation and camera calibration are computed 

by aerial triangulation, a scene is reconstructed using SGM 

dense matching methods. At this step, millions of geo-

reference points are generated. The dense point clouds 

generated in this way are then interpolated to produce a 

DSM (Linder, 2009). 

    Recently, Agisoft Metashape commercial software has 

been used to generate a dense point cloud in wide range of 

applications (Barbasiewicz et al., 2018). This software is a 

commercial package that can automatically orientate and 

match large unordered images. Due to the 3D results, the 

image matching algorithm implemented in this software is 

based on SGM (Deuber et al., 2014). This method provides 

a very good relationship between execution time and 

accuracy, especially at object boundaries and delicate 

structures. It is also resistant to radiometric differences and 

has less sensitivity to the choice of parameters; therefore, it 

is suitable for solving practical problems (Patil et al., 2019). 

2.2.2. Preprocessing 

    The point cloud is infected by some erroneous points that 

should be removed in advance to produce an accurate TIN 

model. Furthermore, the point cloud must be simplified to 

reduce the cost of computing and memory in producing the 

TIN model.  

    This step includes outlier detection and denoising to 

simplify the generated point cloud. Here, to detect the 

outliers, in addition to local density analysis in a 

neighbourhood radius, a local polynomial fitting method is 

used to eliminate the disadvantages of the global fitting 

method. In the local fitting method as a denoising step, the 

points that its z-component is far from the fitted local 

polynomial are eliminated (Deschaud & Goulette, 2010). To 

determine the neighbourhood for each point cloud data with 

x,y,z whose z component indicates on the point height data, 

the sphere equation from other points 𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 is used as 

follows: 

 

𝑁𝑃𝑠 = √(𝑥 − 𝑥𝑖)2 + (𝑦 − 𝑦𝑖)2 + (𝑧 − 𝑧𝑖)2

< 𝑟      𝑖 = 1,2, … , 𝑁 
(1) 

 

In such a way that if the number of points inside the sphere 

with a certain radius (𝑟) is less than a defined minimum 

number, that point is removed as an outlier. Using this 

algorithm, the point cloud that have a low density is 

removed. For the remaining points, a neighborhood is 

algorithmically defined to enable localized analysis. 

After identifying the points that are in a neighborhood, an 

appropriate polynomial surface is fitted to the data with a 

proper degree depending on the type of data. Of course, 

there are some points that are not on the surface that can be 

removed using a certain threshold. For each 𝑥, 𝑦, a height 

Figure 1. The flowchart of the proposed algorithm. 
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( 𝑧𝑝 = 𝑓(𝑥, 𝑦) ) is obtained through polynomials. For 

example, a polynomial of degree 2 is as follows: 

𝑓(𝑥, 𝑦) = 𝑐00 + 𝑐10𝑥 + 𝑐01𝑦 + 𝑐20𝑥2 + 𝑐11𝑥𝑦

+ 𝑐02𝑦2 

(2) 

By setting a threshold (𝑡) for the difference in point height 

(𝑧) from the height obtained from the polynomial (𝑧𝑝), points 

that are not placed on the surface with a large difference 

( 𝑧 − 𝑧𝑝 > 𝑡 ) can be treated through two strategies, 1) 

removing as a noisy point or 2) replacing its height with the 

height from the polynomial. Here, because the high density 

of points, the removing strategy is considered to simplify the 

point cloud. The optimal neighbourhood radius (r) and 

boundary thresholds (t) were empirically derived via 

systematic trial-and-error evaluation, assessing 

performance metrics surface smoothness. 

2.2. Extraction of edge corners and 3D lines reconstruction 

The production of 3D lines requires the accuracy of 

extracting 2D line features and edge corner. For this 

purpose, firstly the edge lines of the building are extracted 

using the Canny edge detector algorithm (Error! Reference 

source not found.-a). Then the corner points of the edges 

are extracted using the Harris corner detector algorithm 

(Error! Reference source not found.-b). 

 

 

(a) 

 

(b) 

Figure 2. (a) Edges obtained by Canny (b) 

Corners obtained by Harris on sample image. 

The edges of the building can be reconstructed by 3D 

lines. In this research, the 3D lines are generated using the 

multi-image bundle adjustment method. Since the current 

research is based on multi-images, the 3D line is extracted 

from the intersection of multi-plane planes, and since the 

intersection of the planes is not a single line, the optimum 

line is estimated from the intersection of planes in pairs 

based on the least squares method. These lines are divided 

into equidistant points and are integrated with the initial 

point cloud as additional points to model the edge of the 

building; therefore, 3D line production is done according to 

the following main processes: 

 Reconstruction: 3D lines corresponding to the 

building edges are reconstructed without 

endpoints. 

 Determination of the endpoints: Two ends of a 3D 

line are calculated by a rule-based method. 

 Discretization: The 3D line is divided into 

equidistance 3D points. 

 

Step 1: Reconstruction of 3D line 

In Figure 3, L is a 3D line that is reconstructed and 

estimated. 𝑂1  to 𝑂𝑛  are the positions of the camera’s 

perspective centres at the time of acquisition, and 𝑁1  to 

𝑁𝑛 are normal vectors on the planes 𝑃1 to 𝑃𝑛, respectively. 

3D line equation corresponding to the edge of the building 

must first be calculated. The line equation that passes 

through the known point 𝑄0(𝑥0, 𝑦0, 𝑧0) and is parallel to the 

non-zero vector 𝑈 = (𝑝, 𝑞, 𝑟)  known by parametric 

equation of line is as follows: 

(3) 𝑄 = 𝑄0 + 𝑡. 𝑈                              (𝑡𝜖ℝ) 

Where U is the line direction vector and 𝑡 is a scaler. The 

direction vector obtained from the intersection of two planes 

is easily obtained by using the external multiplication of 

normal vectors on the planes. The normal vector on a plane 

is obtained by using the external multiplication between the 

direction vectors of the OB line and the OE line passing 

through each P plane (Error! Reference source not 

found.). To calculate line direction vectors, two points on 

the line must be known. To obtain these points, the ground 

coordinates of the endpoints of line 𝑙  are calculated. The 

inverse of the collinearity condition is used to calculate 

these points as follows: 

(4) [𝑋𝐵 − 𝑋0    𝑌𝐵 − 𝑌0    𝑍𝐵 − 𝑍0]𝑇

= 𝜆𝑅[𝑥𝑏    𝑦𝑏  − 𝑓]𝑇 

Where (𝑋0, 𝑌0, 𝑍0)  are the perspective centre of the 

image, (𝑋𝐵 , 𝑌𝐵 , 𝑍𝐵) are the ground coordinates of point B 

and (𝑥𝑏 , 𝑦𝑏) are the image coordinates of point B, and f is 

the focal length of the camera. R is the rotation matrix 

around the coordinate axes, which is obtained as follows: 

𝑅 = 𝑅𝛫𝑅𝜑𝑅𝜔 (5) 
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Figure 3. Reconstruct the three-dimensional line L with the intersection of n planes of n images. 

 

𝑅𝜔, 𝑅𝜑  and 𝑅𝛫 are rotation matrix around the X, Y and Z 

axis respectively. The parameter λ is a scale factor used to 

determine the exact location of a point. More than one image 

is needed to obtain the λ parameter. This section does not 

require the exact ground coordinates of point B, and to find 

the direction vector of the line, it is sufficient to obtain the 

direction of the line OB, therefore the parameter λ in the 

relations is omitted; the direction vector of the OB line is 

calculated as follows: 

(6) 𝐻𝑂𝐵 = (𝑋𝐵 − 𝑋𝑂 , 𝑌𝐵 − 𝑌𝑂 , 𝑍𝐵 − 𝑍𝑂) 

In the same way, the direction vector of the OE line is 
obtained. Next, the normal vector of the P plane is 
calculated as follows: 

(7) 𝑁 = 𝐻𝑂𝐵 × 𝐻𝑂𝐸 = (𝑎 𝑏 𝑐) 

Note that the normal vector of the plane must be 
normalized using 𝑁𝑛 = 𝑁/√(∑𝑁𝑖𝑗

2  )  . Therefore, in this 
study, N means 𝑁𝑛. In case of extraction of optimum line 
from multi-images to get the 3D line direction vector, if 
all the planes in a line intersect, U can be calculated 
exactly for this line. But if they are not in a line 
intersecting, but in pairs intersecting in a line, the least 
squares method is used to find the optimum U. Since 
𝑈. 𝑁𝑗 = 0 applies to each plane number j, which U is 
simply calculated by 𝑈 = 𝑁1 × 𝑁2 , the system of least 
squares prepared as follows: 

(8) min
𝑈

‖𝑁. 𝑈‖ 

If the planes do not intersect, the above relation is 
equal to zero. A simple way is to calculate the mean of 
𝑁𝑖 × 𝑁𝑗, which is the direction vector of the intersection 
line for both planes, and the mean of this set is chosen as 
U. Another way is to try for minimization as follows: 

(9) min
𝑈

∑‖𝑈 − 𝑁𝑖 × 𝑁𝑗‖
2

𝑖,𝑗

 

So that the obtained U, is the closest parallel line to the 

direction vector of the line from the intersection of both 

planes means the least squares. In this minimization it is 

necessary that all normal vectors on the planes are in the 

same direction, i.e., (𝑁𝑖 × 𝑁𝑗). (𝑁𝑘 × 𝑁𝑙) ≥ 0 , because 

𝑁𝑖 × 𝑁𝑗 = −𝑁𝑗 × 𝑁𝑖. The final minimization is the mean of 

the (𝑁𝑖 × 𝑁𝑗).  

Then a fixed 3D point 𝑄0 through which line L passes is 

computed. This point must minimize the orthogonal distance 

to all planes. The system of equations for determining 𝑄0 is 

formulated as follows: 

(10) 𝑑𝑖𝑠𝑡(𝑄𝑂 , 𝑃𝑘) = |𝑁𝑘. (𝑄𝑂 − 𝑄𝑘)| → 𝑚𝑖𝑛 

Where the 𝑃𝑘  represents the kth plane 𝑁𝑘  is the normal 

vector to the kth plane, and 𝑄𝑘  denotes an arbitrary point on 

the kth plane. In this study, the perspective centres of the 

images are used as  𝑄𝑘. This relation is expressed in matrix 

form as follows  

 

(11)  

 

 

 

 

(12) 

 

NQ0 = [

N1,1 N1,2 N1,3

N2,1

⋮

N2,2

⋮

N2,3

⋮
Nm,1 Nm,2 Nm,3

] . [

xQ0

yQ0

zQ0

] 

A = NkQk = [

N1. Q1

N2. Q2

⋮
Nm. Qm

] 

Where the matrix N is a m × 3 matrix which is a list of 

normal vectors in rows. The least squares formulation for 

eq. (12) is as follows: 

(13) min
𝑄0

‖𝑁𝑄0 − 𝐴‖ 

Therefore, the point 𝑄0 is obtained as follows: 

 

(14) 

𝑁𝑄0 = 𝐴   ⟹ 𝑁𝑇𝑁𝑄0 = 𝑁𝑇𝐴   ⇒ 

𝑄0 = (𝑁𝑇𝑁)−1𝑁𝑇𝐴 
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Now, by specifying the direction vector of the 3D line L 

and the fixed point 𝑄0 on that line, the line equation can be 

formed according to eq. (3). 

Step 2: Determination of the endpoints of the 3D line 

The lines reconstructed by the intersection of several 

plane in the last step are infinite lines whose endpoint 

coordinates are not known. To integrate the segments of the 

line L to the initial point cloud, the endpoints of the line need 

to be determined; therefore, the edge lines of the building 

must be finite and contain two endpoints. Next, the positions 

of the endpoints of the 3D line are calculated based on the 

“longest length rule”. The longest length rule refers to a 

heuristic where the longest continuous edge or contour 

within a segmented region is prioritized for further analysis. 

As shown in Error! Reference source not found., the 

coordinates of points B and E corresponding to the 

endpoints of line L can be calculated using the coordinates 

b and e corresponding to the endpoints of line 𝑙  in each 

image. According to the longest length rule, the endpoints of 

the 3D line L are 𝐵1𝐸𝑛. In eq. (3), any point on a 3D line 

can be represented by a different scale factor. For the end 

points of each line in each image, two factors so, for n aerial 

scenes, 2n scale factors are calculated. According to eq. (3) 

it can be written: 

(15) 

 
𝑄 − 𝑂 = 𝑄0 + 𝑡. 𝑈 − 𝑂 

Where 𝑄 − 𝑂 = [𝑋 − 𝑋0  𝑌 − 𝑌0   𝑍 − 𝑍0]𝑇. So, eq. (4) is 

placed in eq. (15): 

 

 

(16) 

𝜆𝑅[𝑥𝑏   𝑦𝑏  − 𝑓]𝑇 = 𝑄0 − 𝑂 + 𝑡. 𝑈     ⇒   

[−𝑈 𝑅[𝑥𝑏   𝑦𝑏  − 𝑓]𝑇]. [
𝑡
𝜆

] = 𝑄0 − 𝑂 

If A =   [−U R[xb   yb  − f]T] and 𝑄0 − 𝑂 = 𝑏, t and λ 

are calculated using the least squares approach as follows: 

(17) [
𝑡
𝜆

] = (𝐴𝑇𝐴)−1(𝐴𝑇𝑏) 

Similarly, the scale factor of line endpoints in all images 

is calculated using eq. (17). Finally, the endpoints of the 3D 

line are calculated by substituting the values of 𝑡𝑚𝑖𝑛  and 

𝑡𝑚𝑎𝑥 for scale factor in the 3D line equation. 

Step 3: Discretization of the 3D line  

3D line segments cannot be integrated into the initial 

point cloud due to the linear nature, so it is necessary to 

divide the 3D line segments into equidistant 3D points. If the 

number of discrete points from the 3D line is considered m, 

the distance between the two discrete points is calculated 

from the following equation: 

(18) Δt =
(𝑡max − 𝑡min)

𝑚⁄  

where m is obtained based on the density of the point 

cloud through trial and error. 

The coordinates of discrete 3D points are obtained from 

the following equation: 

(19) 𝑄𝑖 = 𝑄0 + (𝑡𝑚𝑖𝑛 + 𝑖 ∗ 𝛥𝑡) ∗ 𝑈                    

  (𝑖 = 1,2, … , 𝑚) 

The obtained points are integrated to the initial 3D point 

cloud as additional points to improve the DSM. 

2.3. Refinement of edge point clouds to Improve DSM 

Step 1: Classification of points on both sides of the 

building edge 

At this step, the edge line is considered as a border, and 

points are classified based on which side of the edge they 

are located on. In this way, two classes of points one on the 

roof and the other on the ground, are formed. 

For this process, first, regardless of the z component, a 

2D line is fitted to the set of edge points and the vertical 

distance of the points to the line is calculated, based on the 

2D general line formula ( 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0 ), that its 

equation is as follows: 

𝑑 =
𝑎𝑥0+𝑏𝑦0+𝑐

√𝑎2+𝑏2
                                                                

(20) 

Then, points with positive or negative distance are placed 

in two different classes, which are referred to as on the roof 

and on the ground class according to the position of the 

points. 

 

Step 2: Masking points around the line between the inner 

and outer edges as the parapet wall of the roof, and the 

average height of the points inside the mask is assigned to 

all masked point clouds. In this step, according to the 

vertical distances calculated by eq. (20) from the inner and 

outer edge line, the points whose vertical distance from the 

two lines (d1 and d2) have opposite signs or in other words, 

according to Figure 4. , (d1.d2<0) are placed between the 

two lines. 

 

Figure 4. Schematic representation of the distance from 

two lines for points between them. 

 

Therefore, a mask with a small width (the approximate 

thickness of the parapet wall) is formed around the line, and 

among the points of the roof class, those that are inside this 

mask are separated and instead of the observed height, the 

average height of the points inside the mask is assigned to 

all masked point clouds. Also, the developed discrete points 

of both lines according to section 2.2 are added to the point 

clouds of the roof. In this way, the points on the roof edge 

are placed more sharply among other points. 

 

Step 3: Improved DSM and orthophoto generation 

By integration of point clouds by refined edge points, an 

accurate elevation model as well as an improved DSM are 
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produced. Triangulated irregular network (TIN) is used as 

an interpolation method to produce a DSM. Furthermore, 

the improved point cloud according to the edge of the 

building are introduced to generate orthophoto. 

 

3. Experimental Results and Discussion 

    To evaluate the efficiency of the proposed method in 

improving DSM and orthophoto and multiple UAV images 

are used (Error! Reference source not found.). 

  

  

Figure 5. Four UAV images in the study area. 

 

     Implementation of the proposed method is performed 

in MATLAB 2019 and Agisoft commercial software. In order 

to analyze the efficiency of the proposed method, a building 

edge is chosen in four overlapping images, and further 

results are shown on this edge. The proposed method 

contains two parameters (r and t as presented in section 

2.1.2), which should be set before implementation. The 

optimum values for these parameters are defined by trial 

and error. The radius and threshold are set to 0.2 and 0.02 

meter, respectively. 

    Firstly, aerial triangulation is performed and 

photogrammetric productions (point cloud, TIN model, 

DSM, and ortho-mosaic) are generated in a common 

photogrammetry process. Error! Reference source not 

found. demonstrates TIN model building. 

    As shows Error! Reference source not found. that, TIN 

model contains several heterogeneous elements in the 

building wall and distortions in building edges.  

     Error! Reference source not found. illustrates the 

initial building which is generated in the standard 

photogrammetric process. Two building edges are shown in 

a closer look. 

DSM analysis depicts that there are some planimetric and 

altimetric variations in building edges. These challenges 

lead to saw-tooth effect in orthophoto. The mono-plotting 

process presents significant challenges in implementation. 

Error! Reference source not found. displays the derived 

orthophoto generated from the initial DSM, achieving a 

spatial resolution of 3 cm. 

    In the next step, 3D lines corresponding to the edges 

are generated and added to the initial point cloud. The 

production of 3D lines requires the accuracy and precision 

of extracting lines and 2D edge corners in image. After 

obtaining the corner points of the building edge these points 

are used to produce 3D lines. In the proposed method, these 

lines are divided into discrete points with a certain density 

(Error! Reference source not found.).  
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(a) (b) 

Figure 6. (a) TIN model (b) TIN around edges for the first building. 

 

 

 

 

(a) (b) 

Figure 7. (a) DSM (b) DSM around edges for the first building. 

 

 

Figure 8. Orthophoto for the first building outlines based 

on the initial DSM 

Figure 9. 3D points produced by the proposed method 

with a density of 17 cm. 
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The obtained 3D point cloud is classified on both sides of 

the line and the points around the line are masked; then the 

average height of the points inside the mask is assigned to 

all masked point clouds. By integration of points of 3D line 

into the initial point cloud to create a modified TIN (Error! 

Reference source not found.). 

 
Figure 10. (a) TIN model of the first building in the 

modified point cloud. 

 

Comparing Error! Reference source not found. and 

Error! Reference source not found. proves the ability of the 

proposed method in TIN generation. The modified model 

reaches better quality in the wall where discontinuity is 

preserved. For better analysis, DSM is generated based on 

new point cloud which is shown in Error! Reference source 

not found.. 

Comparative analysis reveals a significant enhancement 

in building edge delineation in both TIN and DSM models. 

The sharp building boundaries observed in the DSM results 

validate the superior performance of the proposed 

approach. Finally, the improved orthophoto is derived 

based on a modified DSM.  Error! Reference source not 

found. depicts the obtained orthophoto in building 

boundaries. 

Comparison of modified ortho (Error! Reference source 

not found.) with initial orthophoto (Error! Reference 

source not found.) proves that saw-tooth effects have 

improved on the edges of the building in the generated 

orthophoto based on the modified point cloud. In order to 

prove the high potential of the proposed method, another 

building is considered. Error! Reference source not found. 

shows the effects of the proposed method on the generated 

TIN. 

 

 

 

 

 

Figure 11. (a) DSM (b) DSM for around outlines in the modified point cloud for the first building. 
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Figure 12. (a) Orthophoto (b) Orthophoto around outlines based on the modified DSM for the first building. 

 

  

(a) (b) 

Figure 13. TIN based on (a) initial point cloud (b) improved point cloud for the second building. 

 

Analyzing the above figure shows that the proposed 

method significantly improves the TIN quality. It contains 

homogenous triangles and also discontinuities are 

preserved. In order to evaluate the height information 

around building edges, DSM is generated based on initial 

and improved point cloud (Figure 14).  

Comparing two DSMs depicts that the improved point 

cloud and also the preprocessing steps made building edges 

better.  Finally, Orthophoto is generated based on the 

improved DSM. Figure 15 illustrates the orthophoto around 

the second building, which are generated based on the 

initial DSM and improved one.
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(a) (b) 

Figure 14. DSM based on (a) initial point cloud (b) improved point cloud for the second building. 

 

  
(a) (b) 

Figure 15.  Orthophoto based on (a) initial DSM (b) improved DSM for the second building. 
 

As Error! Reference source not found. shows, saw-tooth 

effects and distortion near building edges have decreased 

significantly, which proves the high potentiality of the 

proposed method. For the statistical evaluation of the 

modified point clouds by an edge line, a band with a certain 

width is created around the line. The mask width is 

empirically determined as a function of wall thickness, 

typically ranging between 20-30 cm for standard urban 

building parapets. Then the height difference of the points 

inside the band compared to the nearest points on the line 

before and after implementation of that as the edge of the 

building is calculated and then the statistical parameters of 

this difference vector is calculated. For this purpose, three 

lines are considered as shown in Error! Reference source 

not found.. 

The statistical parameters of the height differences of the 

points around the edge (the band widths of 20 cm) before 

and after adding the line 1 are presented in Table 1, as well 

as the histogram of the height of the points inside the band, 

are presented in Error! Reference source not found.. 

The statistical parameters of the height differences of the 

points around the edge (the band widths of 20 cm) before 

and after adding the line 2 are presented in Table 2, as well 

as the histogram of the height of the points inside the band, 

are presented in Error! Reference source not found.. 

 

Figure 16. Three considered lines. 

The statistical parameters of the height differences of the 

points around the edge (the band widths of 20 cm) before 

and after adding the line 3 are presented in Table 3, as well 

as the histogram of the height of the points inside the band, 

are presented in Error! Reference source not found.. 

The statistical results in all three above cases show a 

decrease in the height distribution of the points around the 

edge line after implementation of the line in the point clouds. 

The reduction of the height distribution of the points around 

the edge and its proximity to the height of the line points had 

a great impact on the results of the TIN and the DEM, and 

its effect can be seen in the orthophoto results.

  

1 

2 3 
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Table 1. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 1 (in 

meters). 

 Min  Max Mean STD RMS 

Before the line adding 0 8.0161 -0.4672 1.4395 1.5132 

After the line adding 0 0.4366 -0.0972 0.1269 0.1599 

 

  
Figure 17. The height histogram of the points in a buffer with a width of 20 cm, before and after the addition of line 1. 

 

 

 
Table 2. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 2 (in 

meters). 

 Min  Max Mean STD RMS 

Before the line adding 0 8.4721 -1.4519 2.3936 2.7995 

After the line adding 0 6.1832 -0.1486 0.5430 0.5630 

 
 

  
Figure 18. The height histogram of the points in a buffer with a width of 20 cm, before and after adding line 2. 

 

 

 
 

Table 3. The statistical parameters of the height differences of the points in a buffer with a width of 20 cm, before and after adding the line 3 (in 

meters). 

 

 Min  Max Mean STD RMS 

Before the line adding 0.0001 0.2982 -0.0787 0.0487 0.0925 

After the line adding 0 0.1920 -0.0143 0.0413 0.04367 



 

 Earth Observation and Geomatics Engineering, Volume 8, Issue 2, 2024 

 

22 

 

 

  
Figure 19.  The height histogram of the points in a buffer with a width of 20 cm, before and after adding line 3. 

 

Since the average height of the points inside the mask is 

assigned to all masked point clouds, the height variation 

among masked points becomes significantly reduced. 

Consequently, it is logically expected that the maximum and 

minimum height differences within this region diminish 

substantially. Regarding the STD and RMS, the height 

dispersion of points within the mask has improved by up to 

99% in maximum achievable performance. Furthermore, 

the height histogram demonstrates a significant reduction in 

dispersion. The 99% reduction in height variance (STD) 

minimizes erratic height jumps. Precise parapet wall 

thickness-based masking preserves true roof boundaries 

while filtering outliers. 

4. Conclusion 

This research has presented a new approach for 

reconstructing DSM by extracting parts of 2D building 

edges from UAV multi-images. In the first step, after 

generating the initial point cloud, 2D line segments are 

extracted, then 3D lines are generated from the intersection 

of two-dimensional lines using the bundle adjustment 

method. For this purpose, multi-planes are intersected and 

best 3D line is generated least square. The two endpoints of 

the 3D line are estimated by calculating the longest length 

using four image points. Finally, the 3D line segments 

defined by the two endpoints are discretised and integrated 

with the initial point cloud for reconstruction of the TIN and 

DSM model besides the orthophoto production. Both visual 

and numerical evaluations of the building image dataset 

demonstrate that the proposed method effectively reduces 

saw-tooth artifacts in the orthophoto while substantially 

improving DSM quality. Although, the proposed method 

reaches the high accuracy and good interpretation results, 

it has some limitations, such as occlusion in oblique images 

and proximity to other objects (e.g. trees) in complex urban 

areas. For future work, we suggest evaluating the proposed 

method on the diverse building types in different areas. 

Moreover, the sensitivity analysis of the proposed method to 

its parameters is suggested.  

 

Data Availability 

Data is not available. 
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