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Significant growth of the population in cities in the last few decades requires close monitoring
of urban change. Monitoring can be applied as an influential factor in the field of urban
management and planning. It also helps to estimate the amount of damage caused by natural
disasters such as Earthquakes, floods, and fires. Recent improvement of the quality of satellite
images and the development of machine learning methods have made the change monitoring
algorithms more accurate and faster than before. In this article, buildings change is monitored
using the U-Net++ deep learning model and Onera satellite change detection dataset by
means of exploiting input data combinations in different approaches in the arrangement of
spectral bands, remote sensing indices and extracted features. The feature selection is to
reduce the dimensionality of the input data to the network. Unlike ordinary feature extraction
methods that normally extract high-level features, the feature extraction method used in this
study is based on the level of complexity of the data. The data combinations are then used as
input data to the U-Net++ deep learning model. The results show that the use of spectral
indices can improve the performance of the model. By applying the feature extraction process
to reduce the input data dimensionality, the training time of the model was reduced and the
network convergence accelerated considerably. However, this considerable reduction in
processing time did not sensibly affect the final accuracy of the results.
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1. Introduction

The change detection process is a temporal image
analysis to detect the change made in the same location
images, and to generate a change map. Nowadays, building
change detection has attracted attention because of the
factors that cause changes in urban areas. These factors can
include the ever-increasing population growth and the
consequent increase in the need to construct new buildings
or natural phenomena events such as Earthquakes, floods
and fires, which can lead to the destruction of buildings
(Singh, 1989). Monitoring these changes can be helpful in
the field of urban planning and management and prevention
of illegal construction. In addition, the monitoring of these
changes can lead to better identification of land use change
and monitoring of urban areas over time, and consequently,
management decisions in line with urban development.

The process of monitoring environmental change in
remote sensing is performed with the help of different types
of aerial and satellite images, each of which has advantages
and disadvantages. For example, aerial images have higher
spatial resolution than satellite images, but satellite images
cover wider areas and are available for free with higher
spectral resolution. Due to the development of satellite
images with different spatial, spectral, and temporal
resolutions, choosing the type and source of these images
can be considered an effective step in the process of
monitoring change (Du et al., 2012; Du et al., 2013; Zhang
et al., 2012). In the field of change monitoring, the higher
the spatial resolution of the images, the more accurately the
changes can be identified. Challenges in images with high
spatial resolution are changes in the imaging angle,
interference of noise, shadows related to various effects of
the Earth’s surface, different weather conditions during
acquisition such as cloudiness in the area, change of season,
and location of the Sun during acquisition. The day and time
of image acquisition and height displacements are also
included.

There are different methods for building change
monitoring, among which are the conventional methods of
thresholding, comparison of images classification or
simultaneous classification of two images. Xiao et al.
presented a segmentation-based method to detect building
change using high spatial resolution remote sensing images
and introduced a new solution to detect changes based on a
condition (Xiao et al., 2017). In this method, segmentation
is performed through the minimization of the graph-based
energy function by combining the changed features
extracted from image differencing. This directly leads to the
creation of the foreground as the change and the
background as the unchanged pixels. Finally, the spatial
correspondence between the changed features is determined
through overlap analysis. This method creates a dependent
segmentation using multi-temporal images with two main
advantages: 1) image features and change features are used
to create the foreground as change features and produce
two change maps that have the ability to reveal the

information of the complication type, geometric features,
and numerical values of the change and 2) the background
representing the no-change region avoids the problem of
matching no-change effects caused by an independent
segmentation process. The results obtained on five datasets
confirm the efficiency of the proposed method and show its
superiority compared to the prior advanced methods.

In another study, Wang et al. used convolutional neural
networks to detect existing changes based on Faster R-CNN
in high-resolution remote sensing images (Wang et al.,
2018). Compared to several traditional methods and other
deep learning-based change detection methods, higher
accuracy in results obtained. This method reduced many
false changes. The method requires several implementations
to categorize parameters to achieve the best results.

In a study, an automatic deep learning (DL) detection
method called ABCDHIDL to identify building changes
proposed (Huang et al., 2019). A convolution operation was
used to extract spectral, textural, and spatial features and
produced a combined low-level feature vector for each
pixel. To evaluate the performance of ABCDHIDL, four
datasets of bi-temporal images in different test areas were
used.

Ding et al. proposed a new deep network called DSA-Net
to detect building changes in high-resolution images (Ding
et al., 2021). Quantitative and qualitative tests were
performed using two LEVIR-CD and WHU datasets and
achieved the best performance. The method showed faster
and more convergence compared to other methods. To
prevent the information loss when aggregating and also to
reduce the heterogeneity between the raw features and the
extracted features, the CLA-con-SAM module of the features
at different levels was used. The method achieved the highest
degree of accuracy and was compared to other methods.
Additionally, the number of false diagnoses was minimized.

The aim of Abdolian et al. in their study in 2023, was to
detect changes in industrial buildings in Mobarakeh and
Shamsabad industrial parks in Iran (Abdolian et al., 2023).
They used a STANet model that had been already trained on
the known LEVIR-CD dataset. In order to increase the
performance of the model, in addition to the LEVIR-CD
dataset, the STANet was also trained on local datasets of the
industrial parks. As the local dataset volume was gradually
increased, the DL model performance was also increased.
The conclusion was that the use of the local dataset on a
given model and tuning its hyperparameters, increases the
performance of the model.

Lyon et al. investigated the application of vegetation
indices in detecting land cover changes using satellite
imagery (Lyon et al., 1998). The research emphasizes
notable differences in brightness values across spectral
response curves for different land cover types. By
interpreting and comparing satellite scenes with other
imagery, the study identifies temporal changes. Some key
vegetation indices such as NDVI, are used to study changes
in the environment and manage land resources.
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Bhatt et al. used Landsat-5 data to examine various
spectral indices for detecting urban changes (Bhatt et al.,
2016). The research assesses several indices to effectively
distinguish between built-up and non-built-up regions. By
analysing the spectral characteristics of urban features, the
study aims to improve the accuracy of urban change
detection. The results indicate that spectral indices are
valuable tools for monitoring urban expansion and land
cover transformations, offering critical insights for urban
planning and management.

Recent change- detection methods have adopted plain or
hybrid Vision- Transformer (ViT) backbones to capture
long- range dependencies across bi- temporal pairs.
ChangeViT introduces a plain ViT encoder supplemented by
a detail- capture module and a feature injector,
demonstrating significant gains on large - scale land- cover
change benchmarks by integrating fine- grained spatial
cues into high- level semantic representations (Zhu et al.,
2024). Siamese EfficientNet B4-MANet (Siam-EMNet)
employs a Siamese EfficientNet-B4 encoder alongside a
lightweight MANet (Attention Mechanism Net) decoder to
improve building- change segmentation in very high—
resolution images. By explicitly modelling bi- temporal
feature correspondence, it achieves a 2-3 % loU boost over
traditional U-Net variants on VHR building datasets
(Huang et al., 2023). Ye et al in 2023 leverages 3D
convolutions to simultaneously extract and fuse bi-
temporal features, introducing an adjacent- level cross-
fusion module that bridges low- level and high-level
semantic gaps. Validated on WHU-CD, LEVIR-CD, and
SYSU-CD, it outperforms previous SOTA by 1-2 %
accuracy through complementary feature aggregation and
full-scale skip connections. Multi-Feature Cross Fusion
Network (MFCF-Net) introduces a multi- level feature
cross- fusion module with 3D-CNNs and a channel-
attention mechanism, effectively bridging semantic gaps and
reducing parameter count by over 40 % while matching the
accuracy of heavier architectures on benchmark datasets
(Yu et al., 2024). The Deep Probabilistic Change Model
(DPCM) (Zheng et al., 2024) frames change detection as a
modular, interpretable probabilistic process. By unifying
feature extraction, fusion, and decision- making under a
probabilistic paradigm, DPCM sets new benchmarks in both
accuracy and explainability on optical change detection
datasets.

In this study, the U-Net++ DL model is used to monitor
buildings change in satellite images. The purpose of using
this network which has been previously used in medical
image segmentation is to segment satellite images and
improve the limitations of the U-Net++ network by
including remote sensing-based indices and features. An
encoder based on the EfficientNet-B7 architecture is used to
avoid successive convolutional layers in the encoder and
decoder paths. As a result, the model is capable of extracting
non-linear relationships between features more accurately.
The feature extraction process is also performed using
convolutional network. The accurate results of the model

and significant reduction of training time, implies the
superiority of the model used in this study.

2. The data

In this study, the change monitoring is performed using
the Onera satellite change detection dataset (Ahangarha et
al., 2020; Khusni et al., 2020). It includes images taken from
the same locations at two different times. The dataset
contains 24 pairs of multispectral images taken by Sentinel-
2 satellites from Brazil, USA, Europe and so on from 2015
to 2018. The changes considered in the dataset include
buildings and roads. The dataset can be used to train
different models and optimize different parameters. Each
image in this dataset contains 13 spectral bands with spatial
resolutions of 10, 20, and 60 m. The pixel-based ground-
truth maps have already been provided (Daudt et al., 2018).
The dataset has been used in several studies in the field of
change monitoring of the environment, among which the
highest accuracy achieved was approximately 96% in the
evaluation phase of the final model (Seydi et al., 2020).

3. The method

In this article, the dataset is used as a reference data, and
the temporal changes in the buildings are taken into
consideration. In this regard, the images are first
normalized and then divided into 32x32-pixel image
patches; where, approximately 1500 pairs of training image
patches were created. To train the model, 1400 pairs of
images, and to test it, 100 pairs of images have been used.
Additionally, 10% of the training data is set aside for
validation during the training phase.

The process of identifying changes can be performed in
two general ways: 1) checking the change from different
classes to each other (Multiple Change), and 2) single
change class (Change or No-change). In this article, the
process of monitoring changes with the help of methods
belonging to the category of integrated classification and
change from no-change to change is described. Also, due to
the significant growth of DL models, in this research, it is
tried to use the capabilities made available by these models.
Therefore, U-Net++ model has been selected to use
(Ouerghi, 2022).

3.1 Deep learning model for change detection

Deep learning model of U-Net++ for change detection is
an extended version of the U-Net model, which is presented
to improve the semantic segmentation of images. One of the
important applications of this model is to improve the
segmentation in medical images (Ronneberger et al., 2015).
The U-Net++ model has been improved over the U-Net
architecture by combining dense skip connections between
the encoder and decoder paths, resulting in better image
feature extraction. In fact, the design of these paths is one of
the innovations in this network to reduce the semantic gap
between the characteristic maps of the encoder and decoder
paths. This improves the performance of the network in the
image segmentation process.
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This model, like the U-Net model, uses a U-shaped
encoder-decoder architecture in which nested convolutional
blocks are used to communicate between the encoder and
decoder paths. These convolution blocks make the features
to be extracted in the encoder paths and their corresponding
ones in the decoder path conceptually similar to each other,
and the optimization problem of the U-Net network is
partially solved and more accurate results are obtained. In
the final layer, with the help of the thresholding process, the
final output is a binary map and is divided into two classes
of change and no-change. In this model, deep monitoring is
also used to improve the efficiency of the network training
process. Figure 1 shows the architecture of this DL network
(Luo et al., 2020; Zhou et al., 2018).
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Figure 1. The U-Net++ deep learning model architecture

An appropriate encoder model can play an important
role in improving the accuracy of the results and the
convergence of the network. Regarding the fact that
EfficientNet-B7 architecture has achieved the most accurate
result on ImageNet dataset, this model has been selected as
an encoder model for training the network. The selection of
hyperparameters required for network training is a fact that
must be properly investigated. In this model, the MSE loss
function (Marmolin, 1986) and the Adam optimizer (Kingma
& Ba, 2014; Zhang, 2018) were used to train the network.
In addition, the learning rate, which is one of the important
hyperparameters in the process of training and convergence
of the network and has a significant impact on the results,
was obtained with the help of the grid search method. The
model was trained for 500 epochs with a batch size of 32 in
an environment powered by an NVIDIA RTX 3090 GPU. To
determine the best learning rate, researchers use the
torch_Ir_finder library, which was initially introduced by
(Smith, 2017) for PyTorch. This tool gradually increases the
learning rate within a predefined range before network
training. By observing how loss changes with varying
learning rates, the optimal rate can be identified. Typically,
this occurs where the loss function experiences a
pronounced decrease, indicating the steepest descent.
Initially, the network converges with a low learning rate and
then diverges as the rate increases. This iterative process
ensures finding the optimum learning rate at which the

network performs optimally as shown in Figure 2.
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Figure 2. Learning rate finder curve. The x-axis is the
learning rate (log scale), and the y-axis is the training loss
(MSE). The optimal rate (marked by the red dot at ~1.35e-

4) corresponds to the steepest negative slope, indicating
fastest convergence before divergence.

3.2 Feature extraction model

Due to the different reflection characteristics in remote
sensing spectral bands, generally, not all bands have useful
information to identify the changes. In this stage, a deep
learning model is used to extract features from the bands.
Unlike some other feature extraction models, this model
does not extract only high-level information. It identifies and
extracts suitable features according to the targets which are
the changed pixels using the bands. The architecture of this
deep learning model is shown in Figure 3. This
convolutional neural network consists of three layers: a
convolutional layer using CNN, batch normalization, and
activation function. All these extracted features have
important characteristics to help identify the changes
according to the nature of the images and the considered
complications.

s
Figure 3. Feature extraction model architecture.

4. Implementation

As mentioned, the aim in this study is to monitor
buildings change using satellite images that were taken at
two different times. The output will be a two-class map of
change and no-change. Three main approaches have been
considered in this article, each of which has been examined
in detail and the results have been compared with each
other.

4.1 The first approach
In the first approach, each 13 bands of the two images
taken at two different times as well as the vegetation, water,
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and buildings indices of NDVI, NDWI, and NDBI are taken
into consideration. The indices formula are as follows:

NDV| = ENIRZPR (1)
PNIRTPR

NDW] = PaPNIR @)
PgtPNIR

NDBI — PSWIR—PNIR (3)
PSWIRtPNIR

where pg, pr, pnirR and pswir indicate reflectance in green,
red, near infra-red and short-wave infra-red bands,
respectively. These remote sensing-based indices are used
to identify the changes related to the classes of vegetation
cover, water bodies, and buildings within the two temporal
images. All 13 bands together with the three indices
regarding two images constructed 26 bands and 6 indices
(altogether 32) were input to the U-Net++ DL network, and
the output was obtained as a binary map of change and no-
change classes. The learning time of the model using 32
bands was substantially high though with very high
accuracy.

4.2 The second approach

In the second approach, to reduce the learning time, all
13 bands of each image regarding two images which
constructed 26 bands were input to the U-Net++ model. In
this approach, the feature extraction stage is not performed,
and deep learning model processing is performed on bands
only. The output was obtained as a binary map of change
and no-change classes with very high accuracy although
low visually. However, the learning time of the model using
26 bands was still too high.

4.3 The third approach

The aim of the third approach is reduction further of the
learning time, and in the meantime to maintain the accuracy
as high as the previous two approaches. The third approach
is similar to the first one, except that, all 13 bands of images,
together with the three indices of vegetation, water bodies,
and buildings, were input to the feature extraction model
first, and three features were selected. To identify the most
important features for change tracking, the model utilizes a
feature extraction technique instead of directly using the
original images or spectral indices. In this way, three
selected features each from two images were combined and
constructed six features and used as the input data into the
U-Net++ model. Like the other approaches, the output is
obtained as a two-class map of change and no-change. In
this approach, the learning time of the model using six
features was substantially reduced though with very high
accuracy comparable with the previous ones. Compared to
the two previous methods, this method focuses on reducing
computational time.

4.4 Results and discussion
As expected, data redundancy, especially when the

number of bands is high, increases the computational load
and the convergence time of the model. This is the fact that
in practice there is no need for the complexity of the model
and unnecessary calculations to identify the changes. It is
possible to train the network with optimal features and
achieve the desired results with high accuracy. Actually,
feature extraction improves model performance and reduces
training time. However, according to the required accuracy
and available sensitivities, each of these approaches can be
considered.

The results of different approaches indicate that higher
accuracy is obtained in approaches that use different remote
sensing indices too. The remote sensing indices which
represent various information on surfaces, improve the
performance of the model in the process of identifying
changes. In addition, the feature extraction process, which
reduces the dimensionality of the input data and
consequently reduces the training time and accelerates the
convergence of the deep learning model, does not have
negative impact on the final accuracy of the deep learning
model. Table 1 shows the network training and testing
accuracy values and training times of the approaches.

Tablel. The accuracies and training times for the three change
detection approaches.

Training Test foU Fl- Training
accuracy accuracy Score Time
- 9:05:47
The first 99.75 9586 | 9241 | 95.90
approach
8:12:24
The second 99.51 95.61 92.10 95.70
approach
- 2:07:15
The third 99.55 95.31 91.43 | 9531
approach

While overall accuracy differences among the three
approaches remain relatively small, approach 3, which
incorporates feature selection, shows a slight decline in test
accuracy compared to approach 2 from 95.61% to 95.31%,
despite a slight increase in training accuracy from 99.51%
to 99.55%. This trade-off is accompanied by a significant
reduction in training time, from around 8 hours to just
around 2 hours, owing to the reduction of input features
from 32 bands (comprising 13 spectral bands and 3 indices
across two time points) to only 6 selected feature maps.

Based on the results of this study, the first approach
ranked highest. All spectral bands and indices were
considered in this approach. As a result, this model required
a much longer training time than the other two approaches.
Conversely, in the second scenario, which uses bands only,
the accuracy is lower. However, the accuracy difference
between different approaches is very much negligible.

Although approach 3 achieves a substantial reduction in
training time (i.e. over 75%) by decreasing the number of
input bands from 32 to 6, this efficiency gain comes at a
minor cost to classification accuracy. This slight decline is
likely due to the feature extraction process, which, despite
effectively capturing high-variance components, may
inadvertently exclude spectral or index combinations that
are crucial for the U-Net++ model to detect subtle changes.
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Specifically, indices related to vegetation and built-up areas
(e.g., NDVI, NDBI) provide nonlinear signals that, when
omitted, can slightly diminish the network’s ability to
identify fine-scale variations.

As mentioned in the first approach, the dimensionality of
the input data is high, which slows down the convergence
process of the model. On the other hand, there isn't a
sensible difference between the accuracy values of these
approaches; therefore, it is suggested to use a method that
requires less time for model convergence while maintaining
accuracy. Figures 4 and 5 show the visual results of each
model generated for each approach.

Date 1 Date_2

In

Flgure 4. Two samples from data: Left) Image
before the change; Center) Image after the change;
Right) annotated change mask (white = new/removed
buildings).

Sample 1

Sample 2

Sample 1

Sample 2

Approach 2 Approach 3

Approach 1
Figure 5. Change-map predictions from each approach
for the two samples in Figure 4.

1) Approach 1: bands + indices,
2) Approach 2: bands only, and
3) Approach 3: feature-extracted bands.

As can be seen in the Figures, most of the models have
also identified pixels related to cloud cover changes. In
other words, the primary data has a cloud cover which can
be considered as one of the flaws of this dataset. However,
this problem can be solved with different methods that have
been proposed in the field of cloud pixel removal.

The state-of-the-art methods such as STANet (Abdolian
et al., 2023) and DSA-Net (Ding et al., 2021) have been
already investigated. They also used the same dataset.
Based on the comparison between their results and the

results obtained in our study, we concluded that the model
used in our study was more appropriate and was selected
accordingly. It demonstrated how our band-and-index
approach (Approach 1) and lightweight feature-extraction
variant (Approach 3) not only match or exceed the detection
performance of these benchmarks but also offer substantial
reductions in model complexity and convergence time.

5. Conclusion

This research was conducted with the aim of buildings
change due to the important role of this category of change
in urban planning. The change monitoring process in this
study is performed with the help of satellite images and the
U-Net++ deep learning model in three approaches. This
study also employs EfficientNet-B7 to monitor satellite
image changes effectively. EfficientNet-B7's encoder design
enhances non-linear relationship extraction, leading to
accurate results and reduced training time when compared
to other methods. The feature extraction that uses a
convolutional network, further enhances accuracy. The
main difference between the first and third approaches is the
use of remote sensing indices. Based on the findings, the first
approach, which incorporates all spectral bands and
indices, ranked highest despite requiring very much longer
training time. In contrast, the third approach, which utilized
bands and feature extraction and used selected features, had
very negligible lower accuracy but significantly reduced
training time. This shows the importance of effective
extraction of relevant information in monitoring changes
using the deep learning model. Therefore, the research
demonstrates that employing spectral indices enhances
model accuracy. In addition, feature extraction reduces both
input image dimensionality and training time, and avoids
model complexity without compromising accuracy.
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