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Significant growth of the population in cities in the last few decades requires close monitoring 

of urban change. Monitoring can be applied as an influential factor in the field of urban 

management and planning. It also helps to estimate the amount of damage caused by natural 

disasters such as Earthquakes, floods, and fires. Recent improvement of the quality of satellite 

images and the development of machine learning methods have made the change monitoring 

algorithms more accurate and faster than before. In this article, buildings change is monitored 

using the U-Net++ deep learning model and Onera satellite change detection dataset by 

means of exploiting input data combinations in different approaches in the arrangement of 

spectral bands, remote sensing indices and extracted features. The feature selection is to 

reduce the dimensionality of the input data to the network. Unlike ordinary feature extraction 

methods that normally extract high-level features, the feature extraction method used in this 

study is based on the level of complexity of the data. The data combinations are then used as 

input data to the U-Net++ deep learning model. The results show that the use of spectral 

indices can improve the performance of the model. By applying the feature extraction process 

to reduce the input data dimensionality, the training time of the model was reduced and the 

network convergence accelerated considerably. However, this considerable reduction in 

processing time did not sensibly affect the final accuracy of the results. 
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1. Introduction 

     The change detection process is a temporal image 

analysis to detect the change made in the same location 

images, and to generate a change map. Nowadays, building 

change detection has attracted attention because of the 

factors that cause changes in urban areas. These factors can 

include the ever-increasing population growth and the 

consequent increase in the need to construct new buildings 

or natural phenomena events such as Earthquakes, floods 

and fires, which can lead to the destruction of buildings 

(Singh, 1989). Monitoring these changes can be helpful in 

the field of urban planning and management and prevention 

of illegal construction. In addition, the monitoring of these 

changes can lead to better identification of land use change 

and monitoring of urban areas over time, and consequently, 

management decisions in line with urban development. 

     The process of monitoring environmental change in 

remote sensing is performed with the help of different types 

of aerial and satellite images, each of which has advantages 

and disadvantages. For example, aerial images have higher 

spatial resolution than satellite images, but satellite images 

cover wider areas and are available for free with higher 

spectral resolution. Due to the development of satellite 

images with different spatial, spectral, and temporal 

resolutions, choosing the type and source of these images 

can be considered an effective step in the process of 

monitoring change (Du et al., 2012; Du et al., 2013; Zhang 

et al., 2012). In the field of change monitoring, the higher 

the spatial resolution of the images, the more accurately the 

changes can be identified. Challenges in images with high 

spatial resolution are changes in the imaging angle, 

interference of noise, shadows related to various effects of 

the Earth’s surface, different weather conditions during 

acquisition such as cloudiness in the area, change of season, 

and location of the Sun during acquisition. The day and time 

of image acquisition and height displacements are also 

included. 

     There are different methods for building change 

monitoring, among which are the conventional methods of 

thresholding, comparison of images classification or 

simultaneous classification of two images. Xiao et al. 

presented a segmentation-based method to detect building 

change using high spatial resolution remote sensing images 

and introduced a new solution to detect changes based on a 

condition (Xiao et al., 2017). In this method, segmentation 

is performed through the minimization of the graph-based 

energy function by combining the changed features 

extracted from image differencing. This directly leads to the 

creation of the foreground as the change and the 

background as the unchanged pixels. Finally, the spatial 

correspondence between the changed features is determined 

through overlap analysis. This method creates a dependent 

segmentation using multi-temporal images with two main 

advantages: 1) image features and change features are used 

to create the foreground as change features and produce 

two change maps that have the ability to reveal the 

information of the complication type, geometric features, 

and numerical values of the change and 2) the background 

representing the no-change region avoids the problem of 

matching no-change effects caused by an independent 

segmentation process. The results obtained on five datasets 

confirm the efficiency of the proposed method and show its 

superiority compared to the prior advanced methods. 

     In another study, Wang et al. used convolutional neural 

networks to detect existing changes based on Faster R-CNN 

in high-resolution remote sensing images (Wang et al., 

2018). Compared to several traditional methods and other 

deep learning-based change detection methods, higher 

accuracy in results obtained. This method reduced many 

false changes. The method requires several implementations 

to categorize parameters to achieve the best results. 

     In a study, an automatic deep learning (DL) detection 

method called ABCDHIDL to identify building changes 

proposed (Huang et al., 2019). A convolution operation was 

used to extract spectral, textural, and spatial features and 

produced a combined low-level feature vector for each 

pixel. To evaluate the performance of ABCDHIDL, four 

datasets of bi-temporal images in different test areas were 

used. 

     Ding et al. proposed a new deep network called DSA-Net 

to detect building changes in high-resolution images (Ding 

et al., 2021). Quantitative and qualitative tests were 

performed using two LEVIR-CD and WHU datasets and 

achieved the best performance. The method showed faster 

and more convergence compared to other methods. To 

prevent the information loss when aggregating and also to 

reduce the heterogeneity between the raw features and the 

extracted features, the CLA-con-SAM module of the features 

at different levels was used. The method achieved the highest 

degree of accuracy and was compared to other methods. 

Additionally, the number of false diagnoses was minimized. 

     The aim of Abdolian et al. in their study in 2023, was to 

detect changes in industrial buildings in Mobarakeh and 

Shamsabad industrial parks in Iran (Abdolian et al., 2023). 

They used a STANet model that had been already trained on 

the known LEVIR-CD dataset. In order to increase the 

performance of the model, in addition to the LEVIR-CD 

dataset, the STANet was also trained on local datasets of the 

industrial parks. As the local dataset volume was gradually 

increased, the DL model performance was also increased. 

The conclusion was that the use of the local dataset on a 

given model and tuning its hyperparameters, increases the 

performance of the model.  

     Lyon et al. investigated the application of vegetation 

indices in detecting land cover changes using satellite 

imagery (Lyon et al., 1998). The research emphasizes 

notable differences in brightness values across spectral 

response curves for different land cover types. By 

interpreting and comparing satellite scenes with other 

imagery, the study identifies temporal changes. Some key 

vegetation indices such as NDVI, are used to study changes 

in the environment and manage land resources.  
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     Bhatt et al. used Landsat-5 data to examine various 

spectral indices for detecting urban changes (Bhatt et al., 

2016). The research assesses several indices to effectively 

distinguish between built-up and non-built-up regions. By 

analysing the spectral characteristics of urban features, the 

study aims to improve the accuracy of urban change 

detection. The results indicate that spectral indices are 

valuable tools for monitoring urban expansion and land 

cover transformations, offering critical insights for urban 

planning and management. 

     Recent change‐ detection methods have adopted plain or 

hybrid Vision‐ Transformer (ViT) backbones to capture 

long‐ range dependencies across bi‐ temporal pairs. 

ChangeViT introduces a plain ViT encoder supplemented by 

a detail‐ capture module and a feature injector, 

demonstrating significant gains on large‐ scale land‐ cover 

change benchmarks by integrating fine‐ grained spatial 

cues into high‐ level semantic representations (Zhu et al., 

2024). Siamese EfficientNet B4-MANet (Siam-EMNet) 

employs a Siamese EfficientNet-B4 encoder alongside a 

lightweight MANet (Attention Mechanism Net) decoder to 

improve building‐ change segmentation in very high–

resolution images. By explicitly modelling bi‐ temporal 

feature correspondence, it achieves a 2–3 % IoU boost over 

traditional U-Net variants on VHR building datasets 

(Huang et al., 2023). Ye et al in 2023 leverages 3D 

convolutions to simultaneously extract and fuse bi‐
temporal features, introducing an adjacent‐ level cross‐
fusion module that bridges low‐ level and high-level 

semantic gaps. Validated on WHU-CD, LEVIR-CD, and 

SYSU-CD, it outperforms previous SOTA by 1–2 % 

accuracy through complementary feature aggregation and 

full-scale skip connections.  Multi-Feature Cross Fusion 

Network (MFCF-Net) introduces a multi‐ level feature 

cross‐ fusion module with 3D-CNNs and a channel‐
attention mechanism, effectively bridging semantic gaps and 

reducing parameter count by over 40 % while matching the 

accuracy of heavier architectures on benchmark datasets 

(Yu et al., 2024). The Deep Probabilistic Change Model 

(DPCM) (Zheng et al., 2024) frames change detection as a 

modular, interpretable probabilistic process. By unifying 

feature extraction, fusion, and decision‐ making under a 

probabilistic paradigm, DPCM sets new benchmarks in both 

accuracy and explainability on optical change detection 

datasets. 

     In this study, the U-Net++ DL model is used to monitor 

buildings change in satellite images. The purpose of using 

this network which has been previously used in medical 

image segmentation is to segment satellite images and 

improve the limitations of the U-Net++ network by 

including remote sensing-based indices and features. An 

encoder based on the EfficientNet-B7 architecture is used to 

avoid successive convolutional layers in the encoder and 

decoder paths. As a result, the model is capable of extracting 

non-linear relationships between features more accurately. 

The feature extraction process is also performed using 

convolutional network. The accurate results of the model 

and significant reduction of training time, implies the 

superiority of the model used in this study. 

 

2. The data 

     In this study, the change monitoring is performed using 

the Onera satellite change detection dataset (Ahangarha et 

al., 2020; Khusni et al., 2020). It includes images taken from 

the same locations at two different times. The dataset 

contains 24 pairs of multispectral images taken by Sentinel-

2 satellites from Brazil, USA, Europe and so on from 2015 

to 2018. The changes considered in the dataset include 

buildings and roads. The dataset can be used to train 

different models and optimize different parameters. Each 

image in this dataset contains 13 spectral bands with spatial 

resolutions of 10, 20, and 60 m. The pixel-based ground-

truth maps have already been provided (Daudt et al., 2018). 

The dataset has been used in several studies in the field of 

change monitoring of the environment, among which the 

highest accuracy achieved was approximately 96% in the 

evaluation phase of the final model (Seydi et al., 2020). 

 

3. The method 

     In this article, the dataset is used as a reference data, and 

the temporal changes in the buildings are taken into 

consideration. In this regard, the images are first 

normalized and then divided into 32×32-pixel image 

patches; where, approximately 1500 pairs of training image 

patches were created. To train the model, 1400 pairs of 

images, and to test it, 100 pairs of images have been used. 

Additionally, 10% of the training data is set aside for 

validation during the training phase. 

     The process of identifying changes can be performed in 

two general ways: 1) checking the change from different 

classes to each other (Multiple Change), and 2) single 

change class (Change or No-change). In this article, the 

process of monitoring changes with the help of methods 

belonging to the category of integrated classification and 

change from no-change to change is described. Also, due to 

the significant growth of DL models, in this research, it is 

tried to use the capabilities made available by these models. 

Therefore, U-Net++ model has been selected to use 

(Ouerghi, 2022). 

 
3.1 Deep learning model for change detection 

     Deep learning model of U-Net++ for change detection is 

an extended version of the U-Net model, which is presented 

to improve the semantic segmentation of images. One of the 

important applications of this model is to improve the 

segmentation in medical images (Ronneberger et al., 2015). 

The U-Net++ model has been improved over the U-Net 

architecture by combining dense skip connections between 

the encoder and decoder paths, resulting in better image 

feature extraction. In fact, the design of these paths is one of 

the innovations in this network to reduce the semantic gap 

between the characteristic maps of the encoder and decoder 

paths. This improves the performance of the network in the 

image segmentation process. 
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     This model, like the U-Net model, uses a U-shaped 

encoder-decoder architecture in which nested convolutional 

blocks are used to communicate between the encoder and 

decoder paths. These convolution blocks make the features 

to be extracted in the encoder paths and their corresponding 

ones in the decoder path conceptually similar to each other, 

and the optimization problem of the U-Net network is 

partially solved and more accurate results are obtained. In 

the final layer, with the help of the thresholding process, the 

final output is a binary map and is divided into two classes 

of change and no-change. In this model, deep monitoring is 

also used to improve the efficiency of the network training 

process. Figure 1 shows the architecture of this DL network 

(Luo et al., 2020; Zhou et al., 2018). 

 

 
Figure 1. The U-Net++ deep learning model architecture 

 

     An appropriate encoder model can play an important 

role in improving the accuracy of the results and the 

convergence of the network. Regarding the fact that 

EfficientNet-B7 architecture has achieved the most accurate 

result on ImageNet dataset, this model has been selected as 

an encoder model for training the network. The selection of 

hyperparameters required for network training is a fact that 

must be properly investigated. In this model, the MSE loss 

function (Marmolin, 1986) and the Adam optimizer (Kingma 

& Ba, 2014; Zhang, 2018) were used to train the network. 

In addition, the learning rate, which is one of the important 

hyperparameters in the process of training and convergence 

of the network and has a significant impact on the results, 

was obtained with the help of the grid search method. The 

model was trained for 500 epochs with a batch size of 32 in 

an environment powered by an NVIDIA RTX 3090 GPU. To 

determine the best learning rate, researchers use the 

torch_lr_finder library, which was initially introduced by 

(Smith, 2017) for PyTorch. This tool gradually increases the 

learning rate within a predefined range before network 

training. By observing how loss changes with varying 

learning rates, the optimal rate can be identified. Typically, 

this occurs where the loss function experiences a 

pronounced decrease, indicating the steepest descent. 

Initially, the network converges with a low learning rate and 

then diverges as the rate increases. This iterative process 

ensures finding the optimum learning rate at which the 

network performs optimally as shown in Figure 2. 

 
Figure 2. Learning rate finder curve. The x-axis is the 

learning rate (log scale), and the y-axis is the training loss 

(MSE). The optimal rate (marked by the red dot at ~1.35e-

4) corresponds to the steepest negative slope, indicating 

fastest convergence before divergence. 
 
3.2 Feature extraction model 

Due to the different reflection characteristics in remote 

sensing spectral bands, generally, not all bands have useful 

information to identify the changes. In this stage, a deep 

learning model is used to extract features from the bands. 

Unlike some other feature extraction models, this model 

does not extract only high-level information. It identifies and 

extracts suitable features according to the targets which are 

the changed pixels using the bands. The architecture of this 

deep learning model is shown in Figure 3. This 

convolutional neural network consists of three layers: a 

convolutional layer using CNN, batch normalization, and 

activation function. All these extracted features have 

important characteristics to help identify the changes 

according to the nature of the images and the considered 

complications. 

 

 

 

 

 

 

 

 

Figure 3. Feature extraction model architecture. 

 

4. Implementation 

     As mentioned, the aim in this study is to monitor 

buildings change using satellite images that were taken at 

two different times. The output will be a two-class map of 

change and no-change. Three main approaches have been 

considered in this article, each of which has been examined 

in detail and the results have been compared with each 

other. 

 
4.1 The first approach 

In the first approach, each 13 bands of the two images 

taken at two different times as well as the vegetation, water, 
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and buildings indices of NDVI, NDWI, and NDBI are taken 

into consideration. The indices formula are as follows: 

 

𝑁𝐷𝑉𝐼 =  
𝜌𝑁𝐼𝑅−𝜌𝑅

𝜌𝑁𝐼𝑅+𝜌𝑅
                          (1) 

 

𝑁𝐷𝑊𝐼 =  
𝜌𝑔−𝜌𝑁𝐼𝑅

𝜌𝑔+𝜌𝑁𝐼𝑅
                          (2) 

 

𝑁𝐷𝐵𝐼 =  
𝜌𝑆𝑊𝐼𝑅−𝜌𝑁𝐼𝑅

𝜌𝑆𝑊𝐼𝑅+𝜌𝑁𝐼𝑅
                       (3) 

 

where 𝜌G, 𝜌R, 𝜌NIR and 𝜌SWIR indicate reflectance in green, 

red, near infra-red and short-wave infra-red bands, 

respectively. These remote sensing-based indices are used 

to identify the changes related to the classes of vegetation 

cover, water bodies, and buildings within the two temporal 

images. All 13 bands together with the three indices 

regarding two images constructed 26 bands and 6 indices 

(altogether 32) were input to the U-Net++ DL network, and 

the output was obtained as a binary map of change and no-

change classes. The learning time of the model using 32 

bands was substantially high though with very high 

accuracy. 

 
4.2 The second approach 

     In the second approach, to reduce the learning time, all 

13 bands of each image regarding two images which 

constructed 26 bands were input to the U-Net++ model. In 

this approach, the feature extraction stage is not performed, 

and deep learning model processing is performed on bands 

only. The output was obtained as a binary map of change 

and no-change classes with very high accuracy although 

low visually. However, the learning time of the model using 

26 bands was still too high. 

 
4.3 The third approach 

     The aim of the third approach is reduction further of the 

learning time, and in the meantime to maintain the accuracy 

as high as the previous two approaches. The third approach 

is similar to the first one, except that, all 13 bands of images, 

together with the three indices of vegetation, water bodies, 

and buildings, were input to the feature extraction model 

first, and three features were selected. To identify the most 

important features for change tracking, the model utilizes a 

feature extraction technique instead of directly using the 

original images or spectral indices. In this way, three 

selected features each from two images were combined and 

constructed six features and used as the input data into the 

U-Net++ model. Like the other approaches, the output is 

obtained as a two-class map of change and no-change. In 

this approach, the learning time of the model using six 

features was substantially reduced though with very high 

accuracy comparable with the previous ones. Compared to 

the two previous methods, this method focuses on reducing 

computational time.  

 
4.4 Results and discussion 

     As expected, data redundancy, especially when the 

number of bands is high, increases the computational load 

and the convergence time of the model. This is the fact that 

in practice there is no need for the complexity of the model 

and unnecessary calculations to identify the changes. It is 

possible to train the network with optimal features and 

achieve the desired results with high accuracy. Actually, 

feature extraction improves model performance and reduces 

training time. However, according to the required accuracy 

and available sensitivities, each of these approaches can be 

considered. 

     The results of different approaches indicate that higher 

accuracy is obtained in approaches that use different remote 

sensing indices too. The remote sensing indices which 

represent various information on surfaces, improve the 

performance of the model in the process of identifying 

changes. In addition, the feature extraction process, which 

reduces the dimensionality of the input data and 

consequently reduces the training time and accelerates the 

convergence of the deep learning model, does not have 

negative impact on the final accuracy of the deep learning 

model. Table 1 shows the network training and testing 

accuracy values and training times of the approaches. 

 
Table1. The accuracies and training times for the three change 

detection approaches. 

 
Training  

accuracy 

Test  

accuracy 

IoU F1-

Score 

Training  

Time 

The first 

approach 
99.75 95.86 92.41 95.90 

9:05:47 

The second 

approach 
99.51 95.61 92.10 95.70 

8:12:24 

The third 

approach 
99.55 95.31 91.43 95.31 

2:07:15 

 

     While overall accuracy differences among the three 

approaches remain relatively small, approach 3, which 

incorporates feature selection, shows a slight decline in test 

accuracy compared to approach 2 from 95.61% to 95.31%, 

despite a slight increase in training accuracy from 99.51% 

to 99.55%. This trade-off is accompanied by a significant 

reduction in training time, from around 8 hours to just 

around 2 hours, owing to the reduction of input features 

from 32 bands (comprising 13 spectral bands and 3 indices 

across two time points) to only 6 selected feature maps. 

     Based on the results of this study, the first approach 

ranked highest. All spectral bands and indices were 

considered in this approach. As a result, this model required 

a much longer training time than the other two approaches. 

Conversely, in the second scenario, which uses bands only, 

the accuracy is lower. However, the accuracy difference 

between different approaches is very much negligible.  

     Although approach 3 achieves a substantial reduction in 

training time (i.e. over 75%) by decreasing the number of 

input bands from 32 to 6, this efficiency gain comes at a 

minor cost to classification accuracy. This slight decline is 

likely due to the feature extraction process, which, despite 

effectively capturing high-variance components, may 

inadvertently exclude spectral or index combinations that 

are crucial for the U-Net++ model to detect subtle changes. 
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Specifically, indices related to vegetation and built-up areas 

(e.g., NDVI, NDBI) provide nonlinear signals that, when 

omitted, can slightly diminish the network’s ability to 

identify fine-scale variations. 

     As mentioned in the first approach, the dimensionality of 

the input data is high, which slows down the convergence 

process of the model. On the other hand, there isn’t a 

sensible difference between the accuracy values of these 

approaches; therefore, it is suggested to use a method that 

requires less time for model convergence while maintaining 

accuracy. Figures 4 and 5 show the visual results of each 

model generated for each approach. 

 

 
Figure 4. Two samples from data: Left) Image 

before the change; Center) Image after the change; 

Right) annotated change mask (white = new/removed 

buildings). 

 

 
Figure 5. Change-map predictions from each approach 

for the two samples in Figure 4.  

1) Approach 1: bands + indices,  

2) Approach 2: bands only, and 

3) Approach 3: feature-extracted bands. 

  

     As can be seen in the Figures, most of the models have 

also identified pixels related to cloud cover changes. In 

other words, the primary data has a cloud cover which can 

be considered as one of the flaws of this dataset. However, 

this problem can be solved with different methods that have 

been proposed in the field of cloud pixel removal.  

     The state-of-the-art methods such as STANet (Abdolian 

et al., 2023) and DSA-Net (Ding et al., 2021) have been 

already investigated. They also used the same dataset. 

Based on the comparison between their results and the 

results obtained in our study, we concluded that the model 

used in our study was more appropriate and was selected 

accordingly. It demonstrated how our band-and-index 

approach (Approach 1) and lightweight feature-extraction 

variant (Approach 3) not only match or exceed the detection 

performance of these benchmarks but also offer substantial 

reductions in model complexity and convergence time. 

 

5. Conclusion 

     This research was conducted with the aim of buildings 

change due to the important role of this category of change 

in urban planning. The change monitoring process in this 

study is performed with the help of satellite images and the 

U-Net++ deep learning model in three approaches. This 

study also employs EfficientNet-B7 to monitor satellite 

image changes effectively. EfficientNet-B7's encoder design 

enhances non-linear relationship extraction, leading to 

accurate results and reduced training time when compared 

to other methods. The feature extraction that uses a 

convolutional network, further enhances accuracy. The 

main difference between the first and third approaches is the 

use of remote sensing indices. Based on the findings, the first 

approach, which incorporates all spectral bands and 

indices, ranked highest despite requiring very much longer 

training time. In contrast, the third approach, which utilized 

bands and feature extraction and used selected features, had 

very negligible lower accuracy but significantly reduced 

training time. This shows the importance of effective 

extraction of relevant information in monitoring changes 

using the deep learning model. Therefore, the research 

demonstrates that employing spectral indices enhances 

model accuracy. In addition, feature extraction reduces both 

input image dimensionality and training time, and avoids 

model complexity without compromising accuracy. 
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