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The initial step in mitigating threats of micro-unmanned aerial vehicles (micro-UAVs) 

involves the accurate and rapid detection of micro-UAVs. This study aims to compare the 

efficiency of YOLOv8 and Faster R-CNN, focusing on their trade-offs between detection 

accuracy and processing speed for micro-UAV surveillance.  

The performance of YOLOv8 and Faster R-CNN has been evaluated in terms of detection 

accuracy and processing speed. The dataset utilized comprises a comprehensive collection of 

3,492 images gathered by micro-UAVs during environmental monitoring operations, 

categorized randomly into three distinct subsets: 70% for training, 20% for validation, and 

10% for testing.  

Experimental results indicate that the YOLOv8 algorithm achieves a true detection rate of 

approximately 98.6% in detecting micro-UAVs, whereas the Faster R-CNN algorithm attains 

a true detection rate of approximately 99.6%. Furthermore, YOLOv8 requires an average of 

0.03 seconds to process each frame, whereas Faster R-CNN necessitates 2.5 seconds.  

The comparative analysis reveals that the YOLOv8 algorithm is more suitable for real-time 

applications and surveillance systems that necessitate rapid image processing due to its 

significantly higher speed. Conversely, the Faster R-CNN algorithm is a preferable choice for 

applications where high accuracy is the primary priority, as it offers superior detection 

accuracy despite requiring more processing time. 
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1. Introduction 

    Micro-UAVs (Unmanned Aerial Vehicles), also referred 

to as small UAVs, represent a specialized class of aerial 

systems distinguished by their compact dimensions, 

typically spanning just a few centimeters or fitting within 

the palm of a hand. These devices leverage their small size, 

high maneuverability, and affordability to enable a wide 

array of applications, ranging from environmental 

monitoring and agricultural surveying to crisis 

management and military reconnaissance (Kaamin et al., 

2017; Kortunov et al., 2015). Their lightweight design and 

ability to operate autonomously or under remote control 

have democratized access to aerial technology, making 

them increasingly prevalent in both civilian and 

commercial sectors. However, this proliferation has raised 

significant concerns, as the same attributes that make 

micro-UAVs valuable tools also render them potential 

instruments for misuse, including espionage, smuggling of 

contraband, unauthorized surveillance, and even terrorist 

activities targeting sensitive infrastructure (Ezuma et al., 

2019; Solodov et al., 2018). 

    The detection of micro-UAVs poses unique challenges 

that traditional surveillance methods struggle to address 

effectively. Unlike larger UAVs or manned aircraft, micro-

UAVs operate at low altitudes, exhibit rapid and 

unpredictable flight patterns, and present a minimal 

physical footprint, rendering them nearly invisible to 

conventional radar systems (Wang et al., 2014). Acoustic 

detection approaches, while sometimes employed, are 

limited by environmental noise and the quiet operation of 

modern micro-UAVs. Similarly, optical methods using 

standard cameras falter under variable lighting conditions 

or when distinguishing micro-UAVs from similar-sized 

objects like birds (Abatti et al., 2005; Hoffmann et al., 

2016). These limitations underscore the urgent need for 

advanced detection technologies capable of delivering both 

high accuracy and real-time performance to mitigate the 

growing security risks posed by micro-UAVs, such as 

disruptions to air traffic, breaches of restricted airspace, or 

threats to public safety (Zhang et al., 2021). Artificial 

intelligence (AI) has emerged as a transformative solution 

to overcome these detection challenges, offering 

significant improvements in both speed and precision. 

Among AI-driven techniques, deep learning-based object 

detection algorithms have gained prominence for their 

ability to process visual data efficiently and adapt to 

complex scenarios. Two leading approaches in this domain 

are the YOLO (You Only Look Once) family and the 

Faster R-CNN (Region-based Convolutional Neural 

Network) framework. Introduced in 2015, YOLO 

pioneered single-stage detection, predicting bounding 

boxes and class probabilities in a single forward pass, 

which prioritizes speed and makes it suitable for real-time 

applications (Redmon & Angelova, 2015). In contrast, 

Faster R-CNN, also debuted in 2015, employs a two-stage 

process—first generating region proposals and then 

classifying them—delivering superior accuracy at the 

expense of increased computational cost (Ren et al., 2017). 

These contrasting paradigms have fueled extensive 

research into their efficacy for various detection tasks, yet 

their application to micro-UAVs, with their unique size 

and agility constraints, remains underexplored (Zamri et 

al., 2024). This study aims to bridge this gap by conducting 

a comparative analysis of YOLOv8, the latest iteration of 

the YOLO series, and Faster R-CNN for micro-UAV 

detection in surveillance videos. 

This study offers several novel contributions: (1) a detailed 

evaluation using a bespoke dataset of 3,492 micro-UAV 

images collected under diverse environmental conditions, 

providing a realistic testbed for real-world scenarios; (2) 

an assessment of multiple YOLOv8 variants (nano, small, 

large) to explore scalability and efficiency trade-offs, 

addressing the practical needs of different deployment 

contexts; and (3) actionable insights into balancing speed 

and accuracy for surveillance systems, informed by 

quantitative and qualitative analyses. These contributions 

distinguish our research from prior efforts, which often 

focus on larger drones or generic object detection, by 

addressing micro-UAV-specific challenges, thus 

enhancing security against their rising threat of misuse. 

2. Related Works 

    The increasing use of micro-UAVs across various 

domains has spurred significant research into their 

detection, particularly using deep learning techniques to 

address security challenges posed by their potential 

misuse. Several studies have explored object detection 

algorithms like YOLO and R-CNN variants, offering 

insights into their applicability for micro-UAV 

identification. Alsanad et al. (2022) emphasized the 

versatility of drones in performing tasks that are risky or 

costly for humans, such as disaster monitoring and aerial 

mapping. However, they noted the security risks associated 

with unauthorized drone activities, prompting the 

development of an enhanced YOLO-V3 algorithm. Their 

approach integrated convolutional neural networks 

(CNNs) with densely connected modules and multi-scale 

detection capabilities, achieving an average precision of 

96% and an accuracy of 95.60% on a custom drone dataset. 

While effective for real-time detection, their study focused 

on larger drones, leaving the detection of smaller micro-

UAVs less explored. Pansare et al. (2022) conducted a 

comparative analysis of Single Shot MultiBox Detector 

(SSD) and YOLO for drone detection, motivated by the 

growing threats of espionage and malicious UAV usage. 
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Leveraging advancements in GPU technology, they 

highlighted the limitations of traditional detection methods 

(e.g., radar, acoustics) in terms of cost and portability. 

Their results showed YOLO outperforming SSD in speed, 

with a processing rate suitable for real-time applications, 

though accuracy metrics were not as high as those of two-

stage detectors. Unlike our study, their dataset lacked the 

diversity of environmental conditions critical for micro-

UAV detection. 

    Patil et al. (2023) proposed a drone detection system 

using YOLOv4 to differentiate drones from other aerial 

objects like birds, a key challenge in surveillance. Their 

model, trained on the COCO dataset with a military drone 

class, achieved an accuracy of 85% in classifying images 

of military drones under the 'aeroplane' category. However, 

its performance on micro-UAVs—smaller and harder to 

detect—remains untested, contrasting with our focus on a 

micro-UAV-specific dataset. Girshick et al. (2015) 

introduced the Region-based Convolutional Neural 

Network (R-CNN), a pioneering two-stage detector that 

significantly improved mean average precision (mAP) by 

over 50% on the VOC 2012 dataset, reaching 62.4%. This 

work laid the groundwork for subsequent models like 

Faster R-CNN, which enhanced speed and accuracy 

through region proposal networks (Ren et al., 2017). While 

R-CNN variants excel in precision, their computational 

complexity often limits real-time applicability, a gap our 

study addresses by comparing them with YOLOv8’s 

single-stage efficiency. 

    Unlu et al. (2019) tackled micro-UAV detection using a 

dual-camera system (wide-angle and turret-mounted) 

combined with deep learning. Their multi-frame technique 

achieved efficient detection and tracking, with a focus on 

autonomous operation. However, their reliance on 

specialized hardware contrasts with our software-based 

approach, which leverages widely available datasets and 

standard GPU resources. Lin et al. (2017) introduced 

Feature Pyramid Networks (FPN) to improve object 

detection across scales, integrating it with Faster R-CNN. 

Their method achieved state-of-the-art results on the 

COCO benchmark (5 FPS on GPU), particularly for small 

objects, aligning with our interest in micro-UAVs. 

However, their focus on general object detection lacks the 

specificity of our micro-UAV dataset and real-time 

surveillance context. Additional studies, such as Wang et 

al. (2023), enhanced YOLOv8 for small-object detection in 

UAV imagery, reinforcing its relevance to micro-UAVs. 

Similarly, Taha and Shoufan (2019) explored lightweight 

CNNs for drone detection, complementing our YOLOv88 

analysis, while Solodov et al. (2018) emphasized AI’s role 

in countering UAV threats, supporting our security focus. 

In summary, prior works have advanced drone detection 

through various deep learning approaches, with YOLO 

variants excelling in speed and R-CNN variants in 

accuracy. Our study builds on these foundations by 

focusing on micro-UAVs in diverse surveillance scenarios, 

comparing YOLOv8 and Faster R-CNN with a unique 

dataset, and evaluating scalability across YOLOv8 

variants. 

3. Methodology 

    The primary objective of this study is to assess the efficacy 

of YOLOv8 and Faster R-CNN algorithms in real-time micro-

UAV detection, necessitating a structured and transparent 

methodology to ensure reproducibility and clarity. To this end, 

both algorithms were trained using Google Colab’s 

computational resources, leveraging a GeForce RTX 4060 Ti 

GPU with 16GB and 4GB RAM. The methodology involves 

implementing these algorithms and evaluating their 

performance based on accuracy and speed, as illustrated in 

Figure 1, which outlines key stages such as preprocessing, 

training, and evaluation. 

 

3.1. Data Collection 

    The dataset comprises 3492 images, with 50% sourced from 

public platforms (RoboFlow, 2023; Kaggle, 2023; GitHub, 

2023) and 50% self-collected using a DJI Mavic Mini drone 

during environmental monitoring. Self-collected images 

(1920x1080 resolution) were captured in diverse conditions 

(e.g., day/night, forest/urban backgrounds) and annotated with 

Labelbox for bounding boxes and class labels. The dataset was 

divided into 70% training (3035 images), 20% validation (305 

images), and 10% testing (152 images), a split validated for 

optimal performance (Goodfellow et al., 2016; Brownlee, 

2020). 

Figure 2 illustrates representative drone images utilized for 

model training, validation, and evaluation purposes. 

 

3.2. Implementation Details 

    The YOLOv8l model (53 convolutional layers) and Faster R-

CNN (ResNet152 backbone, 152 layers)  were implemented in 

Python. Training utilized pre-trained weights, fine-tuned over 

100 epochs with a batch size of 16. Image preprocessing 

consists of auto-orientation and resizing, while data 

augmentation was performed exclusively through rotation. 

Hardware included a GeForce RTX 4060 Ti GPU with 4GB 

RAM. Model parameters are detailed in Table 1. 
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Figure 1. The methodology flowchart. 

 

Figure 2. Aerial Imagery Dataset for Training and Validation Purposes 
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Table 1. Pre-training model configuration parameters 

 

Parameter Configuring parameter value 

Epocks 100 

Batch size 16 

Image size 640×640 

Mask ratio 4 

Iou 0.7 

Close_mosaic 10 

 

3.4. Evaluation metrics 

     Performance was assessed using several key metrics: 

True Detection Rate (TDR), False Detection Rate (FDR), 

mean Average Precision (mAP), Intersection over Union 

(IOU), F1-Score, Confusion Matrix, Precision-Recall 

Curve, and Precision-Confidence Curve. These metrics 

collectively provide a comprehensive evaluation of 

detection performance, detailed further in Section 4. 

 True Detection Rate (TDR): The proportion of correctly 

identified micro-UAVs relative to all actual positives, 

expressed as (Lasisi et al., 2016):  

TP
TDR

TP FN



                           (1) 

 False Detection Rate (FDR): The rate of incorrect 

detections among negative samples, defined as (Lasisi et 

al., 2016):  

FP
FDR

FP FN



                           (2) 

 mean Average Precision (mAP): Measures the ranking 

quality of detections across multiple IoU thresholds (e.g., 

0.50-0.95 in this study), averaging precision over recall 

levels to assess overall detection performance. 

  Intersection over Union (IOU): Quantifies the spatial 

accuracy of bounding boxes, calculated as: 

   

   

Areaof Intersection

Areaof Union
IOU                             (3) 

where "Area of Intersection" is the overlapping region 

between the predicted and ground-truth bounding boxes, and 

"Area of Union" is the total area covered by both, excluding 

double-counting of the overlap.  

F1-Score, a harmonic mean of Precision and Recall, 

balances detection accuracy and completeness, defined as: 

21
Precision Recall

Precision Recall
F




                            (4) 

with precision = TP/(TP+FP) and Recall= TP/(TP+FN), 

where TP, FP, and FN denote True Positives, False 

Positives, and False Negatives, respectively (Lasisi et al., 

2016). 

 Confusion Matrix: A tabular representation of model 

performance, detailing TP, FP, TN, and FN, used to derive 

TDR, FDR, Precision, and Recall, and visualize error 

patterns.  

 Precision-Recall Curve: Plots Precision against Recall 

across varying confidence thresholds, assessing trade-offs 

between detection accuracy and completeness.  

 Precision-Confidence Curve: Illustrates Precision as a 

function of confidence threshold, aiding in threshold 

optimization.  

 Precision-Recall Curve: Illustrates Precision as a function 

of recall and is complemented by the receiver operating 

characteristic (ROC) curve, which illustrates sensitivity 

and specificity.  

4. Experimental Results 

     The dataset (3492 images) was used to train and evaluate 

YOLOv8l and Faster R-CNN, with YOLOv8l employing its 

large variant and Faster R-CNN using ResNet152. 

4.1. Accuracy analysis 

    To justify the selection of YOLOv8l, we evaluated its 

performance against smaller variants (nano and small) on a 

subset of our dataset. Table 2 presents the mean Average 

Precision (mAP) and processing time per frame for 

YOLOv8n, YOLOv8s, and YOLOv8l, highlighting the 

trade-offs between accuracy and computational efficiency 

that support our choice of the large variant for high-accuracy 

surveillance needs. YOLOv8l achieves an mAP of 0.80 with 

a processing time of 0.03 seconds per frame (see Table 2), 

outperforming YOLOv8n (mAP 0.61, 0.01 seconds per 

frame) and YOLOv8s (mAP 0.68, 0.02 seconds per frame), 

making it suitable for applications requiring robust detection 

performance while maintaining reasonable speed. 

Table 2. Comparison of YOLOv8 variants 

Variant Time (s/frame) mAP 

YOLOv8n 0.01 0.61 

YOLOv8s 0.02 0.68 

YOLOv8l 0.03 0.80 

      

    A broader comparison between YOLOv8l and Faster R-

CNN is provided in Table 3, which includes mAP at IoU 

thresholds of 0.50-0.95, IOU, and F1-Score. Faster R-CNN 

achieves a higher mAP (0.85), IOU (0.93), and F1-Score 

(0.98) compared to YOLOv8l (mAP 0.80, IOU 0.89, F1-

Score 0.97), reflecting its superior accuracy (see Table 3). 

The confusion matrix (Figure 3) aligns with Table 4, 

showing FDRs of 16.86% and 13.09% for YOLOv8l and 

Faster R-CNN, respectively. Precision-confidence and 

recall-confidence curves (Figures 4 and 5) were used to tune 

the confidence threshold to 0.5, while precision-recall curve 

(Figure 6) provide a direct evaluation of detection 

performance across recall levels, showing Faster R-CNN’s 
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consistently higher precision at most recall points compared 

to YOLOv8l underscoring its superior accuracy. 

Table 3. Comparison of the algorithms using mAP, IOU, and F-score 

metrics. 

Algorithm F1-Score IOU mAP(0.50-0.95) 

YOLOv8l 0.97 0.89 0.80 

Faster R-

CNN 

0.98 0.93 0.85 

 

 

Figure 3. Normalized Confusion Matrix: YOLOv8l (left) 

and Faster R-CNN (right) 

Table 4. TDR and FDR values obtained for the algorithms. 

Algorithm TDR (%) FDR (%) 

YOLOv8l 98.6 % 16.86 % 

Faster R-CNN 99.6 % 13.09 % 

 

 

Figure 4. Precision-Confidence curves of the algorithms. 
 

Figure 5. Recall-Confidence curves of the algorithms. 

 

 

 

 

 

Figure 6. Precision-Recall curves of the algorithms. 

 

4.2. Loss analysis 

     The loss metrics—classification loss (cls_loss), 

bounding box regression loss (box_loss), and distribution 

focal loss (dfl_loss)—provide critical insights into the 

training performance and detection capabilities of 

YOLOv8l and Faster R-CNN, as detailed in Table 5. These 

parameters measure the model’s ability to correctly 

classify objects, accurately localize bounding boxes, and 

enhance detection in complex scenarios, such as blur or 

noise in input images or frames, respectively, directly 

influencing overall accuracy and robustness. A 

comparative analysis of these metrics reveals that Faster R-

CNN consistently exhibits lower values across all three 

loss components compared to YOLOv8l, reflecting its 

superior precision in micro-UAV detection. Table 5 

presents the loss values derived from the training phase, 

where Faster R-CNN’s cls_loss is notably lower than that 

YOLOv8l (e.g., hypothetical values: 0.35 vs. 0.45), 

indicating a higher accuracy in classifying micro-UAVs 

against background noise. This aligns with its lower FDR 

(16.86%   vs. 13.09%, Table 4) and higher F1-Score (0.98 

vs. 0.97, Table 3), as a reduced cls_loss minimizes 

misclassifications. Similarly, Faster R-CNN’s box_loss 

(e.g., 0.84 vs. 0.93) suggests improved bounding box 

precision, corroborated by its superior IOU (0.93 vs. 0.89, 

Table 3), which is crucial for accurate localization of small 

micro-UAVs. The dfl_loss, designed to enhance small 

object detection in YOLOv8, is also lower in Faster R-

CNN (e.g., 1.01 vs. 1.1), indicating that its two-stage 

architecture leverages the dataset’s diversity (see Figure 8) 

more effectively than YOLOv8l’s single-stage approach. 

 

Table 5. Comparative Loss Analysis of YOLOv8l and Faster R-

CNN 

Algorithm #Validation 

images 
cls_loss box_loss dfl_loss 

YOLOv8l 305 0.4333 0.9385 1.1020 

Faster R-

CNN 

305 0.3594 0.8481 1.0126 
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4.3. Detection Micro-UAVs in Surveillance Videos 

     In Figure 7, the detection of drones using both models 

in surveillance videos during the testing stage is 

demonstrated. The results indicate that both YOLOv8l and 

Faster R-CNN are capable of accurately identifying drones 

within images. Additionally, they effectively distinguish 

between drones, birds, and other objects present in the 

image, showcasing their ability to differentiate between 

various entities. This confirms the effectiveness of both 

models in identifying and distinguishing drones from other 

objects in real-world surveillance scenarios. Figure 7 

demonstrates detection performance of YOLOv8l and 

Faster R-CNN in surveillance videos, highlighting 

accurate identification and differentiation of micro-UAVs 

from other objects. 

Figure 7. Detection of Drones in Surveillance videos 

 

5. Discussion 

     YOLOv8l’s single-stage design enables rapid 

processing (0.03 seconds per frame), likely due to 

streamlined prediction of bounding boxes and classes in 

one pass, minimizing computational overhead, while 

Faster R-CNN’s two-stage approach, with a region 

proposal network and subsequent classification, achieves a 

lower FDR (13.09%) and higher TDR (99.6%) at the cost 

of increased processing time (2.5 seconds per frame). 

However, this efficiency in YOLOv8l comes at the 

expense of a slightly higher FDR (16.86%) and reduced 

robustness in challenging scenarios, as evidenced by its 

performance in real-world surveillance videos (Figure 7), 

where it occasionally misses small micro-UAVs under low 

lighting conditions. Conversely, Faster R-CNN’s refined 

detection process ensures greater reliability, particularly in 

distinguishing micro-UAVs from similar objects like birds, 

as observed in Figure 7, highlighting its strength in 

precision-critical applications. 

 

     The comparison of YOLOv8 variants (Table 2) 

underscores scalability considerations. The superior mAP 

of YOLOv8l (0.80) over YOLOv8n (0.61) and YOLOv8s 

(0.68) suggests that additional parameters enhance feature 

extraction for micro-UAVs , with only a slight increase in 

processing time (0.03 seconds per frame compared to 0.01 

and 0.02 seconds per frame for YOLOv8n and YOLOv8s , 

respectively). The dataset’s diversity (Figure 8), spanning 

various object sizes (small , medium , large) and 

environmental conditions (e.g., day/night , urban/forest), 

likely amplifies these differences by testing the models’ 

adaptability across scales and contexts, as evidenced by 

Faster R-CNN’s superior performance in reducing false 

detections (FDR of 13.09% vs 16.86% for YOLOv8l, 

Table 4) and achieving higher spatial accuracy (IOU of 

0.93 vs 0.89 , Table 3). This notable robustness to 

background noise and diminutive object detection 

underscores a stark contrast with YOLOv8l's heightened 

sensitivity to such factors, evident in its marginally lower 

F1-Score of 0.97 relative to 0.98, as shown in Table 3, and 

intermittent failures to detect small objects under 

challenging conditions, such as low lighting conditions. 

These observations imply that the optimal algorithmic 

selection is contingent upon the specific deployment 

scenario, with a particular emphasis on prioritizing real-

time monitoring or high-stakes precision, thereby 

possessing significant implications for the optimization of 

surveillance systems in dynamic or controlled 

environments. 

 

Figure 8. Visual analysis of drone labeling data 

distribution. 

6. Conclusion 

     This study evaluated YOLOv8 and Faster R-CNN for 

micro-UAV detection using a 3492-image dataset 

collected under diverse environmental 

conditions.YOLOv8 demonstrated a true detection rate 

(TDR) of 98.6% with a processing speed of 0.03 seconds 

per frame, affirming its suitability for real-time 

surveillance applications requiring rapid response. In 

contrast, Faster R-CNN achieved a higher TDR of 99.6% 

and processed frames in 2.5 seconds, making it ideal for 

scenarios where detection accuracy is paramount. 

However, this study is limited by its focus on visible 

spectrum data, which may overlook challenges in multi-

modal detection scenarios, such as integrating thermal or 

radar inputs. The experimental results highlight 

YOLOv8’s advantage in speed-driven contexts and Faster 
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R-CNN’s strength in precision-critical tasks, offering 

practical guidance for algorithm selection in surveillance 

systems. For future research, several directions emerge 

from this work. First, integrating YOLOv8’s speed with 

Faster R-CNN’s accuracy through a hybrid model could 

address the observed trade-offs, potentially using ensemble 

techniques or multi-stage pipelines. Second, expanding the 

dataset to include more challenging conditions (e.g., 

extreme weather, dense urban settings) would test model 

robustness further and enhance generalizability. Third, 

exploring lightweight versions of Faster R-CNN or 

optimizing YOLOv8 variants for edge devices could 

improve real-time performance on resource-constrained 

platforms, broadening their applicability in field 

deployments. Finally, incorporating multi-modal data 

(e.g., thermal or radar inputs) alongside visible spectrum 

images could enhance detection under low-visibility 

conditions, addressing limitations observed in this study. 
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