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Building change detection (BCD) is a critical task in remote sensing, with applications in 

urban management and disaster assessment. However, achieving high accuracy in high-

resolution BCD remains challenging due to the complexity of urban scenes. In this study, we 

propose ChangeCoTNet, a novel dual-branch deep learning model that integrates Contextual 

Transformer (CoT) blocks in the encoder and a Convolutional Neural Network (CNN) in the 

decoder. The CoT blocks enable the extraction of both static and dynamic contextual 

representations, while the Channel Attention Block (CAB) enhances discriminative feature 

extraction. The proposed model was implemented and evaluated on the LEVIR-CD and 2DCD 

datasets using a PyTorch backend. Experimental results demonstrate that ChangeCoTNet 

outperforms state-of-the-art methods, achieving F1-score improvements of 1.1% and 1.9% for 

the respective datasets. These results validate the effectiveness and efficiency of the proposed 

model in detecting changes with high precision and recall, making it a valuable tool for real-

world applications. 
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1. Introduction 

    Building change detection (BCD) is one of the important 

and significant research topics in remote sensing. It entails 

recognizing and measuring spatial changes in building 

using two or more co-registered satellite or aerial images 

(R. Qin et al., 2016). BCD is a critical component of urban 

planning and development (Stilla & Xu, 2023). It involves 

using remote sensing technology to identify and track 

changes in the built environment over time. This information 

is essential for a range of applications, including disaster 

response (Zheng et al., 2021), land use planning (Chughtai 

et al., 2021), and environmental monitoring (Padró et al., 

2019). BCD can help identify areas that are experiencing 

rapid growth or decline, as well as areas that are at risk of 

natural disasters or other hazards (Mazzanti et al., 2022). 

Additionally, BCD is a valuable tool for monitoring the 

impacts of human activity on the environment, such as 

deforestation or urbanization (Alzu’bi & Alsmadi, 2022). In 

recent years, a new breed of very high-resolution (VHR) 

satellites has been put into orbit, equipped with the ability 

to capture images with a resolution of 1 meter or greater 

(Wen et al., 2021). VHR images can provide more detailed 

information on building footprints, roof shapes, and other 

physical characteristics of structures (Y. Qin et al., 2019). 

This information is useful for detecting and quantifying 

changes in the built environment, such as new construction 

or demolition of buildings (Yan et al., 2022). The correct 

selection of data, the type of change detection algorithm, 

and the extraction and selection of features that is suitable 

for the size, shape, texture, and spectral signature of the 

building are among the most important effective factors in 

the accurate identification of building changes (Bai et al., 

2022). 

In remote sensing, changes are primarily identified 

through pixel-based and object-based methods (Wen et al., 

2021). Pixel-based methods compare individual pixels in the 

images and identify changes based on differences in their 

spectral values (Hussain et al., 2013). Despite its simplicity, 

this approach does not consider the spatial context 

information which leads to the presence of a considerable 

amount of salt and pepper noise in the resulting images, 

especially when using high-resolution (HR) and VHR 

images. Thus, it is more suitable to apply this approach to 

identify changes in images of moderate resolution 

(Tewkesbury et al., 2015). Object-based methods, on the 

other hand, consider groups of pixels that form objects or 

features and compare them to identify changes (Zhang et al., 

2018). Considering the level of detail in HR and VHR 

images, the use of object-based methods is more suitable for 

detecting changes due to the extraction of rich spectral, 

texture, structural, and geometric features. Features in 

object-based methods can be extracted manually and 

automatically. While manual methods are simpler, they are 

very time-consuming and do not result in acceptable 

outcomes. However, automatic methods based on machine 

learning algorithms can extract accurate and suitable 

features (Khelifi & Mignotte, 2020). Deep learning (DL) is 

one of the machine learning methods have become popular 

for feature extraction from images due to their ability to 

automatically learn and extract features from raw data (Ball 

et al., 2017). CNNs are a common type of deep learning 

model used for image feature extraction, as they can learn 

hierarchical representations of features that capture both 

low-level and high-level details in an image (Z. Li et al., 

2022). These learned features can then be used for a variety 

of tasks, including object recognition (Groener et al., 2019), 

image classification (Zhao et al., 2022), and change 

detection (Khelifi & Mignotte, 2020; D. Peng et al., 2019).  

In recent years, remote sensing image change detection 

(CD) methods have got extraordinary advancement based 

on CNNs. Supervised CD methods that have been developed 

primarily depend on CNN-based architectures to extract 

high-level semantic features that determine the relevant 

changes between each temporal image (Khusni et al., 2020). 

While convolution kernels are excellent at extracting local 

features from an image by processing a small neighborhood 

of pixels at a time, they struggle to capture long-range 

dependencies between image features (Vaswani et al., 

2017). Convolutional operations are a key component in the 

feature-based CD and the image-level fusion- and 

segmentation-based CD methods, which are currently the 

dominant approaches for detecting changes in remote 

sensing images. As a result, these methods excel in 

capturing local image content relationships, but they fall 

short in representing long-range global interactions (M. H. 

Guo et al., 2022). Utilizing the global contextual 

relationships within an image to compute individual pixel 

values leads to the generation of more resilient feature 

maps, capturing extensive, long-range global interactions 

(Chen et al., 2021). However, models neglecting these 

interactions might not deliver optimal performance in 

situations where understanding global contextual 

information is pivotal for accurate localization, especially 

in cases involving extensive land-use changes. To address 

this constraint, it is imperative to incorporate a nonlocal 

self-attention mechanism, enabling the model to grasp long-

range global relationship details effectively. This technique 

will enable the model to better capture the dependencies 

between image features, and thus improve its ability to 

recognize complex patterns and structures in the image data 

(G. Wang et al., 2022). 

A transformer is a unique form of self-attention 

mechanism, which calculates global contextual 

relationships to automatically identify significant 

information locations and perform adaptive weighting of 

inputs (Lan et al., 2023). The transformer architecture has 

achieved remarkable success in natural language 

processing tasks (Gillioz et al., 2020) and speech 

recognition (Y. Wang et al., 2020). Given the importance of 

global information in vision tasks, adapting the transformer 

architecture could potentially address a limitation of CNNs, 

which typically increase their receptive field by adding more 

layers. One of the most widely used transformers in 
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computer vision and image processing is the vision 

transformer (ViT). ViT was introduced by  (Dosovitskiy et 

al., 2021). In recent years, ViT have been applied to various 

tasks in the field of remote sensing as well, including land 

cover classification, object detection and hyperspectral 

image processing (M. Li et al., 2023; Y. Li et al., 2022; H. 

Wang et al., 2022). Also, less research has been done in the 

field of using transformers for CD. SiamixFormer 

(Mohammadian & Ghaderi, 2023) is a Siamese based 

network that utilizes hierarchical transformer architecture 

with two encoders and temporal transformers for feature 

fusion, which helps maintain large receptive fields. 

However, the transformer-based mechanism employed by 

this model is complicated and has a high computational 

cost. Another effective approach is to combine CNNs with 

transformers. (Chen et al., 2021) using a combination of 

CNNs and transformer-based architecture to model the 

spatial and temporal relationships between the image 

features and identify regions that have changed between the 

two images.  Bit-CD employs a transformer-based decoder 

network to enrich the contextual information derived from 

Conv-Net features. This enables the model to capitalize on 

the efficient training capabilities of convolutional networks, 

while simultaneously harnessing the benefits of capturing 

extensive dependencies within the input data (Chen et al., 

2021). Generally, models that combine CNNs with 

transformers have a lower computational cost than models 

that exclusively rely on transformers in both the encoder and 

decoder. Nonetheless, these models still require significant 

computational time. In this article, we have used a structure 

based on hybrid Transformer-Conv-Net model, which is a 

light network, in order to detect changes.  

The conventional self-attention blocks used in 

transformer models primarily rely on the isolated 

interaction between query-key pairs to calculate the 

attention matrix, disregarding the abundant contextual 

information shared among adjacent keys. In the work by (Y. 

Li et al., 2023), they introduced Contextual Transformer 

(CoT) blocks, which adeptly utilize contextual information 

among input keys. This approach guides the learning 

process of a dynamic attention matrix, notably improving 

the model's capability to represent visual information. This 

design integrates contextual analysis among keys and self-

attention learning across a two-dimensional feature map 

within a unified structure, eliminating the need for an 

additional branch dedicated to context mining. Based on 

this idea, we introduced ChangeCoTNet that is a dual-

branch CD network in which CoT is used in down-sampling 

instead of 3×3 convolution in order to extract global 

contextual information.  

The primary contributions of this study can be outlined 

as follows: 

1. Introducing ChangeCoTNet: This novel approach 

integrates Contextual Transformers and CNNs for 

high-resolution remote sensing CD. 

2. Developing Contextual Representations: A method 

is developed to create both static and dynamic 

contextual representations using a CoT block. This 

enhances the detection process by modeling dense 

pixel relations. 

3. Enhancing Feature Extraction: The model employs 

a multi-head attention matrix and a channel 

attention block to extract discriminative features, 

thereby improving accuracy in identifying changes 

in complex scenes. 

 

2. Methodology 

Given the need to extract global information for better 

determine building changes, we have proposed 

ChangeCoTNet architecture. It is a network based on the 

self-attention mechanism with additional exploitation of 

contextual information among input keys. The visual 

representation of our proposed approach is depicted in 

Figure 1. In the following subsection, we will discuss the 

details of each component of the proposed architecture. 

2.1. The overview of ChangeCoTNet 

The proposed ChangeCoTNet technique involves a dual-

branch deep learning network that is specifically tailored to 

extract profound characteristics from two multi-temporal 

images captured under distinct exposure factors. The dual-

branch network incorporates inputs on both sides, 

connected by a single expansive path in the middle. In the 

presented network, CoT blocks are employed in place of 

conventional 3×3 convolutions. Therefore, every 

contraction side consists of four encoding levels, 

encompassing CoT, batch normalization, and dropout 

layers. At the end of the encoding stage, the Euclidean 

function calculates the dissimilarity between features on 

both sides of the network. Subsequently, a Channel Attention 

Block (CAB) is utilized for extracting distinct discriminator 

characteristics, enabling a more effective differentiation 

between modified and unmodified regions. In the expansion 

path, the deconvolution process is applied, wherein low-

level features extracted by CoT are symmetrically copied 

from both sides of the network and then merged with high-

level information. The deconvolution step ensures the 

independence of network weights on both sides. During 

backpropagation, the generated loss values are 

concurrently propagated to both sides of the network, 

leading to simultaneous updates of network weights. This 

approach enables a nonlinear simulation of various data 

sources and diverse conditions concurrently. 

 

2.2. Contextual Transformer Block 

Self-attention is a mechanism used in the Transformer 

model architecture to capture the dependencies between 

different positions (or tokens) within a sequence (L. Wang et 

al., 2022). The self-attention mechanism requires three 

kinds of representations for each token: key, query, and 

value. These representations are obtained by linearly 

transforming the input embedding using learned weight 

matrices. The resulting weighted sum is the output 
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representation for the token. It captures the contextual 

information from the entire sequence, as it combines 

information from all tokens in a weighted manner. This 

enables the model to consider the relationships and 

dependencies between tokens when generating 

representations, facilitating better understanding and 

capturing of long-range dependencies in the data 

(Anonymous, 2021). 

 

Figure 1. ChangeCOTNet - A Dual Branch Network for 

BCD based on CoT and CAB. 

 

However, with all the advantages of self-attention, there 

are some limitations for it: it learns pairwise relationships 

independently for each query-key pair without considering 

the rich contextual information in between. As a result, its 

ability to learn self-attention across 2D feature maps for 

visual representation learning is significantly constrained. 

In order to alleviate these problems, CoT block has been 

introduced by (Y. Li et al., 2023). In this block, whose 

architecture is also given in Figure 2, contextual 

information mining is given along with self-attention in an 

integrated new architecture. This approach is centered on 

maximizing the utilization of contextual information 

between adjacent keys, aiming to enhance the efficiency of 

self-attention learning and augment the representational 

capacity of the resulting combined feature map. 

To illustrate, let's consider a 2D feature map I with 

dimensions h × w × c (h: height, w: width, c: channel) as an 

input. For this case, the keys, queries, and values are defined 

as follows: K = I, Q = I, and V = IWv, respectively. Rather 

than using a 1×1 convolution, which is commonly employed 

in standard self-attention, the CoT block takes a different 

approach. It initiates with a group convolution of size k×k 

to process neighboring keys within the same grid, allowing 

for contextualization of individual key representations in a 

spatially aware manner. The learned contextualized keys, 

denoted as K1 with dimensions Rh × w × c, inherently capture 

the unchanging contextual details within adjacent keys.  K1 

was considered as the fixed contextual interpretation of the 

input X. Subsequently, by combining contextualized keys 

(K1) with queries (Q) and applying consecutive 1×1 

convolutions, the attention matrix is calculated. The first 

convolution 𝑊𝜃  incorporates a ReLU activation function, 

while the second convolution 𝑊𝛿  does not have an 

activation function.   

 

𝐴 = [𝐾1, 𝑄]𝑊𝜃𝑊𝛿                                                               (1) 

 

Certainly, within every attention head, the system 

calculates the attention matrix for precise spatial positions 

in matrix A is calculated by analyzing both the query feature 

and the contextualized key feature. This approach improves 

self-attention learning by leveraging the contextual 

information provided by the mined static context K1, rather 

than relying solely on isolated query-key pairs. 

Subsequently, utilizing the contextualized attention matrix 

A, we generate the attended feature map K2 by combining 

all the values V, employing a procedure akin to conventional 

self-attention mechanisms.  

𝐾2 = 𝑉 ∗ 𝐴                                                                        (2) 

 

 

Figure 2. A view of CoT block 

 

2.3. Channel Attention Block 

CAB refers to a specific architectural component that 

incorporates the channel attention mechanism into a deep 

learning model (M. H. Guo et al., 2022). Within deep 

networks, distinct channels in feature maps usually 

represent different objects. Channel attention modifies the 

importance of each channel, serving as a method to decide 

where to concentrate when identifying an object (Eftekhari 

et al., 2023). In our proposed network, we have applied CAB 

to the feature distance function of both sides of the network. 

As a result, channels that capture significant changes are 

emphasized, leading to improved accuracy in identifying 

and discerning the changes. Figure 3 illustrates CAB, which 

avoids using convolution for generating new features. 

Instead, the input feature D is reshaped from C×H×W to 

C×N size, where N represents the product of H and W. This 

reshaped D is then multiplied by its transpose to construct 

the channel-wise attention mechanism by size N×N. To 

apply attention, a Softmax operation is employed using 

Formula (3), 
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𝑫𝒙𝒊𝒋 = 𝒔𝒐𝒇𝒕𝒎𝒂𝒙(
𝑫𝒊

𝑻𝑫𝒋

√𝑪
)  

 

(3) 

 

Here 𝐷𝑥𝑗𝑖  measures the influence of the jth channel on 

the ith channel, with higher values signifying a more robust 

connection between them. The reshaped D is subsequently 

multiplied by C×N with 𝐷𝑥𝑗𝑖, yielding the resultant output. 

To this outcome, a coefficient δ is added, as demonstrated in 

Equation (4), to achieve the final output.  

 
𝐷𝑐𝑎𝑗 = 𝛿 ∑ (𝐷𝑐𝑗𝑖𝐷𝑖𝐶

𝑖=1 ) + 𝐷𝑗                                                                           (4) 

The coefficient δ is initially set to 0 and is determined 

during training. The ultimate feature of each channel is a 

weighted combination of all channels and the initial feature, 

as outlined in the previously mentioned equation.  

 

 

Figure 3. The general structure of CAB is outlined as 

follows: D represents the input feature; Dx corresponds to 

the channel attention module, while Dca signifies the 

outcome of channel attention operations implemented on 

input feature D. 

 

2.4. Accuracy Assessment 

Precision-recall serves as a valuable metric for 

predicting outcomes in scenarios where class imbalances 

are prominent (Fang et al., 2021). In the context of CD 

problems, where the number of altered points is typically 

significantly lower than the unchanged points, and an 

inherent imbalance exists between these two types of data, 

employing precision-recall metrics is fitting. Hence, the 

evaluation of 2D results entails utilizing precision (Pr), 

recall (Re), and F1-score (F1). The mathematical 

expressions for these measures can be found in the 

subsequent equations (Fang et al., 2021).   

𝑃𝑟 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(5) 

𝑅𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(6) 

𝐹1 =
2𝑃𝑟𝑅𝑒

𝑃𝑟 + 𝑅𝑒
 

(7) 

In the CD domain, TP (true positive) signifies the 

accurate identification of altered pixels, FP (false positive) 

refers to erroneously identified changed pixels, and FN 

(false negative) represents the changed pixels mistakenly 

classified as unchanged. In the context of CD, a lower rate 

of false detections enhances precision, while a reduced 

number of missed predictable outcomes increases recall. 

The F1 measure serves as a comprehensive criterion for 

evaluating results, with higher values indicating more 

desirable and appropriate fitting outcomes.  

 

3. Experiments and Results 

3.1. Dataset 

A) LEVIR-CD Dataset: LEVIR-CD, a freely available 

dataset for BCD, was introduced by (Chen & Shi, 2020). It 

comprises 637 VHR images obtained from Google Earth, 

with a pixel resolution of 0.5 meters. These images, captured 

between 2002 and 2018, were sourced from various cities in 

Texas, USA. Notably, the dataset encompasses images 

captured during different seasons, clearly exhibiting 

changes in brightness between the image pairs. This 

comprehensive database effectively models real-world 

changes, minimizing the influence of spurious changes 

caused by factors like seasonal variations. The dataset 

includes positive building changes, encompassing 

alterations in land cover like the transition from soil, 

vegetation, or structures under construction to newly 

erected buildings, as well as instances of building removals. 

In total, the labeled LEVIR-CD dataset comprises 31,333 

instances of distinct building changes, averaging 

approximately 50 changed buildings per 1024 × 1024 

image. Most of the changes correspond to the construction 

of new buildings, occupying roughly 987 pixels per image. 

B) 3DCD Dataset: The 3DCD dataset, introduced by 

Valerio Marsoccia et al., represents a pioneering resource 

in the domain of two-dimensional (2D) and three-

dimensional (3D) change detection (Marsocci et al., 2023). 

This dataset comprises a total of 472 image pairs, 

meticulously extracted from optical orthophotos acquired 

during distinct aerial surveys conducted in the years 2010 

and 2017. Each image pair is characterized by optical 

imagery complemented by 2D CD maps. Of particular 

significance to our study, we focus on the utilization of the 

2D data component. Furthermore, accompanying these 

elements are corresponding 3D CD maps that encapsulate 

elevation alterations. For illustrative purposes, a selection 

of 2D sample images from the dataset is thoughtfully 

presented in Figure 4.  

The dataset encompasses the historical and downtown 

areas of Valladolid in Spain, along with nearby commercial 

districts, excluding agricultural regions due to minimal 

elevation variations. The 2D CD maps are binary, 

categorizing areas into two classes: no change (∆H= 0) and 

changes resulting from construction (∆H > 0) or demolition 

(∆H < 0) of human-made structures such as buildings, 

roads, and bridges.  Only significant elevation changes 

affecting artificial structures were included in the 2D CD 

maps, while elevation changes below one meter were set to 

zero as negligible. It should be mentioned that the 2D 

images have 400 × 400 pixels with a 0.5 meter GSD. In this 
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article, due to the use of 2D data, we call it 2DCD from now 

on.  

3.2. Technical Implementation 

The implementation of the proposed ChangeCoTNet 

model involves a systematic process that integrates CoT 

blocks and a CAB to enhance BCD. The following steps 

outline the detailed implementation process: 

1. Input Data Processing 

 Bi-temporal Images: The input consists of two co-

registered high-resolution images from different 

time periods. These images are normalized and 

resized to a fixed size of 128×128 pixels for 

computational efficiency. 

 Data Augmentation: To address limited training 

data and improve model generalization, 

augmentation techniques such as random 

horizontal flipping, rotation, and scaling are 

applied. 

2. Encoder: Contextual Transformer Blocks 

 The encoder processes the input images through 

four hierarchical CoT blocks. Unlike traditional 

convolutions, CoT blocks are designed to model 

both static and dynamic contextual representations 

by capturing the relationships among adjacent 

keys. 

 Each CoT block includes: 

o Static Contextual Representation: A 

group convolution applied to neighboring 

keys to extract spatially aware features. 

o Dynamic Contextual Representation: A 

multi-head attention matrix that 

dynamically combines queries and 

contextualized keys to enhance feature 

representation. 

 These blocks enable the model to capture both 

local and long-range dependencies, which are 

critical for identifying subtle and complex changes. 

3. Feature Comparison and Discriminative 

Enhancement 

 At the end of the encoding stage, features from the 

two temporal images are compared using the 

Euclidean distance function to generate a 

difference map. 

 The CAB: 

o This module analyzes the generated 

difference map to emphasize channels 

that capture significant changes. 

o The CAB uses a channel-wise attention 

mechanism, which assigns importance 

weights to each channel, ensuring the 

model focuses on the most relevant 

features. 

4. Decoder and Output Generation 

 The decoder reconstructs the feature map into a 

binary change map, indicating changed and 

unchanged regions. 

 Low-level features from the encoder are 

symmetrically copied and merged with high-level 

features in the decoder to enhance the accuracy of 

localization. 

 The output is a high-resolution change map, where 

white pixels represent changed areas and black 

pixels represent unchanged regions. 

5. Training Details 

 Optimizer: The Adam optimizer is employed, with 

a learning rate initialized at 1e-1 and gradually 

decreased to 1e-4.  

 Loss Function: A weighted binary cross-entropy 

loss function is used to address the class imbalance 

between changed and unchanged pixels. 

 Dataset Split: 

o LEVIR-CD dataset: 70% training, 20% 

testing, 10% validation. 

o 2DCD dataset: 68% training, 23% 

testing, 9% validation. 

 Batch Size and Epochs: A batch size of 10 is used, 

and the model is trained for 50 epochs to ensure 

convergence. 

 

 

Figure 4. The samples of 2DCD dataset (2DCD) 

 

3.3. Experimental Results 

We devised several experiments to demonstrate the 

impact of the suggested CoT-based approach. In the dual-

branch architecture depicted in Figure 1, we initially 

employed a CNN for the encoding phase. The outcomes of 

this identical network were obtained by incorporating 

channel attention during the decoding stage. Subsequently, 

we present the outcomes of the dual-branch network, 

contrasting the use of CoT for encoding instead of CNN, 

both with and without channel attention. 

 

3.3.1. Implementation Results of LEVIR-CD 

The LEVIR-CD dataset was utilized to implement the 

proposed approach in a sequential manner. The outcomes 

are presented in Table 1.  In order to more clearly highlight 

the efficacy of the proposed method, a systematic approach 

was adopted. Initially, a basic dual model grounded in CNN 

architecture was employed. Subsequently, a CAB was 

incorporated into the decoding segment. Progressing 

further, the conventional use of CNNs in the dual network 

was replaced by CoT. Finally, our proposed method 
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(ChangeCoTNet) involved implementing a decoding 

component founded on both CoT and a CAB.  

As depicted in Error! Reference source not found., the 

integration of CAB led to a 1.7% enhancement in F1 within 

the context of the simple dual-branch network, and a 1.2% 

increase within the CoT network. Meanwhile, employing the 

CoT network itself yielded a notable 3% increment in the F1. 

Ultimately, the innovative network architecture that 

combines CoT and CAB demonstrated substantial 

advancements, resulting in a remarkable 4.7% enhancement 

in precision, a notable 3.8% elevation in recall, and a 

significant 4.2% improvement in the F1 metric. 

Figure 5 also presents the visual outcomes of 

progressively applying the proposed model to the LEVIR-

CD dataset. In lines 4 to 7 of the Figure 5, we present the 

outcomes stemming from a stepwise implementation 

approach, particularly in regions exhibiting changes of 

varying sizes. The findings underscore the limitations of 

employing a dual-branch network modeled CNN as it has 

not comprehensively captured the changes. However, when 

employing the CAB model, the incorporation of distinctive 

feature extraction mechanisms notably enhances the fidelity 

of CD. Furthermore, the application of the CoT model, as 

depicted in line 6, and its fusion with CAB in line 7, 

demonstrates that integrating contextual feature extraction 

within the network architecture significantly improves the 

capacity to identify even subtle and minute changes with a 

high degree of accuracy. 

 
Table 1. An investigation of the proposed method through an 

ablation study on the LEVIR-CD validation set 

Method Pr (%) Re (%) F1 (%) 

dual-branch 
network by CNN 

3*3 
88.42 86.49 87.44 

dual-branch by 
CNN 3*3 +CAB 

90.27 87.62 88.93 

dual-branch by 
CoT 

91.30 88.86 90.06 

dual-branch by 
CoT +CAB 

(ChangeCoTNet) 
92.53 89.79 91.14 

 

3.3.2. Implementation Results of 2DCD dataset 

    The results of applying our proposed methodology to the 

2DCD dataset are presented in detail in Table 2. This table 

shows that our proposed method, ChangeCoTNet, achieved 

highly promising performance. This method exhibits 

superlative performance, achieving the highest levels of 

Precision, Recall, and F1-score. It is worth noting that the 

incorporation of CAB consistently contributes to the 

augmentation of model performance. This augmentation is 

palpably demonstrated in the enhanced metrics discernible 

in both the straightforward dual-branch network and the 

'ChangeCoTNet' methods. 

 

 

Figure 5. The visual outcomes of progressively applying 

the proposed model to the LEVIR-CD dataset. White 

signifies the changed region, while black signifies the 

unchanged region 

 

Simultaneously, when considering two-dimensional data, 

the employment of the CoT network in isolation yields a 

noteworthy 8.2% escalation in the F1 score. However, the 

introduction of our pioneering network architecture that 

amalgamates CoT with CAB reveals substantial strides 

forward. This architectural innovation culminates in a 

remarkable 11.9% enhancement in the F1 metric within the 

two-dimensional data subset of the 3DCD dataset. It is 

imperative to note that the results obtained on the 2D data 

segment of the 3DCD dataset exhibit lower performance 

compared to the LEVIR-CD dataset. This discrepancy can 

primarily be attributed to the scarcity of training data within 

the 2D dataset, which impedes the model's capacity to 

generalize effectively onto the evaluation data. 

Figure 6 also depicts the visual outcomes achieved 

through the progressive application of the proposed model 

to the aforementioned dataset. Within the Figure 6, 

specifically in lines 4 to 7, we illustrate the results obtained 

through a stepwise implementation strategy, focusing on 

regions that show building changes of different sizes: small 

(first column), medium (second column), and large (third 

and fourth column. These observations highlight the 

inherent limitations of employing a dual-branch network 

based on CNNs, as it fails to comprehensively capture the 

changes present in the dataset.  

However, when utilizing the CAB model, a framework 

designed with distinctive feature extraction mechanisms, a 

notable enhancement in CD fidelity is observed. 

Additionally, the integration of the CoT model, as illustrated 

in line 6, and its fusion with CAB in line 7, exemplifies the 

substantial improvements achieved by incorporating 
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contextual feature extraction within the network 

architecture. This enhancement significantly enhances the 

model's ability to identify even subtle and minute changes 

with a high degree of accuracy. 

 
Table 2. An investigation of the proposed method through an 

ablation study on the 2DCD validation set 

Method Pr (%) Re (%) F1 (%) 

dual-branch 
network by CNN 

3*3 
80.16 64.57 71.53 

dual-branch by 
CNN 3*3 +CAB 

84.51 66.62 74.51 

dual-branch by 
CoT 

87.04 69.94 77.56 

dual-branch by 
CoT +CAB 

(ChangeCoTNet) 
88.47 73.09 80.05 

 

 

 

Figure 6. The visual outcomes of progressively applying 

the proposed model to the 2DCD dataset. White signifies 

the changed region, while black signifies the unchanged 

region 

4. Discussion 

 

In this section, we will discuss the results by comparing 

our proposed network with state-of-the-art (SOTA) methods. 

The evaluation of our method's performance incorporates 

various contemporary techniques. For instance, The 

STANet, introduced by the developers of the LEVIR-CD 

dataset in 2020, utilizes the self-attention mechanism to 

capture spatial-temporal dependencies (Chen & Shi, 2020). 

DDCNN, as introduced by Peng et al. in 2020, utilizes dense 

attention and several up-sample attention components for 

dual-temporal image processing. Additionally, it 

incorporates a DE unit to enhance network efficiency (X. 

Peng et al., 2020). Additionally, AGCDetNet (Song & Jiang, 

2021) integrates spatial attention alongside a module 

featuring channel-wise attention-guided interference 

filtering. This approach enhances features at multiple levels 

and context across various scales, enhancing attention-

guided CD capabilities. 

In transformer-based methods, SiamixFormer 

(Mohammadian & Ghaderi, 2023) is a novel Siamese model 

designed for CD. It operates by employing a dual-encoder 

setup within hierarchical transformer structure in the 

encoding stage. The inclusion of temporal transformers in 

feature fusion offers the added benefit of effectively 

maintaining the expansive receptive fields established by 

transformer encoders. Temporal transformer output 

subsequently passes through a simple MLP decoder at each 

stage. BIT (Chen et al., 2022) designed to effectively model 

spatial-temporal contexts. By representing bitemporal 

images as semantic tokens, the approach employs a 

transformer encoder to capture context in a condensed 

token-based space-time representation.  (Q. Guo et al., 

2022)  presented an innovative module named iterative 

difference-enhanced transformers (IDET). This module 

stems from a novel perspective in CD, emphasizing the 

enhancement of feature differences to accentuate changes 

and diminish unchanged regions. (Bandara & Patel, 2022) 

introduced the ChangeFormer network, which is a 

hierarchical transformer encoder with a Multi-Layer 

Perception (MLP) decoder in a Siamese network. This 

integration enables the efficient capture of multi-scale long-

range details necessary for accurate Change Detection 

(CD). 

To ensure a fair comparison, all techniques were 

instantiated using the hyper parameters outlined in Error! 

Reference source not found.. The input data dimensions 

were confined to 128 × 128 due to graphic card constraints. 

These methodologies were executed on the LEVIR-CD and 

2DCD datasets. 

 
Table 3. Parameters employed for executing the SOTA techniques 

Method Train 
crop size 

Batch 
size 

Optimization 
Algorithm 

No. of 
epoch 

STANet 128 × 
128 

10 Adam 50 

DDCNN 128 × 
128 

10 Adam 50 

AGCDetNet 128 × 
128 

10 Adam 50 

SiamixFormer 128 × 
128 

10 Adam 50 

 

The comparison results of the implementation of the 

proposed model on the SOTA methods mentioned above on 

the LEVIR and 2DCD data sets are given in Error! 

Reference source not found.. ChangeCoTNet consistently 

outperforms other methods on both datasets in terms of 
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Precision, Recall, and F1-Score. It especially shows 

significant improvement over other methods on the 2DCD 

dataset. Hence, there has been an increase in the F1 score 

by 1.1% in the LEVIR-CD dataset and 1.9% in the 2DCD 

dataset. Particularly noteworthy is the exceptional precision 

observed in the 2DCD dataset, showing a remarkable 

improvement of 2.42% compared to the performance 

achieved by previous optimal methods. A high Pr signifies 

the extraction of localized information through dense 

connections among multiscale features. Furthermore, the Re 

parameter can compete with SOTA methods and even in 

2DCD data, it has increased by about 1.2 %. This rise 

underscores the effective utilization of contextual 

information within neighboring keys, enabling the model to 

learn to focus on itself. Additionally, it highlights the 

strategic incorporation of channel attention mechanisms, 

facilitating the extraction of distinctive and comprehensive 

long-range features.  

To effectively showcase the performance of the proposed 

methodology, visual outcomes for both LEVIR-CD and 

2DCD datasets are juxtaposed with those of SOTA methods 

in Figure 7. In these visual representations, correctly 

identified changes (TP) are depicted in white, while 

accurately detected stability (TN) is represented in black. 

Pixels erroneously identified as changed (FP) are denoted 

in red, while pixels inaccurately identified as unchanged 

(FN) are highlighted in blue. In the illustrated examples, 

certain methods displayed limitations in capturing all 

changes comprehensively. Specifically, STANet and 

DDCNN failed to identify subtle alterations in the second 

column of Figure 7. In contrast, our proposed method, 

leveraging contextual information and a dynamically 

learned attention matrix, demonstrated superior efficacy in 

detecting both minor and significant changes within an 

image scene.  Also, in some methods such as SiamixFormer, 

the color changes of the road or vehicles have been 

extracted as structural changes, and an FP error has been 

created, which cannot be seen in the proposed method. 

The notable aspect regarding the 2DCD dataset revolves 

around labeling inaccuracies present within the data, 

potentially leading to a reduction in overall accuracy across 

all methods. As depicted in the fourth column of Figure 7, 

the alterations manifest as the construction of two distinct 

buildings with a considerable gap between them, and one of 

the structures is still under construction towards the right 

side of the image. However, the dataset labels this scenario 

as a single isolated building undergoing change. Contrarily, 

our results demonstrate that all methods have correctly 

identified these as two separate structures, aligning with the 

actual scenario. Additionally, the southern section of the 

building on the left is in the process of being built, a detail 

accurately captured by the proposed method but missed by 

previous approaches 

The noteworthy aspect concerning the 2DCD dataset 

revolves around labeling errors inherent in the data, 

potentially leading to an overall decrease in accuracy 

across all methods. As depicted in the fourth column of 

Figure 7, the changes appear in the form of constructing two 

distinct buildings with a considerable gap between them, 

and one of the structures is still under construction towards 

the left side of the image. However, the dataset labels this 

scenario as a single isolated building undergoing change. 

Conversely, our results demonstrate that all methods have 

correctly identified these as two separate structures, 

aligning with the actual scenario. Additionally, the southern 

section of the building on the left is under construction, a 

detail accurately captured by the proposed method but 

missed by previous approaches. 

 
Table 4. Comparative Assessment of proposed BCD Algorithms: 

LEVIR-CD vs 2DCD 

Methods LEVIR-CD 2DCD 

Pre 

(%) 

Re 

(%) 

F1 

(%) 

Pr 

(%) 

Re 

(%) 

F1 

(%) 

STANet 84.59 91.00 87.68 79.37 50.77 61.93 

DDCNN 91.88 88.29 90.05 81.03 60.41 69.22 

AGCDetNet 91.07 88.93 89.98 86.38 69.65 77.12 

SiamixFormer 89.51 88.93 89.22 84.43 69.07 75.98 

BIT 90.16 89.11 89.63 83.41 68.92 75.46 

IDET 91.30 87.05 89.12 85.71 70.49 77.36 

ChangeFormer 92.16 88.17 90.12 86.04 72.25 78.54 

ChangeCoTNet  

(ours) 

92.53 89.79 91.14 88.47 73.09 80.05 

 

5.  Conclusion  

In this study, we proposed ChangeCoTNet, a novel 

hybrid network that integrates Contextual Transformer 

(CoT) blocks in the encoder and CNN in the decoder for 

high-resolution building change detection. The model 

effectively addresses challenges related to complex urban 

environments by leveraging both static and dynamic 

contextual representations and channel attention 

mechanisms. 

The key contributions of this work include: 

1. The introduction of a dual-branch 

architecture that combines CoT blocks and CNN to 

enhance feature extraction and improve the 

model’s ability to capture global and local 

contextual information. 

2. The use of a channel attention block to 

emphasize discriminative features, leading to more 

accurate detection of subtle and complex changes. 

3. Extensive evaluation on two benchmark 

datasets, LEVIR-CD and 2DCD, demonstrating 

significant improvements in F1-scores compared 

to state-of-the-art methods. 

Our results highlight the practical advantages of the 

proposed method, including a 1.1% improvement in F1-

score for the LEVIR-CD dataset and a remarkable 1.9% 

improvement for the 2DCD dataset. These improvements 

underline the effectiveness of incorporating CoT and CAB 

in achieving superior performance in change detection 

tasks. 
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Moreover, the efficiency of ChangeCoTNet makes it well-

suited for real-world applications, such as urban planning, 

disaster response, and environmental monitoring, where 

accurate and timely detection of changes is critical. 

Future work will explore the application of the proposed 

method to larger datasets and more diverse scenarios to 

further validate its generalizability and scalability. 

 

 

Figure 7. Visual evaluation contrasting SOTA 

methodologies with the proposed ChangeCoTNet approach 

on both the LEVIR-CD and 2DCD datasets 
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